
Vol. 44 (2013) ACTA PHYSICA POLONICA B No 5

TIME-REVERSAL SYMMETRY RELATIONS
FOR FLUCTUATING CURRENTS
IN NONEQUILIBRIUM SYSTEMS∗

Pierre Gaspard

Center for Nonlinear Phenomena and Complex Systems
Department of Physics, Université Libre de Bruxelles

Code Postal 231, Campus Plaine, 1050 Brussels, Belgium

(Received May 10, 2013)

Fluctuation relations for currents are established in several classes of
systems. For the effusion of noninteracting particles through a small hole in
a thin wall, a fluctuation relation for the particle current is directly proved
from the Hamiltonian microdynamics by constructing the exact invariant
probability measure, which is shown to break time-reversal symmetry under
nonequilibrium conditions. Current fluctuation relations are also obtained
for the stochastic processes ruled by the Smoluchowski and Fokker–Planck
master equations by modifying the master operator with the current count-
ing parameters. Finally, the same method is applied to the coarse-grained
master equation of the fluctuating Boltzmann equation to establish the
fluctuation relation for the currents in dilute or rarefied gases.
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1. Introduction

The dichotomy between microreversibility and irreversibility at the
macroscale is a puzzling aspect of natural phenomena. Recently, great ad-
vances have been carried out in the understanding of this fundamental ques-
tion with the advent of time-reversal symmetry relations valid from close to
far from equilibrium. These symmetry relations include the fluctuation re-
lations for random quantities giving the entropy production after statistical
averaging [1–6], for the random nonequilibrium work performed on time-
dependent systems [7–10], as well as for the fluctuating currents of particles
and energy flowing across a nonequilibrium system [11–14]. These latter
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relations are particularly useful to study the coupling between several cur-
rents in electronic devices and energy transduction in molecular machines
[15–17]. On the one hand, the fluctuation relations find their origin in the
microreversibility of the underlying Hamiltonian dynamics of the particles
composing the systems. On the other hand, they characterize the break-
ing of time-reversal symmetry in the probability distributions of nonequi-
librium steady states and the directionality induced by the nonequilibrium
constraints [18].

The purpose of the present paper is to establish fluctuation relations for
currents in several classes of systems and to show that these relations can
explain the dichotomy between the time-reversal symmetry at the micro-
scopic level of description and its breaking under nonequilibrium conditions
at the statistical level of description.

In Section 2, the fluctuation relations for currents are presented as well
as their implications for the second law of thermodynamics and response
theory in nonequilibrium systems. Moreover, methods to establish these re-
lations are outlined. In Section 3, we consider the effusion of noninteracting
particles through a small hole in a thin wall separating space in two reser-
voirs. The stationary probability distribution is exactly constructed in this
system, allowing us to illustrate the phenomenon of time-reversal symmetry
breaking under nonequilibrium conditions while the underlying Hamiltonian
dynamics keeps its microreversibility. Moreover, the stationary probabil-
ity distribution is used to rigorously derive the current fluctuation relation
from the Hamiltonian microdynamics, along lines previously followed for the
multibaker map [19].

Beyond, systems of interacting particles are also considered. In Sec-
tions 4 and 5, current fluctuation relations are obtained for a Brownian
particle driven out of equilibrium by an external force, as described by the
Smoluchowski equation in the overdamped regime and the Fokker–Planck
equation in the presence of inertial effects. Here, the method used to derive
these results is based on the master equation of the stochastic process. The
linear operator of the master equation is modified to depend on counting
parameters for the currents flowing across the system and to give the cu-
mulant generating function of the currents as the leading eigenvalue of the
so-modified operator [3, 4, 20]. The modified operator is shown to obey a
symmetry relation involving the affinities or thermodynamic forces driving
the system out of equilibrium. The symmetry of the modified operator im-
plies the symmetry of the cumulant generating function, hence the current
fluctuation relation.

In Section 6, the same method is extended to derive a current fluctuation
relation for dilute and rarefied gases ruled by the fluctuating Boltzmann
equation. Gas-surface interactions are also taken into account. The method
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is applied to the coarse-grained master equation that has a form similar to
the chemical master equation [21], for which the current fluctuation theorem
has been previously established [11–13]. In this way, it is shown that the
generalizations of Onsager reciprocity relations to the nonlinear response
properties obtained in Refs. [11, 14] also apply to the gas flows ruled by the
fluctuating Boltzmann equation. Conclusions and perspectives are drawn in
Section 7.

