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Maxwell’s demon is a special case of a feedback controlled system, where
the information gathered by measurement is utilized by driving a system
along a thermodynamic process that depends on the measurement outcome.
The demon illustrates that with feedback one can design an engine that per-
forms work by extracting energy from a single thermal bath. Besides the
fundamental questions posed by the demon — the probabilistic nature of
the Second Law, the relationship between entropy and information, etc.
— there are other practical problems related to feedback engines. One of
those is the design of optimal engines, protocols that extract the maximum
amount of energy given some amount of information. A refinement of the
second law to feedback systems establishes a bound to the extracted energy,
a bound that is met by optimal feedback engines. It is also known that op-
timal engines are characterized by time reversibility. As a consequence, the
optimal protocol given a measurement is the one that, run in reverse, pre-
pares the system in the post-measurement state (preparation prescription).
In this paper, we review these results and analyze some specific features of
the preparation prescription when applied to non-ergodic systems.
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1. Introduction

As pointed out by Maxwell in 1867 with his celebrated demon, a piece of
information can be used to extract energy from a single thermal bath [1]. The
demon is a special case of feedback control: the information about a system
is gathered in a measurement, and then the system is driven along a pro-
cess that depends on that measurement outcome. Subsequent examples by
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Szilard [1] and others (for example Refs. [2–6]) have revealed that with feed-
back one can design engines that perform work by extracting energy from a
single thermal bath.

This connection between information and work has been made explicit
by a refinement of the second law of thermodynamics in the presence of
feedback [2, 7]: in a thermodynamic process with measurement and feedback,
the work W done on a system is bounded by the difference between the
information gained in the measurement I and the change in free energy
∆F as

W ≥ ∆F − kTI , (1)

where T is temperature and k is Boltzmann’s constant. More precisely, I is
the mutual information between two random variables: the outcome m of
the measurement and the actual value l of the quantity being measured. In
an error-free measurement m = l, but the concept of mutual information
allows us to compute the information gained in a measurement with errors.
Mathematically, the mutual information reads

I(l;m) = H(l) +H(m)−H(l,m) , (2)

where H(X) is the Shannon entropy of the variable, or set of variables,
X [8]. I(l;m) = 0 only if l and m are independent, i.e., if the outcome of
the measurement is completely uncorrelated with the measured magnitude l.
On the other hand, if m = l always, I(l;m) = H(l) = H(m) is simply the
Shannon entropy of l [8]. Notice also that if z is a description of the system
finer than l (for instance, the microstate of the system at the instant of mea-
surement), then I(l;m) = I(z;m), provided that the conditional probability
of the outcome obeys ρ(m|l) = ρ(m|z).

Besides the fundamental questions posed by the demon — the prob-
abilistic nature of the Second Law, the relationship between entropy and
information, etc. — there are also interesting practical problems related to
feedback engines. One of those is how to design optimal engines, i.e., pro-
tocols that extract the maximum amount of energy given some amount of
information, saturating the bound in Eq. (1) [5, 6, 9–11]. In a sequence of
papers, we have shown that these optimal processes are reversible [11, 12]:
indistinguishable from their time-reverse (constructed in a particular man-
ner that will be described later). Building on this intuition, we proposed
a method, or a recipe, for designing such optimal feedback processes which
we call the preparation prescription [11]. Instead of looking for a protocol
that extracts all the work, we turn our attention to the time-reversed pro-
cess and devise a protocol that prepares the post-measurement state. In
this article, we investigate how this method applies to ergodicity-breaking
processes, where the phase (or state) space of the system splits into distinct
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ergodic regions. The canonical example of this situation is the Szilard en-
gine [1], where the phase space of a single ideal gas particle confined to a
box is divided into to equal halves upon inserting a partition into the center
of the box.

The paper is organized as follows. In Sec. 2, we briefly review the main
results on the energetics of feedback control and the preparation prescrip-
tion to design optimal engines. In Sec. 3, we analyze the peculiarities of the
preparation prescription when applied to non-ergodic systems. In Sec. 4, we
present an example of optimal design in a multi-particle Szilard engine. Fi-
nally, in Sec. 5, we summarize our results and present our main conclusions.

