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Recently, we studied equilibrium properties of the Lebwohl–Lasher
model with quadrupolar and octupolar interactions in the large twist limit.
A complete mean field analysis of the model and Monte Carlo simulations
were presented to show a global stabilization of new structures like tetra-
hedratic, nematic tetrahedratic, and chiral nematic tetrahedratic phases of
Td, D2d, and D2 symmetry, respectively. Here, by means of Monte Carlo
simulation on two-dimensional system, we show that the model can also
give a molecular interpretation of macroscopic regions with opposite opti-
cal activity (ambidextrous chirality), observed in achiral bent-core systems,
and recently in ferrocenomesogens and flexible liquid crystal dimers. The
resulting superstructures include short- and long-range twist deformations.
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Complex supramolecular structures formed by bent-core (banana-shaped)
systems [1–4], superstructures found in ferrocenomesogens [5] and in nematic
liquid crystals formed by flexible dimers [6–8] can exhibit unusual proper-
ties, unknown to conventional mesogenic materials. The most striking is
the occurrence of a macroscopic spontaneous chiral order forming domains
of opposite optical activity. This observation is unusual in the sense that
chirality and chiral structures of liquid crystals have so far been regarded as
resulting from the presence of optically active molecules (e.g. [9–11]), while
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all the molecules that we mentioned above are intrinsically achiral. Inter-
estingly, spontaneous formation of macroscopic chiral domains of opposite
handedness (ambidextrous chirality) was observed not only in more ordered
smectic phases but also in ordinary isotropic and nematic phases.

Lubensky and Radzihovsky [12] argued that chiral order of non-chiral
materials can be explained at fundamental, symmetry level by considering
at least quadrupolar (biaxial) and octupolar (tetrahedratic) tensor order
parameters. They presented exhaustive list of possible liquid crystalline
phases along with their symmetries that result from this hypothesis and
cataloged the universality classes of the corresponding phase transitions.

The molecular level studies, although still scarce, support relevance of the
molecular quadrupolar interactions in the microscopic description of the sys-
tems considered [13–23]. It is also relatively easy to show that rigid molecules
of C2-symmetry, which approximate the shape of bent-core molecules, gen-
erate quadrupolar and octupolar contributions to the Onsager’s excluded
volume [24].

In our recent papers [25, 26], we introduced a generalized Lebwohl–Lasher
model with competing dispersion quadrupolar (uniaxial and biaxial) and
octupolar (tetrahedratic) interactions to study a possibility of spontaneous
chiral symmetry breaking. We assumed that liquid-crystalline molecules (or
molecular complexes) interact with the O(3)-invariant pair potential of the
form

V (i, j) = −ε(rij)
[
Q(Ωi) ·Q(Ωj) + τT 3

2(Ωi) · T 3
2(Ωj)

]
, (1)

where rij = |rij | is the distance between molecular centers of mass and where
Q = T 2

0+
√
2λT 2

2 is the second-rank quadrupolar tensor, defined with respect
to two-fold axes of the molecular quadrupole moment. The T 3

2-term takes
into account interactions between molecular octupolar, third-rank tensors.
The three tensors T Lm of L = 2, 3 are given by

T 2
0(Ωk) =

√
3

2

(
ck ⊗ ck −

1

3
1

)
,

T 2
2(Ωk) =

1√
2
(ak ⊗ ak − bk ⊗ bk) ,

T 3
2(Ωk) =

1√
6

∑
(x,y,z)∈π(ak,bk,ck)

x⊗ y ⊗ z , (2)

where Ωk is the orthonormal tripod of vectors {ak, bk, ck} attached to the
kth molecule or molecular complex. Summation in T 3

2 runs over six per-
mutations of ak, bk, ck. Finally, the scalar product ‘·’ is defined as a full
contraction over Cartesian indices.
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For τ = λ = 0, the model (1) accounts for the first-order isotropic to
uniaxial nematic phase transition [28]. The case of λ 6= {0,

√
3/2} serves

as a generic model of a biaxial nematic order [17, 29]. The model with
purely tetrahedratic coupling, proportional to ετ , shows the formation of
absolutely stable tetrahedratic phase of global Td symmetry. It was studied
by Fel [30, 31], Romano [32], and by us [25, 26].