2. Time-reversal symmetry relations and their implications

2.1. The microscopic and statistical levels of description

The underlying Hamiltonian microdynamics is known to be time-reversal
symmetric in many systems. In the presence of an external magnetic field,
the symmetry is extended by reversing also the magnetic field. On large
scales, phenomena are observed and the measured properties are quantities
that are combinations of the microscopic degrees of freedom. Examples
of such observable quantities are the particle numbers and energies in the
different parts of a system and the associated currents flowing between these
parts. These quantities can be defined at the mechanical level of description
in terms of the microscopic degrees of freedom of the underlying Hamiltonian
dynamics.

This latter determines the time evolution of the observable quantities
along the trajectories followed by the system. These trajectories are given
by the solutions of the Hamiltonian equations of motion and they depend on
the initial conditions of the total system. A priori, these initial conditions
are free to take any value in the state space of the system, would it be the
phase space of positions and momenta of the particles in classical mechanics
or the Hilbert space of wavefunctions in quantum mechanics. However, the
initial conditions are distributed in a way that is specific to the phenomenon
under observation. The distribution of initial conditions usually defines a
probability measure and an associated statistics. In this way, a statistical
description is introduced in the framework of the microdynamics. Moreover,
it is often the case that the distribution of initial conditions evolves after
some transient behavior towards a stationary distribution depending on ex-
ternal parameters controlling the phenomenon under observation. These
external parameters are the external force or magnetic fields, as well as the
temperatures and chemical potentials of the reservoirs in contact with the
parts of the system where the phenomenon of interest is observed. If the to-
tal system is composed of a domain in contact with one or several reservoirs
and if the phenomenon of interest is described at the macroscale in terms
of partial differential equations, the boundary conditions depend on these
external parameters. In this way, natural systems can have different levels of
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description: at the microscale in terms of the Hamiltonian dynamics ruling
the trajectories of particles in phase space, on mesoscopic scales in terms of
a statistical description based on probability distributions and, finally, on
the largest scale in terms of ordinary or partial differential equations for the
macrovariables.

If the temperature and the chemical potentials are uniform, the system is
in equilibrium and the statistical description is based on the Gibbsian proba-
bility distributions. If the uniformity conditions are not satisfied, the system
is out of equilibrium and energy should be supplied from outside to maintain
the directionality of the currents flowing across the system. The currents
and their fluctuations are described in terms of nonequilibrium probability
distributions that deviate from the equilibrium ones. The nonequilibrium
probability distributions are the solutions of Liouville’s equation of statisti-
cal mechanics or the solutions of the master equation of one of the reduced
stochastic descriptions. The master equation rules the time evolution of the
probability P (ω, t) that the system is in some coarse-grained state ω relevant
to the phenomenon of interest at the time t

∂t P = L̂ P , (1)

where L̂ is a linear operator. The linearity guarantees the conservation of
the total probability

∑
ω P (ω, t) = 1. A stationary solution defines an equi-

librium or nonequilibrium stationary probability distribution. If the Gibb-
sian stationary probability distributions are symmetric under time reversal,
this is not necessarily the case for the nonequilibrium distributions, which
may break this symmetry. There is no contradiction with the time-reversal
symmetry of Liouville’s equation induced by the symmetry of the underlying
Hamiltonian dynamics because the solution of an equation may have a lower
symmetry than the equation itself, which is well known in condensed matter
physics for the phenomena of spontaneous symmetry breaking.