2. Reversible feedback and the preparation prescription

We begin with a concise review of the preparation prescription for de-
signing reversible feedback protocols [12]. For simplicity, we only consider
protocols with one feedback loop. All of our conclusions can be generalized
to the case of a sequence of repeated measurements.

We have in mind a classical system whose position in phase space Γ at
time t is zt and is in thermal contact with an ideal thermal reservoir at tem-
perature T . We drive our system away from thermodynamic equilibrium
using feedback by varying the system’s Hamiltonian (or energy function)
H(z, λ) through a collection of external parameters λ. From time t = 0
to τ , the parameters are varied according to a protocol determined by the
measurement of a physical observable M at the time t = tmeas whose out-
comes m occur with conditional probability (or error) P (m|ztmeas). The
protocol we use, denoted Λm = {λmt }τt=0, depends on the measurement out-
come m only after time t = tmeas. During this interval, thermal fluctuations
cause the system to follow a random microscopic trajectory γ = {zt}τt=0. We
can define a joint probability distribution P[γ, Λm] of the trajectory γ and
the measurement outcome, or equivalently, the implemented protocol Λm.
The work along this trajectory isW [γ, Λm] and the reduction in uncertainty
due to the measurement is [2, 7, 12]

i[γ, Λm] = ln
P (m|ztmeas)

pm
. (3)

Here, the probability to measure m is pm =
∫
dγ P[γ, Λm], where dγ is a

measure on the space of trajectories. Averaging over all realizations recovers
the mutual information I(ztmeas ;m) = 〈i([γ, Λm]〉 in Eq. (1).

With every feedback process, we can introduce a related process called
the reverse process [7], which plays the role of time-reversal in the pres-
ence of feedback. We initiate the reverse process by first randomly selecting
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a protocol Λm with probability pm, that is from the distribution of mea-
surement outcomes of the feedback process. Next, we equilibrate the system
with the external parameters fixed to λmτ , followed by a non-equilibrium
driving according to the conjugate reverse protocol Λ̃m = {λ̃t}τt=0, where
λ̃mt = λmτ−t. Time-reversal invariance guarantees that each trajectory γ of
the feedback process has a conjugate twin in the reverse process γ̃ = {z̃t}τt=0,
where z̃t = z∗τ−t and ∗ denotes momentum reversal, which is observed with
probability P̃[γ̃, Λ̃m].

With this setup, we have the result that the distinguishibility of the
feedback process measured as the relative entropy, D(f ||g) =

∫
dx f(x)

ln(f(x)/g(x)), between P and P̃ satisfies [7, 12]

kTD
(
P||P̃

)
= W −∆F + kTI ≥ 0 (4)

with I = I(ztmeas ;m). We now see that the optimal thermodynamic process
for which W −∆F + kTI = 0 occurs only when D = 0, which is true if and
only if [8]

P[γ, Λm] = P̃
[
γ̃, Λ̃m

]
, (5)

that is only when the feedback process is indistinguishable from its re-
verse [12]. This is a microscopic statement of reversibility. It is consistent
with the macroscopic definition, since in a macroscopic reversible process the
same sequence of states can also be traced out both forwards and backwards
in time.

Equation (5) also offers insight into how to design an optimal feedback
process that extracts the maximum amount of work. Instead of devising
a feedback protocol implemented in response to a particular measurement,
we should look for a reversible process. In particular, let us focus on the
evolution at one particular time, immediately after the measurement. To
this end, we integrate Eq. (5) over all trajectories passing through z at
t = tmeas, and divide by pm, to deduce the equality of phase space densities
conditioned on the protocol (or measurement outcome)

ρm(z, tmeas) = ρ̃m(z̃, τ − tmeas) . (6)

