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The statistical mechanics of single polymer knots is studied using Monte
Carlo simulations. The polymers are considered on a cubic lattice and their
conformations are randomly changed with the help of pivot transforma-
tions. After each transformation, it is checked if the topology of the knot
is preserved by means of a method called Pivot Algorithm and Excluded
Area (in short PAEA) and described in a previous publication of the au-
thors. As an application of this method the specific energy, the radius of
gyration and heat capacity of a few types of knots are computed. The
case of attractive short-range forces is investigated. The sampling of the
energy states is performed by means of the Wang–Landau algorithm. The
obtained results show that the specific energy and heat capacity increase
with increasing knot complexity.
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1. Introduction

Polymer knots are researched in connection with several applications,
mainly in biology and biochemistry [1–10]. In this work, we investigate the
statistical mechanics of a single polymer knot by computing its specific en-
ergy, heat capacity and gyration radius at different temperatures. One of
∗ Presented at the XXV Marian Smoluchowski Symposium on Statistical Physics,
“Fluctuation Relations in Nonequilibrium Regime”, Kraków, Poland, September
10–13, 2012.
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the main problems in studies of this kind is how to preserve the polymer
topology during the thermal fluctuations. To this purpose, several methods
have been developed [11–17]. Most of them are based on the Alexander
or Jones polynomials, which are rather powerful topological invariants able
to distinguish with a very high degree of accuracy the different topologi-
cal configurations. The main drawback of these polynomials is that their
calculation is time consuming from the computational point of view. In a
recent work [18], a strategy based on an excluded area method called PAEA
has been proposed in order to circumvent these difficulties. A similar idea
has been presented in [19], but in that case, instead of using arbitrary pivot
transformations to produce random knot configurations, a set of topology
preserving pull moves is adopted. Within our method, instead, any trans-
formation is allowed. In this way, the equilibration of the system is faster
and the access to all possible conformations is easier. Those transformations
that lead to a change of topology are automatically detected by the PAEA
algorithm and discarded.

According to [18], one starts from a seed knot, for instance those given
in Ref. [20]. Next, the knot is changed at a randomly chosen set of segments
by applying the pivot algorithm [21]. After each pivot move, it is easy to
realize that the difference between the old and new configurations, obtained
by canceling the segments that have been unaffected by the transformation,
consists of a closed loop. Around this loop, an arbitrary surface is stretched,
whose boundary is the closed loop itself. The criterion to reject changes
that destroy the topology of the knot is the presence or not of lines of the
old knot that cross such surface. If these lines are present, the trial pivot
move is rejected, otherwise is accepted. This combination of pivot algorithm
and excluded area (PAEA) provides an efficient and fast way to preserve
the topology that can be applied to any knot configuration, independently
of its complexity. For pivot moves involving a small number of segments,
the method becomes exact. This technique may be employed in the study
of the thermal and mechanical properties of polymer knots as it has been
done in Ref. [18]. In this article, we will extend that work by studying the
case of an attractive short-range potential, which is nothing else but a rough
approximation of the Lennard–Jones potential on the lattice. Moreover, with
respect to [18], we do not limit ourselves to the computation of the internal
energy and heat capacity, but we consider also the gyration radius of the
knot. The cases of the unknot, trefoil and 51 topologies is investigated. The
sampling of the canonical ensemble is achieved by using the Wang–Landau
algorithm [22] at different temperatures.
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2. Sampling and calculation method

The way of generating random knot transformations with the help of
pivot transformations and the PAEA method needed to prevent topology
changes after these transformations have been already extensively described
in [21] and [18], respectively. We refer the interested Reader to those publica-
tions for more details. In this section, we concentrate on the Wang–Landau
(WL) method applied to polymer knots. See also [23] for applications of this
method to linear polymer chains and rings.