2.2. Fluctuation relations for currents

In spite of the time-reversal symmetry breaking of nonequilibrium distri-
butions, the underlying symmetry continues to prevail in the form of sym-
metry relations such as Onsager’s reciprocity relations valid in the regime
of linear response close to equilibrium or the so-called fluctuation relations
also valid far from equilibrium in the regimes of nonlinear response. Several
types of fluctuation relations have been proved in systems under transient,
stationary, or time-dependent conditions and for different kinds of quantities
[1–17]. Many effort has been devoted to fluctuating quantities that would
correspond to the entropy production after statistical averaging [1–6]. How-
ever, the fluctuations are the feature of the ceaseless collisions among the
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molecules composing matter, as the Brownian motion reveals. The fluctua-
tions are observed for the position and velocity of the Brownian particles, as
well as for the particle numbers and the currents in phenomena such as criti-
cal opalescence and electrical noises [22, 23]. In this regard, the fluctuations
have a mechanical origin. A remarkable result is that time-reversal sym-
metry relations have also been obtained for the fluctuating currents flowing
across a system that may be driven out of equilibrium [11–17]. The exter-
nal parameters that control a nonequilibrium stationary distribution are the
so-called affinities A including

the thermal affinities:
1

kBTj
− 1

kBTi
, (2)

the chemical affinities:
µip
kBTi

− µjp
kBTj

, (3)

between the reservoirs i, j = 1, 2, . . . , r at the temperatures {Ti} and the
chemical potentials {µip} for the different particle species p = 1, 2, . . . , s and
where kB is Boltzmann’s constant [24–26]. One of the reservoirs is taken as
a reference of temperature and chemical potentials. The system is driven
out of equilibrium if other reservoirs have different temperatures or chemical
potentials. The nonequilibrium conditions are thus fixed by (r − 1)(s + 1)
different affinities. All these affinities are vanishing at equilibrium. The
affinities also include those due to the external forces F ext performing some
work on the system.

The random variables of interest are the quantities of matter and energy
∆Q = {∆Qα} that are transferred between the reservoirs during a time
interval [0, t]. There are as many such quantities as there are affinities.
The fluctuating currents are thus defined as J = ∆Q/t. Alternatively, these
fluctuating currents can be defined as J =

∫ t
0 jjj(t

′) dt′ using the instantaneous
fluctuating currents jjj(t) expressed in terms of the degrees of freedom of
the Hamiltonian microdynamics. If PA denotes the probability distribution
under stationary conditions specified by the affinities A, the fluctuation
relation for the currents reads

PA(J)

PA(−J)
't→∞ eA·J t . (4)

This relation compares the opposite fluctuations of the currents. At equilib-
rium where A = 0, the principle of detailed balancing is recovered according
to which opposite fluctuations are equiprobable. Out of equilibrium, the fluc-
tuation relation expresses the directionality induced by nonvanishing affini-
ties. Since the probabilities of opposite fluctuations have a ratio increasing
or decreasing with time, one of both fluctuations will soon dominate over the
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opposite and a directionality thus appears under nonequilibrium conditions.
The fluctuation relation (4) finds its origin in the time-reversal symmetry
of the underlying Hamiltonian dynamics and it is compatible with the sec-
ond law of thermodynamics. Indeed, Jensen’s inequality 〈ex〉 ≥ e〈x〉 with
x = −A·J t and the statistical average 〈·〉A over the probability distribution
PA implies the nonnegativity of the entropy production given by the sum of
the affinities multiplied by the statistical averages of the fluctuating currents

1

kB

diS

dt
= A · 〈J〉A ≥ 0 . (5)

The symmetry relation (4) can be alternatively expressed in terms of the
generating function of the statistical cumulants defined as

QA(λλλ) ≡ lim
t→∞
−1

t
ln

∫
PA(J) e−λλλ·J t dJ . (6)

Inserting the symmetry relation (4) in this definition, we find the more
compact expression

QA(λλλ) = QA(A− λλλ) . (7)

Reciprocally, the fluctuation relation (4) can be inferred from the relation
(7) under specific conditions using the theory of large deviation [27].

The fundamental result is that symmetry relations between the statisti-
cal cumulants of the currents and their coefficients of response to nonequi-
librium perturbations can be deduced from the symmetry relation (7). The
Onsager reciprocity relations are recovered in this way for the linear response
coefficients [28]. Most remarkably, their generalization to the nonlinear re-
sponse coefficients can also be obtained, which extends response theory to
far-from-equilibrium regimes [11, 14]. These relations are essential for the
understanding of the coupling between different transport processes, e.g.,
for energy transduction in molecular motors, electron counting statistics in
quantum dots and quantum transport, thermoelectric effects, or mass sep-
aration by effusion [15–17, 29, 30]. The current fluctuation relation (4) has
thus fundamental implications for nonequilibrium phenomena down to the
nanoscale.