We now see that in a reversible optimal protocol the post-measurement state
ρm(z, tmeas) — the state prepared by the measurement — must be the same
as the state prepared by the reverse process ρ̃m(z̃, τ − tmeas). Our strategy
to obtain reversible feedback protocols is then to design a protocol that
prepares the post-measurement state [11]. As Eq. (6) suggests, by reversing
this protocol, we obtain an optimal protocol to implement in the feedback
process in response to that measurement outcome.
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3. Preparation in non-ergodic systems

There is an apparently simple way to reversibly prepare a system in
the post-measurement state ρm(z, tmeas) from the initial state of the reverse
process, ρ̃(z, 0): slowly and quasi-statically vary the system Hamiltonian
from its initial value H(z, λ̃m0 ) to Hm(z) = −kT ln ρm(z, tmeas) so that this
post-measurement state is in thermodynamic equilibrium with respect to
the new Hamiltonian. This protocol has been suggested in Refs. [9, 13, 14]
and, at first sight, seems to be the most general procedure for a reversible
preparation, since in a reversible process the system must be in equilibrium
at any time, in particular, at the beginning and end of the process.

Nevertheless, alternative and more feasible protocols can be devised if the
system is not ergodic or if its dynamics presents well separated time scales,
as happens in most information processing devices. Consider for instance
a system whose phase space Γ at the time of measurement, tmeas, can be
decomposed into n distinct ergodic regions Γl (Γ = ∪nl=1Γl and Γl ∩ Γk = 0
for l 6= k). This partition of phase space can be the result of a rigorous
ergodicity breaking in the system dynamics due to, e.g., barriers higher than
the total energy of the system [15] or phase transitions in the thermodynamic
limit [4]. Our analysis also applies to effective ergodicity breaking resulting
when there are slow variables (usually discrete) whose evolution is governed,
for instance, by jumps over high energy barriers.

We further assume that the system is always locally in equilibrium within
each ergodic region and that the measurement is merely the identification of
the ergodic region where the system is located. Then, in an error-free mea-
surement the post-measurement state will be the equilibrium distribution
restricted to one of the partitions Γl at inverse temperature β = 1/(kT ),

ρl(z, tmeas) =
e−βH(z,λtmeas )

Zl
χl(z) (7)

with Zl =
∫
Γl
e−βH and χl(y) the characteristic function on Γl taking the

value 1, when y ∈ Γl and 0 otherwise.
On the other hand, a measurement with errors can be characterized by

the probability that the actual value of the magnitude is l when the outcome
of the measurement is m, p(l|m) 1. In this case, when the measurement

1 The conditional probability p(m|l) is a more natural way to characterize the error of a
measurement device or procedure. To simplify the exposition, we use p(l|m) instead.
Both quantities are related by the Bayes formula: p(l|m) = plp(m|l)/pm. Notice that
in feedback control, both pl and pm are known (there is no need of a Beayesian prior).
Feedback uses the information related with thermal fluctuations in a single system,
but the statistical properties of such fluctuations are perfectly known.
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outcome is m, the post-measurement state reads

ρm(z, tmeas) =
∑
l

p(l|m)
e−βH(z,λtmeas )

Zl
χl(z) . (8)

According to the preparation prescription, we have to design a protocol that
prepares the system in this specific state ρm(z, tmeas). To achieve this goal,
it will be illuminating to discuss general features of non-ergodic systems.

In a non-ergodic system equilibration between ergodic regions Γl is ob-
viously hindered. In a quasi-static process, for instance, the system is in
equilibrium within a region Γl, like the states given by Eqs. (7) and (8), but,
for a generic density ρ(z), the probability to be in region Γl

pl =

∫
Γl

dz ρ(z) (9)

will, in general, differ from its equilibrium value

peql =

∫
Γl
dx e−βH(x)∫

Γ dx e
−βH(x)

=
Zl
Z
. (10)

In general, the actual pl depends on the past history and/or the information
that we have about the system. For example, if the system becomes non-
ergodic by virtue of some symmetry breaking transition, pl depends on the
probability that the system chooses region l at the transition point. After
the transition, the Hamiltonian can change in an arbitrary way, as far as er-
godicity is not restored. The equilibrium probability peql in Eq. (10) depends
on the Hamiltonian at a given time after the transition, whereas pl depends
only on the details of the transition. The probability pl can also depend on
what we know about a system: for instance, after an error-free measurement
whose outcome is l, pl = 1 and pk = 0 for all k 6= l [cf. Eq. (7)].

