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The network representations in the characterization of time series com-
plexity is a relatively new but quickly developing branch of time series anal-
ysis. The changes in beat-to-beat time intervals, called RR-increments, can
be mapped into the directed and weighted network. The vertices in this
network represent RR-increments and edges correspond to pairs of sub-
sequent increments. We show that community structure analysis, called
p-core analysis, is an effective measure which allows the evaluation of the
information on dynamical processes represented by networks constructed
from RR-increments.
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1. Introduction

The decision to perform heart transplantation (HTX) is taken when the
patient’s life is at danger. However, in many cases already a short period
after the surgery, it is amazing to see how the organism of the patient re-
covers [1].
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It is generally believed that the time intervals between subsequent heart-
beats (so-called RR-intervals) carry information about the cardiac control
system mainly driven by autonomic nervous system [2]. But heart transplan-
tation interrupts the possibility of direct autonomic control over the heart
beating. In consequence, heart rate variability in patients after HTX is dif-
ferent from that of healthy people. However, this provides us the unique
opportunity to observe the heart at work when the natural control over
healthy variability is removed.

Characterization of the complicated dynamics by examination of experi-
mental time series is a fundamental problem of continuum interest in a wide
variety of fields [3, 4]. The huge success of network approaches in explaining
the phenomena in various fields has been observed in the last decade [5].
One of the particular reasons for the success of this approach is that it offers
visualization of dependences which then can be easily read and quantified
in a natural way.

Network techniques have also influenced analysis of time series. Closely
linked to the pioneering ideas of Poincaré, recurrence networks provide tools
for quantifying recurrence properties in the phase space [6]. It has been
demonstrated that a variety of characteristics of recurrence networks yields
new concepts for statistical evaluation of phase space structures captured in
recurrence plots.

Recently, an effective framework for exploration of pseudoperiodic time
series by complex networks has been published [7]. This technique enables
one to study periodicity contained in a time series such as the human ECG
recording with each cycle representing one heartbeat. With this method,
the heart rhythms of healthy people were quite well separated from heart
rhythms of people with arrhythmia [7]. On the other hand, the approach
based on the so-called visibility graphs allows the investigation of fractal-like
properties in any time series [8]. A tight relationship between time series
and networks, and back is discussed by Campanharo et al. [9].

Understanding the relationship between the structure of a complex net-
work and the dynamics (or function) it represents has shed some lights onto
relevant issues in neuroscience [10, 11]. Therefore we believe that it should
also help in understanding the control mechanisms of the cardiovascular
system.

A variety of measures have been proposed to determine the relative im-
portance of a single vertex within a graph [12, 13]. Examples of such mea-
sures are given by centrality degree (defined as the degree of a vertex),
eigenvector centrality (defined as the dominant eigenvector of the adjacency
matrix). Important nodes usually play a crucial role in the global orga-
nization of a network, which in turn has significant consequences for the
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dynamical processes taking place on it. Another way to quantify the graph
structure is based on the so-called communities, namely, on subgraphs with
densely interconnected nodes [13–15].

The considerable success of the network approach motivated us to ex-
plore these ideas to identify patterns in RR-signals of people following HTX,
and present them in a way which could be useful in clinical practice as an
early warning of the rejection of the graft. The paper is a continuation
of our earlier investigations (see [16, 17]). In distinction to our previous
studies, here we search for the community structure of transition networks
constructed from increments between subsequent RR-intervals. Hence, we
study changes in the heart rhythm, and not the rhythm itself.

The transition network for RR-increments is a directed and weighted
graph, where vertices represent RR-increments. Each vertex corresponds to
a different value of RR-increment. A directed edge from a given vertex to
another one accounts for an event in which, after an increment described
by the former vertex, the next change in RR was equal to the label of the
latter. This edge increases its weight each time this event is found.

In directed and weighted graphs, the community structure is encoded
mainly in the edge weights [14]. Therefore, it is advisable to explore the
network structure by the subsequent removal of vertices of a given weight
p (= the sum of weights of in-coming and out-going edges) together with
adjacent edges. Formally, the method applied by us to partition the networks
into smaller subnetworks, is based on the so-called p-cores [18, 19].