2.3. Symmetry of the modified operator

Several methods exist to establish a current fluctuation relation in a
specific system. In systems of noninteracting particles, the current fluctu-
ation relation can be deduced from the Hamiltonian dynamics as shown in
Section 3 for effusion. In systems of interacting particles, where particular
degrees of freedom obey a stochastic process in some scaling limit, the mas-
ter equation ruling the stochastic process can be used to deduce the current
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fluctuation relation. Schnakenberg’s graph theory allows us to decompose
the stochastic process into cycles and to identify the affinities [13, 31]. The
linear operator L̂ of the master equation (1) is modified to let it depend on
the counting parameters λλλ of the cumulant generating function (6). The
adjoint of the modified operator should be ruling the conditional expected
values

F (ω, t;λλλ) ≡
〈
e−λλλ·J t

〉
A,ω

, (8)

given that the system is in the state ω at the initial time t = 0 for the process
characterized by the affinities A

∂t F = L̂†λλλ F . (9)

In the long-time limit, the conditional expected values (8) are decaying expo-
nentially at a rate given by the cumulant generating function (6) so that this
latter can be calculated as the leading eigenvalue of the modified operator
or its adjoint

L̂λλλ Ψ = −QA(λλλ)Ψ . (10)

If the modified operator obeys the symmetry relation

η−1Θ L̂λλλ (Θ η Φ) = L̂†A−λλλ Φ , (11)

where Φ is an arbitrary function, Θ is the time-reversal transformation acting
on the coarse-grained states {ω}, and η is the equilibrium stationary distri-
bution at the temperature and chemical potentials of the reference reservoir,
its leading eigenvalue satisfies the symmetry relation (7) as a consequence
[3, 4, 20]. Therefore, the symmetry of the modified operator implies the sym-
metry of the cumulant generating function. This method to establish the
current fluctuation theorem is particularly convenient in stochastic processes
with a known master equation and it will be used for systems ruled by the
Smoluchowski equation in Section 4, the Fokker–Planck equation Section 5,
and the fluctuating Boltzmann equation Section 6.

3. Symmetry relation for effusion in Hamiltonian dynamics

3.1. The invariant probability measure for a gas of noninteracting particles

In order to show that the fluctuation relation (4) can be deduced directly
from the underlying Hamiltonian microdynamics without using the theory
of stochastic processes and its master equation, let us consider the effusion
of an ideal gas through a small hole in a thin wall separating the gas between
two reservoirs at different temperatures and densities (see Fig. 1). The ideal
gas is composed of monoatomic particles of mass m moving in free flight
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and undergoing elastic collision on the thin wall W . The free flights are the
solutions of Hamilton’s equations for the single-particle position r ∈ R3 and
momentum p ∈ R3 with the Hamiltonian function given by

H =
p2

2m
. (12)

Moreover, the free flights are eventually interrupted by elastic collisions on
the thin wall W reflecting the z-component of the momentum according
to the collision rule p′ = p − 2 (p · uz)uz, where uz is the unit vector
in the z-direction perpendicular to the thin wall W . The motion of every
particle is thus ruled by a Hamiltonian flow Φt in the single-particle phase
space M = {(r,p) ∈ (R3 \ W ) ⊗ R3}. This single-particle Hamiltonian
flow is symplectic, obeys Liouville’s theorem, and is symmetric under the
time-reversal transformation Θ(r,p) = (r,−p): Θ ◦ Φt ◦ Θ = Φ−t. This
microreversibility is illustrated in Fig. 1 (a).

W

nL, TL nR, TR

π(C1)

π(C2)

π(ΘC1)

π(C3)

π(ΘC2)

π(ΘC3)

W

nL nRz
y

x

v

(a) (b)

