
Vol. 44 (2013) ACTA PHYSICA POLONICA B No 5

EFFECTS OF CONFINEMENT
ON A TWO-DIMENSIONAL SYSTEM

OF THE LENNARD-JONES PARTICLES
IN SPHERICAL GEOMETRY∗

Paweł Karbowniczek, Agnieszka Chrzanowska

Institute of Physics, Cracow University of Technology
Podchorążych 1, 30-084 Kraków, Poland

(Received May 29, 2013)

Influence of confinement on a two-dimensional Lennard-Jones system of
spherical particles has been studied by means of Molecular Dynamics sim-
ulations. High Resolution Density Map (HRDM) method has been applied
to study of inhomogeneous configurations in a circular geometry. Solidifi-
cation has been shown to depend strongly as well on the structure as on the
type of constituting particles of the surrounding wall. Within the liquid
state, for certain parameters of density and temperature, configurations oc-
cur that remind of the structure of node lines characteristic for the Bessel
equation, which are argued to play the role of the seeds for solidification.
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1. Introduction

Study of the structure of fluids and their mixtures in confined geometries
is an interesting area of research because of its relevance to surface driven
phase transitions, adsorption, wetting etc. [1]. Hence, it arises a strong in-
terest in the field of theoretical and computer simulation studies of fluids in
pores, slits and other geometries. Confined fluids behave very differently in
comparison to the bulk fluids. Interesting aspects of the confinement include
non-uniform density distributions [2], adsorption hysteresis effects [3], pref-
erential adsorption in mixtures [4], effects at the solid–liquid interface [5] and
phase transitions [6]. Inhomogeneous behavior is often caused by the fluid–
solid interactions, competition between fluid–solid and fluid–fluid forces and
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the excluded volume effect [7–9]. Fluids confined in small nanoscale pores
are common in nature. Typical examples of porous materials include carbon
nanotubes, activated carbon, silica gel and zeolites [10].

Using Molecular Dynamics, Monte Carlo and Density Functional The-
ory confined fluids have been widely investigated according to the literature
(see [8] and references therein). At the molecular level, inhomogeneous flu-
ids are frequently studied using a slit pore geometry, which consists of two
parallel walls (see for example [9] or [11]). This model allows to change the
degree of confinement in a convenient way. For the confined fluid, a decrease
in the confined scale leads to a larger portion of fluid molecules interacting
with the wall. Real porous materials, however, show a more complex struc-
ture made of interconnected network of pores. In recent years, the physics
of phase transitions in lower-dimensional systems has attracted interest with
emphasis on the two-dimensional liquid to solid transition [8, 12]. It is known
that freezing and melting behavior of confined fluids may deviate strongly
from bulk behavior [13]. Confinement induces layering at the walls in the
liquid phase and, therefore, has significant influence on the process of crys-
tallization. The crystallization process changes significantly, depending on
the strength of the particle-wall interaction [14]. In the case of strongly at-
tractive walls, crystallization starts from the walls at a temperature higher
than the transition temperature in the bulk system. In the opposite situ-
ation, when the walls are strongly repulsive, crystallization starts from the
bulk at a temperature lower than the temperature of the system without
introduced confinement. Studies of slit pores show that the shift in crys-
tallization temperature is dependent on the nature of the walls [15]. In
a two-dimensional case, the crystallization of a layer of the Lennard-Jones
particles [16] is, however, expected to proceed through the KTHNY mech-
anism [17], which differs from the bulk nucleation. The phase diagram of
fluids confined in porous materials can be, therefore, different than those
observed in bulk due to the geometrical constraints.

The simple structureless models of the wall-fluid interactions like the
Steele, 9–3 (where 12 and 6 coefficients in the Lennard-Jones potential are
replaced by 9 and 3, respectively) and 10–4 potentials are often used in
simulations. The Steele 10–4–3 potential [18] is given by

Uwf(x) = 2πρSσwf
2εwf
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, (1)

where x is th distance between the fluid particle and the wall, ∆ interlayer
spacing of the wall atoms, ρS is the carbon density on the slab surface, σwf

and εwf are the wall-fluid interaction parameters and α = 0.61 is an empir-
ical adjustment improving accuracy of the model of a pore wall. The first
two terms of the potential comes from the first plane of the wall interacting
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via the Lennard-Jones potential with the inner system, whereas the third
comes from the other layers infinitely extended down from α with ρS den-
sity. Despite the fact that these potentials became the most popular in the
literature, they are simplified and do not take into account structure of the
wall, therefore they cannot describe all the physical processes that might
occur in porous materials.