In the following, this techniques is introduced in Sec. 2 and then, in
Sec. 3, we show results obtained from analysis of transition networks con-
structed from RR-increments representing healthy subjects and heart trans-
plant patients. To get insights into the dynamics of underlying processes, the
analysis is also run with specific synthetic signals. We show that the p-core
is an effective node-importance measure that can evaluate the information
on the dynamical processes represented by the networks considered.

2. Methods

2.1. Data acquisition

Two groups of signals are studied. The first group, called healthy, repre-
sents 41 recordings (21 women and 20 men, age 19–34) which were obtained
from healthy, young people — students at the Medical University of Gdańsk.
The second group, called HTX, is made up of 23 recordings taken from 12
patients following HTX. All the heart transplant patients were in a stable
condition, with no signs or symptoms of rejection. The recordings were taken
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from at least 12 months or more after HTX (the mean is 21±4 months after
HTX). Some signals were from the same patient but at different periods
after the surgery.

All subjects underwent 24-hour Holter monitoring during normal sleep–
wake rhythm. The Holter recordings were analyzed by Del Mar Reynolds
Impresario software for premature, supraventricular and ventricular beats,
missed beats and pauses. The QRS-complexes were detected and classi-
fied automatically by the software. Finally, we annotated them manually
and then the series of time intervals between subsequent heart beats were
obtained, together with the beat annotations. These signals are called RR-
intervals.

In order to limit the natural variability caused by daily activity, we fo-
cused on recordings during nocturnal rest. From these parts, we constructed
signals consisting of 15 000 RR-intervals between normal-to-normal beats by
linking together sequences consisting of at least 500 consecutive normal-to-
normal beats.

Our Holter equipment provided values with 128 Hz accuracy. Therefore,
RR-intervals are given with 7.8125 ms resolution which can be well approx-
imated by ∆0 = 8 ms. In consequence, the number of distinct values in
RR-data is bounded. For this reason, we transfered signal real numbers into
integer ones, which were then mapped onto the set of multiples of 8.

In order to get RR-increments, differences between subsequent values of
RR-data were calculated. Each signal with RR-increments has become a
sequence of integer values limited to 0,±8,±16,±24, . . . These values will
serve as labels for vertices in transition networks for RR-increments. Positive
labels correspond to decelerations of the heart rhythm while negative ones
correspond to accelerations.

It is said that by tests with surrogate data one can find the least in-
teresting explanations for the studied phenomena that cannot be ruled out
based on the data [20]. Therefore, in parallel, we performed analysis with
two types of data that were artificially modified cardiac signals. We refer to
shuffled signals if cardiac RR-intervals were randomly shuffled, and to surro-
gate signals if they were obtained by randomization of phases in the Fourier
transform of cardiac RR-intervals. Both types of series were obtained with
the help of Tisean software [21]. For each cardiac signal, we constructed
three signals of each type. The shuffled signals serve as detectors of inde-
pendence among data, while the surrogate signals keep the linear correlation
between cardiac data. In Fig. 1, we show an example of analyzed signal and
its shuffled and surrogate versions.
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Fig. 1. Example of the cardiac signal of patient fel recorded 20 months after HTX
(normalized — subtracted by the signal mean value), and its shuffled and surrogate
partners.

2.2. Transition network for RR-increments

Let b = {b0, b1, . . . , bi, . . . , bN} be a sequence of RR-normalized. The
subscript i refers to the time order. Let c = {c1, c2, . . . , ci, . . . , cN} be a
sequence of RR-increments, i.e., ci = bi − bi−1.

Since the number of different values in each sequence is finite, we can
enumerate them from the smallest Cmin = mini{c1, c2, . . . , cN} to the great-
est Cmax = maxi{c1, c2, . . . , cN}, and consider them as labels for vertices
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in the network. These labels are separated by ∆0 = 8 msec and, therefore,
there exists K such that

Cmin = C(1), C(2) = C(1) +∆0, . . . ,

Cmax = C(K) = C(1) + (K − 1)∆0 . (1)

Thus, the set of vertices V in the transition network N = (V,E) consists
of K vertices labelled as (1). Since a vertex label describes a change in
RR-interval length, negative labels correspond to events of accelerations
while positive labels denote decelerations. The label 0 denotes no-change
event.