Fig. 1. (a) Schematic representation of an effusion process in the physical position
space r = (x, y, z) ∈ (R3 \ W ), where the wall W separates the position space
between the two reservoirs, where the gas of noninteracting particles has different
temperatures and densities. The wallW has a hole of area σ. The figure depicts the
projection π(r,p) = r of three types of phase-space orbits Ci and their time reversal
ΘCi (with i = 1, 2, 3). (b) Representation of the cylindrical volume containing the
particles with the velocity v = p/m crossing the boundary between both reservoirs
through the hole during some time interval [0, t].
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In the left-hand reservoir, the particles arrive from z = −∞ with ve-
locities distributed according to a Maxwell–Boltzmann distribution at the
temperature TL and the density nL. In the right-hand reservoir, the parti-
cles arrive from z = +∞ with velocities distributed according to a Maxwell–
Boltzmann distribution at the temperature TR and the density nR. The
single-particle distribution function has thus the Maxwell–Boltzmann form

f(r,p) =
nC

(2πmkBTC)3/2
exp

(
− p2

2mkBTC

)
, (13)

where the particle density nC and the temperature TC take the values asso-
ciated with the orbit C to which the phase-space point (r,p) belongs and
corresponding to the domain from which the orbit is coming. For the three
types of possible orbits depicted in Fig. 1 (a), these values are the following

nC = nL , TC = TL for (r,p) ∈ C1 , ΘC1 , C2 ; (14)
nC = nR , TC = TR for (r,p) ∈ C3 , ΘC3 , ΘC2 . (15)

The distribution function is invariant under the Hamiltonian flow,
f [Φt(r,p)] = f(r,p). Nevertheless, it is not symmetric under time reversal,
f [Θ(r,p)] 6= f(r,p), for nonequilibrium constraints such that nL 6= nR or
TL 6= TR.

The single-particle distribution function gives the density of particles in
an element of volume dr dp at some point (r,p) in the single-particle phase
spaceM. Because of the infinite spatial extension of the reservoirs, the ideal
gas contains an infinite number of particles and its microstate is given by
the point

ΓΓΓ = (r1,p1, r2,p2, . . . , rN ,pN , . . . ) ∈MMM =M∞ . (16)

In this infinite-particle system, the Hamiltonian flow ΓΓΓ t = ΦΦΦt(ΓΓΓ 0) is also
time-reversal symmetric

ΘΘΘ ◦ΦΦΦt ◦ΘΘΘ = ΦΦΦ−t , (17)

where ΘΘΘ is the time-reversal transformation acting on the microstate (16)
by reversing all the momenta: pa → −pa, ∀ a ∈ N0.

For the infinite-particle system, an invariant probability measure µ can
be constructed as a Poisson suspension on the basis of the invariant distri-
bution function (13) [32]. For any six-dimensional domain D ⊂ M of the
single-particle phase spaceM, we consider the random events

AD,N = {ΓΓΓ ∈MMM : card(ΓΓΓ ∩ D) = N} , (18)
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for which there are N particles in the domain D. The average number of
particles in the phase-space domain D is given by

ν(D) =

∫
D

f(r,p) dr dp (19)

in terms of the single-particle distribution function (13).
We notice that the trajectories bouncing between the sharp edges of the

hole at z = 0 play no role in this system because they form a set of zero
Lebesgue measure and they are fully unstable with an infinite positive Lya-
punov exponent. If the wall W was not thin and had a nonvanishing width,
there might exist trajectories trapped forever in the hole with finite posi-
tive or zero Lyapunov exponents. If they existed, such trapped trajectories
would control part of the dynamics and should be taken into account, but
this is not the case here since the wall is assumed to be thin with a vanishing
width.

For a system of noninteracting particles, the number N of particles in
the domain D is a random variable of the Poisson distribution

µ (AD,N ) =
ν(D)N

N !
e−ν(D) . (20)

Moreover, random events in which disjoint domains have given particle num-
bers are statistically independent so that

µ (AD1,N1 ∩ AD2,N2) = µ (AD1,N1) µ (AD2,N2) if D1∩D2 = ∅ . (21)
Both Eqs. (20) and (21) define the probability distribution of the so-called
Poisson suspension [32]. We have the

Lemma. The probability to find N particles in a domain D = D1 ∪ D2

composed of two disjoint domains D1∩D2 = ∅ is again a Poisson distribution
with an average equal to ν(D) = ν(D1) + ν(D2).