2. Application of HRDM method to the confined systems

A 2D system of the spherical Lennard-Jones particles is considered in
the spherical confinement. For this purpose, an appropriate Molecular Dy-
namics program, which allows for simulations at different thermodynamic
conditions and for different potential parameters, has been written. All cal-
culations are performed in reduced units, where time corresponds to the
actual time of several ps (depending on the type of the particles). Note,
however, that this range of time is still unattainable in the real experiments.
The Lennard-Jones particles in the considered confined geometry are com-
posed of inner particles of one type and particles constituting the edge of
the closed geometry (as in Fig. 1). This case is similar to a binary mix-
ture, although the positions of the wall particles are fixed. Compared to
the unrestricted particle system, the external potential originating from the
wall causes the complex structures in the density distribution near the walls.
Fully atomistic representation used in this publication reproduces behavior
at the wall-fluid interface better than integrated potentials like 10–4 or Steele
10–4–3.

Fig. 1. Sample configurations of the simulated system. The left panel shows a
square lattice and the right configuration after equilibration of the system. Different
shades of gray represent different kinetic energy of the particles — the darker they
are the more kinetic energy they have.
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Let us consider the two-dimensional space, in which a point is given by

z = (zx, zy) ∈ R2 . (2)

The particles inside the container interact among themselves via the Lennard-
Jones potential

U11(r) = 4ε11

[(σ11

r

)12
−
(σ11

r

)6
]
, (3)

where ε11 is the depth of the potential well, σ11 is the distance at which
the inter-particle potential is zero; r is the inter-atomic distance. For sim-
ulation purposes, potential was truncated and shifted in the cutoff radius
rc = 2.5σ11. System particles can also interact with the wall, which is built
from the spheres, whose size and potential well can be modulated. The edge
is constructed by placing the particles of the chosen size in such a man-
ner that they form a closed circle with unitary linear density. Then the
system particles are placed inside this ring. We assume that the edge par-
ticles are immobile relative to each other. The N particles confined inside
the structured geometry interact with M edge geometry particles via the
Lennard-Jones potential

U12(r) = 4ε12

[(σ12

r

)12
−
(σ12

r

)6
]
, (4)

where ε12 and σ12 are the wall-fluid interaction parameters. Since in reality
any edge or the wall influences the system molecules that find themselves in
its vicinity, we assume here also an appropriate interaction for this influence.
The effective parameters fulfill the Lorentz–Berthelot mixing rules [19]

ε12 =
√
ε11ε22 (5)

and
σ12 =

σ11 + σ22

2
, (6)

respectively. In the above equation, ε22 and σ22 are the parameters of the
potential of the edge geometry particles. The potential field originating
from the geometry will be given then as a sum of all the potentials from all
molecules constituting the edge. Let us take, for example, a circle built from
M particles, whose radius is equal to Z. The effective potential field, taking
into account the Lorentz–Berthelot coefficients, will be given as

Ufield(z) =

M∑
i=1

U12(z − zi) , (7)
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where zi = (Z cos(2πi/M), Z sin(2πi/M)) are the positions of the edge par-
ticles distant by Z from the center of the geometry. The system particles,
which are being placed inside the circular area of the radius Z, will be af-
fected then by the above potential. In a similar way, one can build other
geometries.

In Fig. 2, sample potential field that comes from the particles constitut-
ing the wall is presented. This effective potential is assumed as a simple
sum of the contributions from all the wall particles. As a consequence,
the state of the particles system inside a pore will be determined by two
factors: by the thermodynamic parameters as in the bulk systems and by
the details of confinement. In practice, the simulation is performed as fol-
lows. First, a starting configuration is prepared and its size is adjusted to
the pore geometry, then the actual Molecular Dynamics is performed. The
starting configuration can be taken either from the equilibrated bulk system,
or created “by hand” like, for instance, square lattice in Fig. 1, where the
equilibration process drives the system into the hexagonal arrangement via
non-equilibrium restructuring process manifested in linear and cross struc-
tures in the distribution of the kinetic energy [20].

Fig. 2. Sample potential field resulting from the edge geometry.