A directed edge (C(I), C(J)) between two vertices C(I) and C(J) is plotted
if C(I) and C(J) represent a pair of consecutive events in a sequence c, namely
(ci = C(I), ci+1 = C(J)). If a given pair occurs many times in c then a
corresponding edge increases its weight with the number of occurrences. The
loops, if they occur, denote the consecutive decelerations or accelerations of
the same size. The loop accompanying vertex zero demonstrates the presence
of two consecutive no-change events. In this way, the set of edges E(V ) of
network N consists of directed and weighed edges.

The topology of a network N = (V,E) is contained in the so-called
adjacency matrix A — a K × K one whose elements A(I)(J) are equal to
the weights of the edges going from vertex C(I) to vertex C(J), or are zero
if there is no edge between these vertices.

The edge weight defines also the in- and out-degree, din and dout respec-
tively, of a vertex as follows

din

(
C(I)

)
=

∑
C(J)∈V

A(J)(I) and dout

(
C(I)

)
=

∑
C(J)∈V

A(I)(J) . (2)

2.3. Community detection

A network constructed from time series is specific in the sense that for
each vertex the number of in-coming entries is equal to the number of out-
going ones, except two vertices which correspond to the first and last values
in a signal. This means that we have

din

(
C(I)

)
= dout

(
C(I)

)
for ∀I∈{2,...,K−1} ,∣∣∣din (C(I)

)
− dout

(
C(I)

)∣∣∣ = 1 for I ∈ {1,K} . (3)
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By definition, the vertex degree is the same as the number of occurrences of
a given value of RR-increment in a signal. Therefore, if we normalize vertex
degrees by the length of a signal, we obtain the probabilities of events labelled
by C(1), . . . , C(K).

The subgraph H = (C,E(C)) of the network N = (V,E) induced by the
set C ⊆ V is called p-core at level p > 0 [18, 19], if

∀C(I)∈C , p ≤ dout
(
C(I)

)
(4)

and C is the maximal such set. In the case of a transition network where
properties (3) hold, it is convenient to modify (4) in the following way

∀C(I)∈C , p ≤ Prob
(
C(I)

)
. (5)

This relates the threshold value p, used in the construction of a subgraph,
to the probability for a given event.

Since the structure of a network may be hierarchical, the investigation of
the development of the community structure is performed by sweeping the
weight threshold p within the range of interest [14]. Therefore, for each p,
we estimate the ratio of transitions still present in a p-core subgraph H with
respect to the whole network N . We will refer to this ratio as the volume
of a given p-core subgraph, and the decay of this volume (with increasing
parameter p) will be called network disintegration.

3. Results

3.1. Disintegration of transition networks of RR-increments

Disintegration of transition networks obtained from RR-increments of
signals recorded from patients following HTX progresses differently from the
disintegration of networks representing healthy, young people. In Fig. 2, we
explain this property by presenting the decay of volume of p-core subgraphs
with increasing threshold value p. The decay is observed in the mean net-
works obtained from RR-increments recorded for the two groups of signals
healthy and HTX.

It is evident that the transition network for patients after HTX is sig-
nificantly more resistant to the subsequent removal of vertices. For small
values of p, when less important vertices are removed from the networks,
the volume decays linearly. This decay is very fast for the healthy group,
and rather slow in the case of network constructed from signals of patients
following HTX. For example, the volume of 1%-core is 98% and 84% for
the HTX and healthy, respectively. This may suggest that the significance
of the less important vertices is different in both cases. Events with small
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probability have little influence on the network structure in the case they
represent RR-increments of a patient following HTX. But in networks for
healthy, young people, the removal of any vertex significantly modifies the
whole structure.