Indeed, since the domains D1 and D2 are disjoint, the number of particles
in the domain D = D1∪D2 is equal to N = N1+N2, where N1 is the number
of particles in the domain D1 and N2 the number in D2. Both N1 and N2

are distributed according to the Poisson distributions of averages ν(D1) and
ν(D2) and the statistical independence (21) implies that

µ (AD,N ) =

N∑
N1=0

µ (AD1,N1 ∩ AD2,N−N1)

=

N∑
N1=0

µ (AD1,N1) µ (AD2,N−N1) =
ν(D)N

N !
e−ν(D) (22)

with ν(D) = ν(D1) + ν(D2). Q.E.D.
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As a consequence, the measure µ is normalized to unity and, therefore,
defines a probability measure. This probability measure is invariant under
the time evolution of the Hamiltonian flow ΦΦΦt

µ
(
ΦΦΦtA

)
= µ (A) (23)

for any random event A. This is the consequence of the stationarity of the
single-particle distribution function (13), f [Φt(r,p)] = f(r,p), which im-
plies the invariance ν

(
ΦtD

)
= ν (D) of the measure (19). The flow ΦΦΦt in the

infinite phase spaceMMM and the invariant probability measure of the Poisson
suspension defines the infinite-particle dynamical system (ΦΦΦt,MMM, µ). This
dynamical system is known to have the ergodic, mixing, and the Bernoulli
properties [32]. Although the flow ΦΦΦt has the microreversibility (17), the
dynamical system is not symmetric under time reversal because

µ (ΘΘΘA) 6= µ (A) unless nL = nR and TL = TR , (24)

as already pointed out in Ref. [33]. The time-reversal symmetry is thus
broken at the statistical level of description for the stationary probability
distribution µ under nonequilibrium conditions nL 6= nR or TL 6= TR.

3.2. Exact current fluctuation relation for effusion

In this framework, the counting statistics of the particle and energy
currents can be fully characterized. Here, we only consider the particle
current under the condition that the temperature is uniform TL = TR ≡ T
so that the momentum Maxwell–Boltzmann distribution is everywhere given
by

ϕ(p) =
1

(2πmkBT )3/2
exp

(
− p2

2mkBT

)
. (25)

The net current flowing between the left-hand and the right-hand reservoirs
during the time interval [0, t] is given by J = ∆N/t in terms of the differ-
ence ∆N = N+−N− between the number N± of particles crossing the hole
with a positive (respectively, negative) z-component of their velocity com-
ing from the left-hand (respectively right-hand) reservoir. All the particles
contributing to the number N+ are contained in a phase-space domain D+

incident on the hole of area σ during the time interval [0, t] with pz > 0 and
z < 0. The particles of a given momentum p = mv satisfying this condition
are contained in a cylinder of basis given by the hole and of height equal to
vzt. All the particles in this cylinder are flowing through the hole during
the time interval [0, t] (see Fig. 1 (b)). In position space, the volume of this
cylinder is equal to σvzt. Therefore, the average number of particles in the
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domain D+ is given by

ν+ = ν(D+) =

∫
D+

f(r,p) dr dp = t σ nL

∫
pz>0

pz
m
ϕ(p) dp = t σ nL

√
kBT

2πm
,

(26)
where we used Eq. (13) for an orbit C = L on which the condition (14) holds.
Similarly, the average number of particles flowing from the right-hand to the
left-hand reservoir during the time interval [0, t] is given by

ν− = ν(D−) =

∫
D−

f(r,p) dr dp = t σ nR

∫
pz<0

pz
m
ϕ(p) dp = t σ nR

√
kBT

2πm
,

(27)
where D− is the phase-space domain containing the orbits with pz < 0 and
z > 0 going through the hole during this time interval.

Now, the probability that the number of particles crossing the hole during
the time interval [0, t] is equal to n = ∆N ∈ Z is given by

P (n, t) = e−(ν++ν−)

(
ν+

ν−

)n/2
In (2

√
ν+ν−) (28)

in terms of the modified Bessel function defined by [34]

In(z) = I−n(z) =
(z

2

)n ∞∑
k=0

(z2/4)k

k! (k + n)!
(29)

and the average particle numbers (26) and (27). Indeed, n = ∆N = N+−N−
is the difference between two Poissonian random variables. For n ≥ 0, we
have that

P (n, t) =

∞∑
k=0

µ(AD+,n+k)µ(AD−,k)

=

∞∑
k=0

e−ν+
νn+k

+

(n+ k)!
e−ν−

νk−
k!