In principle, the HRDM method is destined to study features of the
structured media, therefore, it is inappropriate for liquid state. However,
the existence of the cohesive walls causes to occur layers at the walls, the
number of which and their structure depends on the thermodynamic pa-
rameters. The closer system is to the transition to the solid phase the more
pronounced these features are. In order to study features around the liquid–
solid transition point, a sequence of initial configurations has been prepared
by the use of the bulk system program. From the equilibrated configura-
tions for a chosen temperature and density, for a given point from the bulk
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phase diagram, we cut out a spherical sample that would fit to the assumed
container. Different graphical filters and color palettes have been applied
to enhance the picture details. The first effect that should be noted at the
beginning is that one cannot preserve the same number of the density. As
seen in the left panel of Fig. 1, there is a little free space near the wall, so
effectively we will deal with a slightly smaller density. Such prepared sam-
ples are then equilibrated, so the particles could attain their more preferable
states. To get the more interesting results, where the HRDM method can be
used, the thermodynamic points (particular values of the temperature and
density) at which the simulation must run are taken from the bulk phase
diagram in the vicinity of the transition line between liquid and solid. In
fact, one expects here that confinement will change the position of this line.
There is also another problem worth noting: whether the notion of a solid is
applicable and in what sense in the case of small systems. Can we still use
a word “solid” in the case of several or even tens or hundreds of particles?

In the present work, the particles in the confinement are described by
different parameters. NVE simulations were performed for initial densities
of 0.8, 0.95 and 1.0 and final temperatures around 1. Results are presented
in Fig. 3 for three different densities, three different size ratios between the
inner system and the wall particles σ11/σ22, identical potential well depths
ε11 = ε22 = 1.0, radius of the geometry equal 20 distances at which the
Lennard-Jones potential of the inner system particles reaches its minimum
and time of the simulation after initial equilibration equal 1000.0 with the
time step ∆t = 0.002. Wall particles were placed with linear density equal
to 1.0. For the density equal to 0.8, the system is still in a liquid state, but
at the walls one can observe a structure that depends on the type of the wall.
For the wall particles twice larger than the system particles, this structure
consists of well localized and less mobile particles –– there is a visible ring of
dark and lighter spots. Decreasing the size of the wall particles results in the
effective potential at the wall, which no longer consists of the well separated
wells, but reminds of a crevice within which the system particles can freely
change their position. As a result, one observes two well distinguished light
rings and another two slightly less visible rings. Upon increasing density
the system shifts its state toward the solid. However, new features can
be observed depending as well on the density as on the wall particle sizes.
The most striking feature is what we call here the Bessel like structure.
By comparing these pictures with the solutions of the circular membrane
Bessel equation (which is just the condition for vanishing the Laplacian),
we find the similarity for the case of the sixfold radial lines of nodes. In
principle, there are many different particular solutions to the membrane
equation together with the type of node lines. Taking into account that
the hexagonal symmetry is the most preferable configuration symmetry for
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Fig. 3. Sample High Resolution Density Maps of the Lennard-Jones system confined
in a circle geometry. Gradient from the side is a density scale ranging from 0 (white)
to the maximum value (black).

an unlimited two-dimensional case, it may come as natural that sixfold line
realizes here. Note that the basic determining factor, in the case of circular
membrane, is the shape of the boundary. The observed structure might
be the effect of the diffusional equation for the density, but this hypothesis
still requires more consideration. The existence of the node lines has its
straightforward consequences — they can be immediately regarded as the
seed areas for the crystallization process. This effect is a new outcome for
the small and confined systems. In fact, it is not clear whether such effect
will be present in larger systems. On the one hand, the node lines are the
general outcome, but on the other hand, the influence of the walls on the
system becomes smaller upon increasing size of the system. Looking at
the map, one observes an immobile hexagonal domain in the middle of the
sample which definitely grows upon increasing the density. This is a new
feature, since so far the crystallization process in the presence of the cohesive
wall was regarded as starting from the wall layers. Looking at the panels
in the rows showing the maps of the system for different sizes of the wall
particles, it is also visible that diminishing the size of the walls particles
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shifts the crystallization process toward higher densities. Thus, another
conclusion here is also that the more structured walls enhance the process
of crystallization. In Fig. 4, the Fourier transforms corresponding to the
density maps from Fig. 3 are presented. It is interesting to see how the new
features described above manifest themselves in the FFT presentation. The
2nd, 3rd, 6th and 9th panels give evidence about more established hexagonal
order. One can also conclude that occurrence of six short stripes situated
on the rings in the FFT images is associated with the six radial node lines
in the real configurations.

Fig. 4. Fast Fourier Transforms for the High Resolution Density Maps from the
previous figure.

3. Summary

In the present work, we show High Resolution Density Maps obtained
from Molecular Dynamics simulations of the small systems of the particles
confined to the pore of a circular shape for the densities for which the system
is close to the liquid–solid transitions. The most striking observation is the
occurrence of the node density lines like in the Bessel problem, which play
the role of the seed areas for solidification.
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