In order to determine the critical points in the process of disintegration
in both networks, we follow properties of the variances of the means of
p-core volumes. These variances are also shown in Fig. 2. It turns out that
the critical change in networks of the healthy takes place at p = 0.05, while it
appears at p = 0.24 for people who have had HTX. The network volume at
the critical disintegration point is equal to 30% for the healthy, but reaches
about 54% for the HTX.

Fig. 2. Plots of decay of p-core volume in mean networks representing the healthy
group and the HTX patients. Together variances of the corresponding average
values are plotted.

These differences provide evidence for the fact that RR-signals of people
following HTX are very plain. The absence of direct influence of the auto-
nomic nervous system results in their very low variability. In consequence,
the network representation of RR-increments consists of significantly fewer
vertices.

To see details of the differences between the two networks discussed, in
Fig. 3 we show density plots of the mean of adjacency matrices for both types
of networks. Scales in both plots are different to depict best the transitions
of the greatest importance.
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Fig. 3. Density plots for adjacency matrices of mean networks of RR-increments.
Notice different scales between plots in both density and vertex labels.

There are a lot of transitions between RR-increments of similar impor-
tance in a healthy heart rhythm. They are spread almost uniformly around
no change event, described here by a point (zero, zero). The highest transi-
tion value 160 (what in the case of 15 000 events means about 1%) is achieved
for a no change event, and this count is only slightly greater than the transi-
tions around, namely, transitions between RR-increments of +16,+8, 0,−8
and −16.

The network constructed from RR-increments of the HTX patients is
concentrated on only a few transitions. Therefore, the importance of vertices
for this network, measured within the core study by p value, is significantly
larger. Since the mean network for the HTX group significantly does not
change while 0.1 ≤ p ≤ 0.2, we reconstruct this mean core in Fig. 4.

We add the mean counts of events at each transition. Other transitions
have counts lower than 300, i.e., their probability is less than 2%. It is
easy to check that dout(+8) = dout(−8) = 3200, which is more than 20% of
15 000 transitions considered in total. However, a no change event (a loop
over vertex zero) dominates. A sequence of accelerations or decelerations
(loops at nodes other than zero) occurs 10 times less often than a no change
event. One can conclude that changes in the heart rhythm: accelerations
or decelerations, go very slowly, namely, with frequent stops at a no change
event. The noticeable number of transitions between vertices +8 and −8
indicates the activity of control mechanisms, which are based on negative
feedback reflexes.
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Fig. 4. Diagram of the mean network for 15% core (of the volume 80%) depicted
from RR-increments of the HTX group. Numbers denote edge weights (out of
15 000). Additionally, edge weights are expressed by the edge widths.

The networks discussed so far were constructed with the natural reso-
lution of recorded signals, namely 8 msec. It is tempting to check whether
there exists such a resolution for vertex labels in which signals of young
people lead to transition networks similar to those obtained for the HTX
group. Rough investigations show that if RR-increments are represented as
a multiplies of 64 msec then the similar picture is obtained. The results are
presented in Fig. 5.

Fig. 5. Left: Density plot for adjacency matrix of the mean network for RR-incre-
ments for healthy group signals when they are mapped into a multiple of 64 msec.
Right: Diagram for the corresponding mean network.
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3.2. Disintegration of transition networks constructed from artificial
signals: shuffled and surrogate cardiac data

In Fig. 6, we collect the results on the volume decay of p-core for the mean
networks constructed from the two groups the healthy and HTX together
with results provided by analysis of synthetic data: shuffled and surrogates,
also averaged over the same groups as for the cardiac data. To emphasize
properties of the healthy group, the p axis is changed to log p.

Fig. 6. Plots of decay of p-core volume for different groups of signals. The depen-
dence for the healthy group is plotted in log p scale.

In the case of the healthy group, the decay is fast for cardiac and corre-
sponding artificial signals. There is no evident difference between properties
obtained from cardiac and surrogate groups of signals, though the decay of
the network constructed from shuffled signals is different — it progresses
faster. This can suggest the RR-increments are dependent, however this
dependence can be described by a linear stochastic process.