The WL algorithm can be regarded as a self-adjusting procedure for
obtaining the density of states Φi∫

dXδ(Ei − E(X)) ≡ Φi , (1)

where X is a microstate of the system under consideration. We suppose
here that the energy values are discrete, so that they can be labeled by
indexes i, i′, . . .. If the Φi’s are known, then the partition function can be
constructed: Z =

∑
i e
−βEiΦi

1. As well, it is possible to derive in an easy
way the averages of any quantity that can be expressed in terms of the mo-
menta of the energy 〈El〉(β) =

∑
iE

l
ie
−βEiΦi/Z, l = 1, 2, . . . For example,

the heat capacity is given by

C(T ) = β2
(〈
E2
〉
(β)− (〈E〉(β))2

)
. (2)

According to the Wang–Landau method, the density of states is constructed
with successive approximations. First, the would be density of states g(Ei)
is set to be equal for all Ei’s by putting g(Ei) = 1. After that, a Markov
chain of microstates X1, X2, . . . is generated. The probability of transition
from a state Xi of energy Ei to a state Xi′ with energy Ei′ is

p
(
i→ i′

)
= min

[
1,
g(Ei)

g(Ei′)

]
. (3)

If p (i → i′) ≥ 1, the state i′ is automatically accepted. If, instead, p (i →
i′) < 1, then a random number 0 < η < 1 is generated and the state is
accepted only if p (i → i′) ≥ η. Once an energy state Ei is visited, its
corresponding would-be density of states is updated by multiplying it by a
modification factor f , i.e.

g(Ei)→ fg(Ei) , (4)

1 We have put here β = T−1, where β is the usual Boltzmann factor in thermodynamic
units in which the Boltzmann constant is equal to 1.
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where f > 1. Moreover, the energy histogram H(Ei) is updated by perform-
ing the replacement H(Ei) → H(Ei) + 1 [22]. In this way, an energy state
occurring N(Ei) times during the sampling will have a would be density of
states g(Ei) = fN(Ei) and the transition probability (3) to that state will
be suppressed by the factor f−N(Ei). When the energy histogram H(Ei)
becomes flat, then g(Ei) converges to the density of states Φi. To show
that, let us consider the probability P(Ei) of obtaining a microstate X with
energy E(X) = Ei. This probability must be equal to the probability of
generating the state X times the probability of acceptance of Ei introduced
by the Wang–Landau algorithm, which is proportional to f−N(Ei)

P(Ei) ∝ f−N(Ei)Φi . (5)

The last factor in the above equation is due to the fact that the probability
of obtaining a microstate X with energy Ei is given by

∫
dXδ(Ei−E(X))∑

i

∫
dXδ(Ei−E(X))

=
Φi∑
i Φi

and the denominator
∑

i Φi is an irrelevant constant. When the energy
histogram H(Ei) becomes flat, this means that the probability P(Ei) is the
same for all states Ei. In other words, P(Ei) = a for every i, where a is a
constant. Thus, from Eq. (5), we obtain

fN(Ei) = g(Ei) ∝ Φi . (6)

Actually, if f is too big, the statistical errors on the g(Ei)’s may grow large
and the above equation is satisfied very roughly. On the other hand, if
f is too small, it is necessary an enormous number of microstates during
the sampling in order to derive the g(Ei)’s. For this reason, in the Wang–
Landau method, the density of states is computed perturbatively. In the
next step, one takes the g(Ei) evaluated with the modification factor f as
a starting point and generates another Markov chain of microstates. The
energy histogram H(Ei) is reset to 0 and all the previously explained proce-
dure is repeated for the new microstates apart from the fact that in Eq. (4)
f is replaced by

√
f . When the energy histogram becomes flat, the second

approximation of the g(Ei)’s is obtained. In the next approximations, suc-
cessive square roots of f are entering in the algorithm until we arrive at a
step n such that n

√
f = ffinal ∼ exp(10−8) [22]. The initial parameter f is

chosen in such a way that the simulations will not take too much time and
the statistical errors on the g(Ei) will not be too large.

In the present article, the states are distinguished by the number m
of closest contacts between the monomers, where m takes positive inte-
ger values. The meaning of contact in the present context is explained in
Refs. [18, 23]. Short-range attractive forces are studied, so that the en-
ergy values are given by Em = mε, where ε is the contact energy of two
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unbonded monomers, which is negative in the attractive case. Since the
number of samples is huge for polymer systems, it is more convenient to
consider the logarithm of the density of states Ωm = ln g(Em). In this way,
the transition probability is expressed as

p
(
m→ m′

)
= min[1, exp(Ωm −Ωm′)] (7)

and the modification factor becomes ln(f). After a state Em is visited, the
corresponding energy histogram should be updated by H(Em)→ H(Em)+1
and the density of state is modified by Ωm → Ωm + ln(f).