Figure 1 presents an illustration that clarifies the meaning of the non-
equilibrium probability pl. A Brownian particle at temperature T moves
in a potential V (x), which is modified by an external agent. The potential
and the probability density ρ(x) of the position x of the particle are both
depicted in the figure. Initially, (a) the barrier is low enough for the particle
to jump from one well to the other. Then in (b) the potential barrier is raised
up to a value far above kT creating an effective ergodicity breaking for time
intervals much smaller than the Kramer’s mean time to cross the barrier [16].
The probability that the particle is in the left or the right region, pl with
l = L,R, is 1/2 because the ergodicity is broken in a symmetric way. After
the transition has occurred, one can lower or raise the well in an arbitrary
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manner as in (c), as far as the barrier stays far above kT . The probability
pl is still 1/2 for l = L,R, since jumps do not occur in the time scale of
the process. On the other hand, the equilibrium probability peql in Eq. (10),
obviously changes. The state depicted in (c) is in a non-equilibrium state,
although the probability density equilibrates within each well. Moreover, if
we measure (with no error) the position of the particle and find that it is in
the left well, the post-measurement non-equilibrium state will be confined in
the left well, yielding pL = 1 as depicted in (d). Hence, the non-equilibrium
probability pl depends on the history and also on our knowledge about the
state of the system.

V (x)

⇢(x)

pL = 1pL = pR = 1/2 pL = pR = 1/2

a) b) c) d)

pR = 0

peq
L = peq

R = 1/2 peq
L < peq

R

Measurement

peq
L < peq

R

Fig. 1. An illustration of non-equilibrium states arising from ergodicity breaking
and measurement. A Brownian particle at temperature T moves in a double-well
potential V (x) which is modified by an external agent. The potential and the
probability density ρ(x) of the position x of the particle are both depicted in the
figure. (a) Initially the barrier is low enough for the particle to jump from one well
to the other. (b) The potential barrier is raised up to some value far above kT and
an effective ergodicity breaking occurs if we consider a time scale much shorter than
the jump rate. The probability that the particle is in the left or the right region is
pl = 1/2, with l = L,R, because ergodicity is broken in a symmetric way. (c) After
the transition has occurred, the left well is raised and the right one is lowered.
The probability pl remains 1/2 for l = L,R, since jumps do not occur in the time
scale of the process, whereas the equilibrium probability, peql in Eq. (10), changes.
(d) After an error-free measurement that finds the particle in the left well, this
post-measurement non-equilibrium state is now a probability density with support
in the left well, yielding pL = 1.

Now we can address our main problem: how to prepare a non-ergodic
system in the post-measurement state given by Eq. (8)? Since the state is
non-equilibrium, we cannot apply the aforementioned preparation, consist-
ing of a slow transition from the final Hamiltonian H(z, λ̃m0 ) to Hm(z) =
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−kT ln ρm(z, tmeas). However, non-ergodicity provides us with a wider range
of preparation strategies. The trick is to prepare any other state ρ′m(z) as
long as it reversibly induces the same post-measurement distribution

p(l|m) =

∫
Γl

dz ρ′m(z) =

∫
Γl

dz ρm(z, tmeas) (11)

and is in local equilibrium. The key point is that these probabilities p(l|m)
depend on the critical point where the ergodicity is broken and not on the
final Hamiltonian, as illustrated in Fig. 1. Once we prepare a system with
the desired probabilities p(l|m), one can adiabatically shift the Hamiltonian
towards H(z, λtmeas) and complete the design of the optimal protocol.