= e−(ν++ν−)

(
ν+

ν−

)n/2
In (2

√
ν+ν−) (30)

with the modified Bessel function (29) for z = 2
√
ν+ν−. A similar calculation

holds for n < 0.
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If we compare opposite fluctuations of the current, we find the following:

Current fluctuation theorem: The probability distribution of the net
random number ∆N of particles flowing from the left-hand to the right-hand
reservoir during the time interval [0, t] obeys the symmetry relation

P (∆N, t)

P (−∆N, t)
= eA∆N , where A = ln

ν+

ν−
= ln

nL

nR
(31)

is the affinity driving the particle current out of equilibrium.

This result follows from the symmetry In(z) = I−n(z) of the modified
Bessel function and the fact that the quantity ln(ν+/ν−) is equal to the
chemical affinity (3) between two reservoirs at different particle densities
but the same temperature

A =
1

kBT
(µL − µR) = ln

nL

nR
, (32)

since the chemical potential of an ideal gas of monoatomic particles is given
by µ = kBT ln

(
c n T−3/2

)
with a constant c, hence the need of temperature

uniformity TL = TR = T . If the temperature is not uniform, an extended
fluctuation theorem holds by considering the particle and energy currents
together [29, 30].

Here, the main point is that the current fluctuation theorem is directly
established on the basis of the Hamiltonian dynamics and ergodic theory,
showing that there is, in principle, no need to use the stronger assumptions
of the theory of stochastic processes. Of course, the time derivative of the
probability (30) gives us the master equation of the stochastic process ruling
the particle transport

d

dt
P (n, t) = w+ P (n− 1, t) + w− P (n+ 1, t)− (w+ + w−)P (n, t) (33)

with the transition rates w± = dν±/dt. This is a further consequence of
the fact that the infinite-particle dynamical system is a Bernoulli flow, as
established in ergodic theory [32], but this does not preclude the conclusion
that the fluctuation theorem can be directly established from the underlying
Hamiltonian dynamics. The crucial ingredient is the rigorous construction
of the invariant probability measure under equilibrium and nonequilibrium
conditions. In this construction, the breaking of the time-reversal symmetry
is manifest under nonequilibrium conditions for the infinite-particle dynam-
ical system (ΦΦΦt,MMM, µ) of the statistical description, although the Hamilto-
nian flow ΦΦΦt ruling the time evolution of the individual trajectories keeps
the underlying microreversibility.
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4. Symmetry relation for the Smoluchowski equation

The current fluctuation theorem can also be established for the Brownian
motion in a uniform external force F ext in systems of infinite spatial exten-
sion. The microscopic theory of the Brownian motion has been established
in the sixties under the condition that the massm of the Brownian particle is
much larger than the mass of the molecules of the surrounding fluid [35–37].
The microscopic theory proceeds by deducing the master equation for the
Brownian particle from the Liouville equation of the total system composed
of the Brownian particle and the molecules.

In the overdamped regime, the ratio between the relaxation time asso-
ciated with the friction coefficient ζ and the square of the inertial time due
to the mass m of the colloidal particle

trelax

t2inertial

' ζ

m
(34)

is large enough, so that the effects of friction overwhelm the inertial effects.
In this regime, the master equation for the probability density p(r, t) that
the colloidal particle is found in the position r ∈ R3 at the time t is given
by the Smoluchowski equation

∂t p = −∇∇∇ · (β DF p) +D∇2p , where F = −∇∇∇U + F ext (35)

is the force field to which the particle is subjected,D = kBT/ζ is the diffusion
coefficient, and β = (kBT )−1 is the inverse of the thermal energy kBT at the
fluid temperature T [22, 23]. The force field F is supposed to result from
a uniform external force F ext superposed to an energy potential U(r) that
extends periodically in space.