3. Thermal properties of polymer knots

In this section, the thermal properties of a few types of polymer knots
are studied. In particular, the specific internal energy of the polymer per
unit of length 〈E〉(β)/L, the heat capacity and the radius of gyration are
computed in the case of the unknot 01, the trefoil 31 and the knot 51.

The gyration radius is not directly related to the moments of the energy
as mentioned in the previous section. However, this quantity may be com-
puted by noticing [24] that the mean square radius of gyration 〈R2

G〉(β) can
be written as follows

〈
R2

G

〉
(β) =

∑
m

〈
R2

G

〉
m
e−βmεΩm∑

m e
−βmεΩm

. (8)

Here 〈R2
G〉m = 〈 1

L2

∑L
I,J=1〈(RI−RJ)

2〉m denotes the average of the gyration
radius computed over states with m contacts. Moreover, RI is the position
vector of Ith segment and L is the length of the polymer.

In Fig. 1, the results for the unknot and the trefoil are displayed. It
is found that the growth of the specific energies 〈E(β)〉/L in Fig. 1 (a) is
characterised by three regions. At very low temperatures, the energy growth
is practically zero because the temperatures are too low to allow contacts
between the monomers. When the energy is enough to excite more states,
the specific energy grows rapidly as a function of the temperature until sat-
uration is reached and the energy increase becomes moderate. The fast
increasing energy region causes a peak of the heat capacity as shown in
Fig. 1 (b) as it has been explained in details in [18]. Concerning the topo-
logical effects, we observe that both the energy and the heat capacity grow
with growing knot complexity, as it turns out from Fig. 2 by comparing the
plots for various knots with the same length L = 90. Figure 1 (c) shows
that in the attractive energy case the mean square gyration radius 〈R2

G〉(β)
grows with increasing temperatures. This is an expected behavior. As a
matter of fact, in the case of attractive forces, the polymer turns out to be
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Fig. 1. Specific energy, specific heat capacity and gyration radius for the unknot
and the trefoil as functions of the dimensionless temperature T = T

ε . Polymers
with lengths L = 70, 90 and 120 are considered. (a) Plot of the specific energy (in
ε-units); (b) Plot of the specific heat capacity (in ε-units); (c) Plot of the radius of
gyration.

in a crumpled conformation at very low temperatures with many contacts
in order to minimize the energy. On the contrary, at high temperatures the
energy of the thermal fluctuations is large with respect to ε, so that the
attractive forces become negligible. Thus, the number of contacts m will be
in the average smaller at higher temperatures than at lower energies. As it
is intuitive, a smaller number of contacts m corresponds to a larger volume
occupied by the knot, which causes the observed increase of the radius of
gyration with growing temperatures.

Fig. 2. Specific energy and heat capacities as functions of the temperature for the
unknot, the trefoil and the knot 51 with length L = 90. (a) Plot of the specific
energy (in ε-units); (b) Plot of the specific heat capacity (in ε-units); (c) Plot of
the gyration radius.

4. Conclusions

We have studied the thermal properties of a few types of polymer knots
using the PAEA algorithm of Ref. [18]. The number of polymer segments
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affected by the pivot moves has been limited to four. In this case, the
PAEA method is able to preserve the topology of the knot exactly [18]. The
results of [18], which took into account only short-range repulsive forces,
have been extended to attractive forces and the calculation of the gyration
radius has been added. The thermal properties of the unknot, the knot 31

and 51 have been analysed with the help of Monte Carlo simulations based
on the Wang–Landau algorithm and the pivot method. A brief account
about the Wang–Landau method has been provided. The results, including
those with the new topology 51, confirm those of Ref. [18] even when the
interactions are attractive. In particular, the presence of the three regimes
of growth of the specific energy mentioned in the previous section has been
observed. Moreover, the role of the topological effects, which make both the
energy and the heat capacity increase with increasing knot complexity, is
confirmed. The data coming from the calculation of the gyration radius give
a measure of the size of the polymer knot at different temperatures. When
the temperature is low, the number of contacts is at its maximum and the
gyration radius is at its minimum. The size of the polymer points out to a
possible crumpled conformation. At high temperatures, the influence of the
attractive forces becomes negligible and the gyration radius attains slowly its
maximum. Even if we limited ourselves to simple short-range interactions,
there are no obstacles to extend our procedure to more realistic polymer
systems.
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