We have applied this method in a previous paper to a multi-particle
Szilard engine [11], although we did not carry out an explicit discussion of the
role of non-ergodicity. This explicit analysis of the preparation prescription
in non-ergodic systems allows us to consider more involved examples, like
the one treated in the next section.

4. Example: two-particle Szilard engine

In this section, we highlight the utility of the preparation prescription
for systems with ergodicity breaking using a two-particle Szilard engine.
Previously, Kim et al. [5, 10] investigated the quantum multi-particle Szi-
lard engine using a non-optimal protocol. In a subsequent article, we then
showed how the preparation prescription could be used to develop an op-
timal feedback protocol for the classical multi-particle Szilard engine [11].
This section builds on that work to include measurement errors.

The two-particle Szilard engine consists of two ideal gas particles con-
fined to a box of volume V connected to a thermal reservoir at tempera-
ture kT = 1. Furthermore, we take the particles to have a short-ranged,
repulsive interaction. The engine cycle begins with the particles in equilib-
rium. We then quickly insert a partition dividing the box into two equal
halves, breaking ergodicity. At that point, the phase space of the engine,
schematically depicted in Fig. 2, is segregated into three regions that we
label l = {LL,RR,LR} for two particles in the left half, two in the right,
and one in each half. We then measure l obtaining possible measurement
outcomes m = {LL,RR,LR}. However, we allow for the possibility that
there are errors when both particles are in the same half, but not when they
are in separate halves. Specifically, when l = LL (RR), we can mistakenly
measure m = LR instead of LL (RR) with a probability εLL ≡ p(LR|LL)
[εRR ≡ p(LR|RR)]. Then based on the measurement outcome, we extract
work using an optimal, cyclic, isothermal feedback process.
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z1

z2

LL

RRLR

LR

Fig. 2. Phase space schematic for the two-particle Szilard engine immediately after
inserting the partition, with z1 and z2 the phase space positions of the two particles.
Each quadrant corresponds to a ergodic region with a particular arrangement of
the two particles: both in the left (LL), both in the right (RR), or in different
halves (LR). The shaded squares highlight the region of phase space, where each
particle is segregated into a separate half of the box.

In the light of our previous discussion on the preparation prescription
(Sec. 2), the optimal protocol will prepare the engine in each ergodic region
(or in a distribution over ergodic regions). When both particles are found in
the same half of the box the optimal protocol is the same as in the original
single-particle Szilard engine. Namely, we can prepare the engine with both
particles in the left (right) half of the box by inserting the partition along the
right (left) wall and then slowly shifting the partition to the center. Thus,
when we find both particles in the same half of the box, we can use this
protocol, in reverse, to extract the maximum amount of work.

On the other hand, it is more difficult to prepare the engine with each
particle in a separate half of the box. The generic prescription requires
that we reversibly prepare the equilibrium distribution for the Hamiltonian
Hm(z) = −kT ln ρm(z, tmeas). For error-free measurement, this Hamiltonian
is infinite in the white quadrants of Fig. 2 and zero in the shaded, which
requires infinite interaction energy in disjoint quadrants of phase space. In
a previous article, we demonstrated that using a collection of deep potential
wells we could also prepare this scenario, without recourse to such a strange
Hamiltonian [11]. In the following, we build on this idea and demonstrate
how we can prepare not simply both particles in separate wells, but a distri-
bution over the regions {LL,RR,LR} corresponding measurement errors εLL
and εRR that are rational numbers.
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To this end, let us consider the scenario with both particles in the box at
equilibrium. We then slowly lower K potential wells, n in the left half of the
box and K−n in the right, to a depth E < 0 deep compared to the thermal
energy kT = 1, but shallow compared to the interaction energy, so that only
one particle can occupy any well at any given time. This traps each particle
in a separate well, occupying a small volume v. Next, we quickly insert the
partition, followed by slowly removing the wells. As a result, the particles
may be confined to either half of the box. Each particle is in a separate half
(l = LR) with probability

pLR =
2n(K − n)

K(K − 1)
. (12)

However, this protocol also prepares the system with both particles in the
left half (LL) and the right half (RR) with probabilities

pLL =
n(n− 1)