In the pair-interaction potential (1), the kth molecule degrees of freedom,
Ωk, involve a proper rotation Ω′

k, expressed e.g. in terms of standard Euler
angles (αk, βk, γk) and an inversion operation of the molecule-fixed system
of frame, referred to as a parity degree of freedom pk = ak · (bk × ck) = ±1.
That is

Ωk = {pk,Ω′
k} , Tr

(k)
=

1

2

∑
pk=±1

∫
dΩ′

k . (3)

Clearly, the inversions change sign of T 3
2, but leave Q unaffected.

The combination of biaxial and tetrahedratic interactions, Eq. (1), stud-
ied in [25–27], leads to a formation of new structures like a tetrahedratic
nematic phase of D2d symmetry, and, most importantly, a chiral tetrahe-
dratic nematic of D2 symmetry. The chiral phase is stabilized as a result of
coupling between octupolar and quadrupolar biaxial long-range orders and
is absent in the uniaxial limit

(
λ = 0 or λ =

√
3
2

)
. In the nematic tetrahe-

dratic phase, weakly biaxial left- and right-handed homochiral domains are
formed, but their chirality mutually cancels out and the overall structure
is nonchiral. The studies were carried out with neglect of chirality-induced
spatial modulation of the orientational structures, which was regarded as
secondary characteristic.

The class of spatially homogeneous, orientational structures identified
in [25, 26] becomes unstable against spontaneous twist formation (short- or
long-ranged) if we supplement Eq. (1) with further couplings that involve
T tensors, Eq. (2), and the intermolecular unit vector r̂ij = rij/rij . The
simplest interaction, linear in r̂ij , that can be added to Eq. (1), reads [26]

Vc (pi,Ω
′
i, pj ,Ω

′
j) =

κ

ε
[Θαβγ(Ωi)Qαν(Ωi)Qβν(Ωj)

− Θαβγ(Ωj)Qαν(Ωj)Qβν(Ωi)] (r̂ij)γ , (4)

where (r̂ij)γ = −(r̂ji)γ is the γ component of the intermolecular unit vector
and where we have used the Einstein convention for the repeated indices.
The third-rank molecular tensor Θαβγ , totally antisymmetric in {α, β, γ}, is
given by
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Θαβγ = 2
√
2

∑
(x,y,z)∈c{α,β,γ}

T 2
0,xµT

2
2,yνT

3
2,µνz , (5)

where summation runs over cyclic permutations of {α, β, γ} (c{α, β, γ} =
{(α, β, γ), (γ, α, β), (β, γ, α)}).

The modified pair interaction potential, Vtotal, is sum of V and Vc,
Eqs. (1), (4)

Vtotal (pi,Ω
′
i, pj ,Ω

′
j , r̂ij) = V (pi,Ω

′
i, pj ,Ω

′
j) + Vc (pi,Ω

′
i, pj ,Ω

′
j , r̂ij) .

(6)
Note that

Vtotal (pi,Ω
′
i, pj ,Ω

′
j , r̂ij) = Vtotal (−pj ,Ω′

j ,−pi,Ω′
i, r̂ij) , (7)

which, along with Vc ∼ (pi + pj), allows to take κ ≥ 0. Additionally, the
Vc-term is relevant, given that pi = pj , and vanishes for states of opposite
parity (pi = −pj).