One can notice that the network disintegration goes in two steps in the
case of networks constructed for the HTX group. The same property is
exhibited by the network constructed from surrogates. But there is some
evident difference between these two groups of signals in the volume of the
p-core network. In the case of 15%-core, the test of Kruskal–Wallis One
Way Analysis of Variance on Ranks provides statistical significance of the
difference in the median values. Precisely, the median in the group HTX:
0.85 is significantly different from the median of its surrogates: 0.73, with
P = 0.006.

The shuffled signals provide the steady and fast decay of the p-core vol-
ume for signals from the HTX group. Since this behavior is completely
different from properties of cardiac signals, it indicates the importance of
dependences between RR-increments.
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One can collect the above observations as indicating that the rhythm of
the heart in patients following HTX is driven by nonlinear forces. Further-
more, supposing that stochastic linearity of the healthy dynamics is related
to the direct influence of the autonomic nervous system, we can expect to
observe the influence of this regulation by measuring the relation between a
given cardiac signal and its corresponding surrogate one.

To test this hypothesis, we compared networks constructed from the
same patient but at different time after the surgery. There are three patients
in the HTX group considered, named bur, sit and zal, for each of whom we

Fig. 7. Plots of decay of p-core volume for networks constructed from signals from
individual patients which were recorded at different time after HTX. Dashed lines
correspond to the surrogate signal.
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have three signals. In Fig. 7, we show disintegration of the networks resulting
from these signals together with plots of disintegration of the corresponding
surrogate series.

It occurs that the decay of p-core volume weakly depends on the length
of time passed since HTX in the case of the patients considered. The first
step in the two-step decay is related to the three vertex core, shown in
Fig. 4. The second step describes the role of the vertex with label 0. The
disintegration of networks constructed from surrogates is similar but values
of p-core volumes, especially for p ∈ (0.1, 0.2), are usually lower. However,
no direct dependence can be specified.

4. Conclusions and perspectives

Disintegration of the transition networks occurs by subsequent exclusions
of events of equivalent role. In the case of heart rhythms of the young and
healthy, the pool of equivalent transitions is large which results in a fast
disintegration. But the networks of RR-increments constructed from signals
of the patients following HTX have a strong structure in which no change
transitions play a dominant role.

The networks of RR-increments can be directly related to one of the stan-
dard time-domain indices of the heart rate variability, i.e., pNN50 which
gives the ratio of pairs of successive normal RR-increments larger than
50 ms [2]. This index was reported to provide information about the con-
trol of sinus rhythm mostly related to influence of the parasympathetic part
of autonomic regulation [22]. Moreover, pNN with lower thresholds (e.g.,
pNN20 or less) was also able to differentiate healthy subjects from heart
failure patients [23].

Parasympathetic reinnervation is the last step in the process of restor-
ing autonomic influence on the heart rate after transplantation and is not
the rule [1]. Therefore, we hypothesize that plain networks of our HTX pa-
tients, concentrated on transitions less than or equal to 8 ms, similarly to the
small value of the pNN parameter, is a result of the lack of parasympathetic
control of heart rate.

Our data set, especially of patients following HTX, is rather poor in
a sense that it consists of signals from 12 patients only. But we believe
that the differences obtained in the disintegration of the transition networks
constructed from RR-increments would serve clinicians in the assessment of
proper graft adaptation. Since the stability of the p-core seems to result
from the non-linear dependences governing the heart dynamics, we hope to
find indices qualifying dynamical features of the heart based on decay of
networks constructed from surrogate signals. These are our tasks for the
future.
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Finally, there is a special objective for our studies. We want to pro-
pose an eye-catching representation of important aspects of the heart rate
variability. Since the network of RR-increments can be plotted in easy-
interpretable figures with a compact information about changes in the heart
rate, therefore, it should meet the expectations of cardiologists.

Authors thank the Hard Heart community for hours of discussion. See
the Internet page http:\\iftia9.univ.gda.pl\HHeart

REFERENCES

[1] R. Toledo et al., Am. J. Physiol. Reg. Int. Comp. Physiol. 282, R900 (2002).
[2] Task Force, Eur. Heart J. 17, 354 (1996).
[3] H.D.I. Abarbanel, Analysis of Observed Chaotic Data, Springer, New York

1996.
[4] H. Kantz, T. Shreiber, Nonlinear Time Series Analysis, Cambridge

University Press, Cambridge 1997.
[5] N. Ganguly, A. Deutsch, A. Mukherjee (Eds.), Dynamics On and Of

Complex Networks. Applications to Biology, Computer Science and the
Social Sciences, Birkhauser, Boston 2009.