K(K − 1)
, pRR =

(K − n)(K − n− 1)

K(K − 1)
, (13)

respectively. As a consequence, it generates a distribution over the different
regions, as in Eq. (11). Therefore, we can use this protocol (in reverse) as an
optimal feedback protocol as long as we use a measurement with an error that
results in the distribution {pLL, pRR, pLR} over the regions of phase space
given the measurement outcome m = LR. By applying Bayes’ theorem, we
see this corresponds to measuring m = LR when l = LL with (conditional)
probability

εLL ≡ p(LR|LL) =
n− 1

K − n
, (14)

and similarly the error for both particles on the right is

εRR ≡ p(LR|RR) =
K − n− 1

n
. (15)

For the special case with two wells, one in each half (K = 2 and n = 1),
we recover error-free measurement (εLL = εRR = 0), which was shown to be
optimal in Ref. [11].

In order to verify that this protocol is, in fact, optimal for a measure-
ment with errors εLL and εRR, we now determine the work and information
conditioned on measuring the particles in separate halves. Let us return to
our scenario immediately after having inserted the partition and obtained
the measurement outcome m = LR. At this point, we lower our K wells
very slowly. As the wells become deeper, the depth approaches a value
E∗ ∼ kT = 1 at which point ergodicity begins to break, and each particle
becomes trapped in a different well. The exact value of E∗ will prove to



Optimizing Non-ergodic Feedback Engines 813

be inconsequential, but its existence is needed for the calculation. Since the
process is done slowly, the average work done up to that point may be deter-
mined as an average over the ratios of the partition functions (the changes
in free energy) between the initial state Zl and the equilibrium state at the
moment ergodicity breaks Z∗l for each l = {LL,RR,LR} as

Wlower = −pLL ln
Z∗LL
ZLL

− pRR ln
Z∗RR

ZRR
− pLR ln

Z∗LR
ZLR

= −pLL ln
(1/2)n(n− 1)vne−nE

∗

(1/2) (V/2)2

−pRR ln
(1/2)(K − n)(K − n− 1)vK−ne−(K−n)E

∗

(1/2) (V/2)2

−pLR ln
n(K − n)vKe−KE

∗

(V/2)2
. (16)

Once the wells have passed E∗, each particle is trapped within a sepa-
rate well, and the work required to lower the wells to the final value E is
w = E − E∗. Next, we remove the partition for free. Then, we begin rais-
ing the wells with each particle trapped in a separate well doing a work
w̄ = E∗ − E until we reach E∗ again, and the particles begin exploring the
entire box. From this point on, until the wells are completely removed, the
work is

Wraise = − ln
Z̄

Z̄∗
= − ln

V 2/2

(1/2)K(K − 1)vKe−KE∗ . (17)

Summing these contributions, we find for the average work conditioned on
measuring m = LR

W = Wlower + w + w̄ +Wraise

= −pLL ln(4pLL)− pRR ln(4pRR)− pLR ln(2pLR) . (18)

On the other hand, the average information (reduction in uncertainty) can
be determined from the formula

I =
∑

l={LL,RR,LR}

pl ln
εl

P (LR)
(19)

by virtue of Eq. (3), where P (LR) = 1/(2pLR) is the probability to measure
LR. Thus,

I = pLL ln(4pLL) + pRR ln(4pRR) + pLR ln(2pLR) , (20)

and W + I = 0 as desired.
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5. Conclusions

In this paper, we have presented the preparation method as a recipe
for designing optimal (or reversible) feedback protocols that extract the
maximum amount of energy from a measurement. In many situations,
our method reproduces the simplest protocol that exploits the Hamiltonian
Hm(z) = −kT ln ρm(z, tmeas). However, our method can generate a variety
of non-trivial protocols when the system experiences some type of ergodicity
breaking. In our example, the two-particle Szilard engine, we saw that the
preparation led to a protocol that exploited a partitioning of phase space
and avoided any non-physical Hamiltonians typical of other schemes.
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