The properties of Vc imply that for nonvanishing κ the chiral nematic
tetrahedratic structure becomes unstable against long-range spontaneous
twist formation, while short-ranged twisted configurations of opposite chi-
rality (〈pi〉 = 0) are formed in non-chiral phases. To prove this statement,
we perform Monte Carlo simulations for the model (6). For simplicity, we
assume the molecules to occupy the sites of a two-dimensional square lat-
tice, but later will argue that qualitative results should also hold for three-
dimensional systems. The strength of the interaction is given by ε(rij), taken
to be a positive constant ε when particles i and j are nearest neighbors and
zero otherwise. We carry out the simulations on a square lattice of rela-
tively large size 64×64 with periodic boundary conditions, using Metropolis
algorithm. The orientational degrees of freedom of molecules are coded in
a quaternion representation. Each attempted MC move involves the proper
rotation of a molecule’s orientation and parity inversion. The size of the
MC rotational step is adjusted to give an acceptance ratio between 30% and
40% in the ordered phases.

The results from typical simulations are shown in Figs. 1–3. For relatively
low values of κ = 1, the low-temperature chiral tetrahedratic nematic phase
is replaced by the cholesteric-like (homochiral) phase. At high temperatures,
the cholesteric order breaks down and the short-range domains of opposite
chirality are formed, as observed experimentally in nematic and isotropic
phases. The result should be independent of the space dimension except that
a more complex structures, like Blue Phases, may form for three dimensional
lattices. To see this, let us consider the ground state properties of (6) for
ε > 0 and τ > 0. For κ = 0, we find thatMin

{Ω′}
Vtotal(i, j) = −ε(1+2λ2+pipjτ),
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which is satisfied by configurations of pi = pj , where twofold axes of Q(i)
(T 3

2(i)) and Q(j) (T 3
2(j)) are aligned parallel to each other. This local

arrangement can be extended globally over the whole lattice (irrespective of
the space dimension) to stabilize (at T = 0 for one-dim systems) the chiral
nematic tetrahedratic structure.

Fig. 1. (Color online) Snapshot of the molecular equilibrium organization obtained
from MC simulations for the two-dimensional square lattice (64×64), generated by
the interaction potential (6). Parameters taken are λ = 0.3, τ = κ = 1 and reduced
temperature t = kBT/ε = 0.55. Bricks are oriented along eigenvectors of the
molecular Q-tensors; arms are proportional to absolute values of the corresponding
eigenvalues. The associated octupolar order is not shown. Note that highly ordered
cholesteric-like phase with a single dislocation is formed. It replaces homochiral
tetrahedratic nematic, stable for κ = 0.

Fig. 2. (Color online) Snapshot of the molecular equilibrium configuration obtained
from MC simulations defined in captions to Fig. 1 for t = kBT/ε = 0.65. The
structure is still cholesteric-like, but with many, short-range domains of opposite
chirality (coded with green/light gray color).
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Fig. 3. (Color online) Snapshot of the molecular equilibrium organization obtained
from MC simulations defined in captions to Fig. 1 for t = kBT/ε = 1. The struc-
ture is isotropic with many short-range domains of opposite chirality (coded with
green/light gray and red/gray colors). Note that phase is overall non-chiral.

For κ 6= 0 and λ giving the biaxial, molecular tensor Q, the ground state
configuration corresponds to ai, aj and r̂ij being parallel to each other. The
perpendicular axes {bj , cj} are rotated by βij about ai clockwise (pi+pj = 2)
or counterclockwise (pi + pj = −2) from {bi, ci}, where

tan (2βij) =
κΛ (pi + pj)

Λ+ 4τ
=

2κΛpi
Λ+ 4τ

, (8)

and where
Λ = 3 + 2λ

(√
6 + λ

)
. (9)

The equation (8) predicts molecular twist of two neighboring molecules
in the ground state and allows to estimate the average molecular twist 〈β〉
of the nearest-neighbor tripods for not too high temperatures as [26]

〈β〉 ≈= κΛ

Λ+ 4τ
〈p〉 . (10)

Both of the above equations support our previous statement that superstruc-
tures with twist should be observed independent of space dimensionality.
However, the simulations for three dimensional lattice may give additional
stable structures with twist propagating in more than one direction. Anal-
ysis of this more complex case is postponed to our forthcoming publication.
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