[6] R.V. Donner et al., New J. Physics 12, 033025 (2010).
[7] J. Zhang, M. Small, Phys. Rev. Lett. 96, 238701 (2006); J. Zhang et al.,

Physica D 237, 2856 (2008).
[8] L. Lacasa, B. Luque, J. Luque, J.C. Nuno, Eur. Phys. Lett. 86, 30001 (2009).
[9] A.S.L.O. Campanharo et al., PLoS ONE 6, e233378 (2011).
[10] Z. Zhuo, S. Cai, Z. Fu, J. Zhang, Phys. Rev. E84, 031923 (2011); J. Zhang

et al., Chaos 21, 016107 (2011).
[11] F. Emmert-Streib, PLoS ONE 6, e277733 (2011).
[12] M.E.J. Newman, Phys. Rev. E74, 036104 (2006); The Mathematics of

Networks, in: The New Palgrave Encyclopedia of Economics, 2nd edition,
L.E. Blume, S.N. Durlauf (eds.), Palgrave Macmillan, Basingstoke 2008.

[13] L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys.
56, 167 (2007).

[14] J.M. Kumpula, M. Kivelä, K. Kaski, J. Saramäki, Phys. Rev. E78, 026109
(2008).

[15] S. Fortunato, Phys. Rep. 486, 75 (2010).
[16] D. Makowiec et al., Acta Phys. Pol. B Proc. Suppl. 4, 139 (2011).
[17] D. Makowiec et al., Network Representation of Cardiac Interbeat Intervals

for Monitoring Restitution of Autonomic Control for Heart Transplant
Patients, in: Proc. of the 7th ESGCO 2012, Kazimierz Dolny, Poland, 2012.

[18] S.B. Seidman, Social Networks 5, 269 (1983).

http://dx.doi.org/10.1152/ajpregu.00467.2001 
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1016/j.physd.2008.05.008
http://dx.doi.org/10.1016/j.physd.2008.05.008
http://dx.doi.org/10.1209/0295-5075/86/30001
http://dx.doi.org/10.1371/journal.pone.0023378
http://dx.doi.org/10.1103/PhysRevE.84.031923
http://dx.doi.org/10.1063/1.3553644
http://dx.doi.org/10.1371/journal.pone.0027733
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1080/00018730601170527
http://dx.doi.org/10.1080/00018730601170527
http://dx.doi.org/10.1103/PhysRevE.78.026109
http://dx.doi.org/10.1103/PhysRevE.78.026109
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.5506/APhysPolBSupp.4.139
http://dx.doi.org/10.1016/0378-8733(83)90028-X


Community Structure in Network Representation of Increments in . . . 1233

[19] V. Batagelj, M. Zaversnik, arXiv:cs/0202039 [cs.DS].
[20] T. Schreiber, A. Schmitz, Physica D 142, 346 (2000).
[21] R. Hegger, H. Kantz, T. Schreiber, Chaos 9, 413 (1999); with TISEAN

software accessible from
http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1

[22] J.T. Bigger et al., Am. J. Cardiol. 61, 208 (1988).
[23] J.E. Mietus et al., Heart 88, 378 (2002).

http://dx.doi.org/10.1016/S0167-2789(00)00043-9
http://dx.doi.org/10.1063/1.166424
http://dx.doi.org/10.1016/0002-9149(88)90917-4
http://dx.doi.org/10.1136/heart.88.4.378

	1 Introduction
	2 Methods
	2.1 Data acquisition
	2.2 Transition network for RR-increments
	2.3 Community detection

	3 Results
	3.1 Disintegration of transition networks of RR-increments
	3.2 Disintegration of transition networks constructed from artificial signals: shuffled and surrogate cardiac data

	4 Conclusions and perspectives