Smoluchowski’s equation can be written in the form ∂t p = L̂ p in terms
of the linear operator L̂ given by the right-hand member of Eq. (35). Here,
the fluctuating current of interest is the drift motion of the colloidal particle.
The conditional expected value 〈e−λλλ·rt〉r0 that the colloidal particle is found
at the time t in the position rt, given that it was initially in the position r0

is ruled by the adjoint of the modified operator

L̂λλλ = e−λλλ·r L̂ eλλλ·r . (36)

For Smoluchowski’s equation (35), this modified operator takes the form

L̂λλλ = L̂+ 2Dλλλ · ∇∇∇− β Dλλλ · F +Dλλλ2 , (37)

where L̂ = L̂0 is the unmodified linear operator.
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Now, the modified operator obeys the symmetry relation

η−1 L̂λλλ (η φ) = L̂†A−λλλ φ for any function φ(r) (38)

with the Boltzmann factor η = exp [−βU(r)] and the affinity

A =
F ext

kBT
(39)

due to the external force driving the Brownian particle out of equilibrium.
The energy potential U(r) is internal to the system and does not contribute
to the nonequilibrium drift of the Brownian particle. Without the external
force F ext, the Brownian particle would undergo an unbiased random walk
characteristic of thermodynamic equilibrium.

The symmetry relation (38) is the analogue of Eq. (11) since the Smolu-
chowski equation only concerns the probability distribution in a position
that remains unchanged under the time-reversal transformation Θ(r,p) =
(r,−p). As explained in Section 2, the consequence of the symmetry (38)
is the current fluctuation relation

PA(∆rt)

PA(−∆rt)
't→∞ eA·∆rt (40)

for the probability that the colloidal particle has the displacement ∆rt =
rt − r0 during the time interval [0, t] under the effect of the affinity (39).
Therefore, the cumulant generating function (6) of the random displacement
∆rt obeys the symmetry relation (7). In particular, the average drift velocity
is given by

V = lim
t→∞

1

t
〈∆rt〉A =

∂QA

∂λλλ
(0) (41)

and the higher cumulants by further derivatives with respect to the param-
eters λλλ. The average drift velocity vanishes with the affinity. The response
coefficients are given by expanding V (A) in powers of the components of
the affinity A = {Aα}α=x,y,z. As the consequence of the current fluctuation
relation (40), the Onsager reciprocity relations can be generalized from the
linear to the nonlinear response coefficients, as shown elsewhere [11, 14].

For example, the current fluctuation relation concerns the Brownian mo-
tion in an optical lattice and driven in nonequilibrium steady states by a
uniform external force such as the force due to the acceleration g of gravity:
F ext = −mguz.

5. Symmetry relation for the Fokker–Planck equation

The current fluctuation relation (40) can also be established for the Brow-
nian motion, where the inertial effects are not negligible because the ratio
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(34) takes a finite value. For this purpose, we may consider the master
equation for the time evolution of the probability density P(r,p, t) that the
colloidal particle is found in the position r ∈ R3 with the momentum p ∈ R3

at the time t, which is given by the Fokker–Planck equation

∂P
∂t

= − p

m
· ∂P
∂r
− F · ∂P

∂p
+

∂

∂p
·
(
ζ
p

m
P
)

+ ζ kBT
∂2P
∂p2

, (42)

where

F = −∇∇∇U + F ext

if the colloidal particle moves in an energy potential U(r) that extends
periodically in space under the effect of the uniform external force F ext.
The Fokker–Planck equation can also be written in the form ∂t P = L̂P
where the linear operator L̂ is given by the right-hand member of Eq. (43).

The modified operator giving the cumulant generating function of the
random displacements of the colloidal particle as its leading eigenvalue by
Eq. (10) is again defined by Eq. (36). The so-modified Fokker–Planck oper-
ator takes the form

L̂λλλ = L̂− λλλ · p
m

(43)

in terms of the unmodified linear operator L̂ = L̂0. This modified opera-
tor obeys the symmetry relation (11) with the time-reversal transformation
Θ(r,p) = (r,−p), the Boltzmann factor

η = exp

{
−β
[
p2

2m
+ U(r)

]}
(44)

for equilibrium in the internal potential U(r), and the affinity (39) driving
the Brownian particle out of equilibrium. Consequently, the current fluc-
tuation relation (40) is here also obtained for the random displacements
∆rt = rt−r0 of the Brownian particle during the time interval [0, t], where-
upon the symmetry relations for the cumulants and the response coefficients
also hold for the stochastic process ruled by the Fokker–Planck equation [14].

6. Symmetry relation for the fluctuating Boltzmann equation

6.1. Interacting particles in dilute or rarefied gases

For interacting particles in dilute or rarefied gases, the current fluctu-
ation relation (4) can be established by using the fluctuating Boltzmann
equation, which has been proposed since the late forties [38–47]. The con-
ceptual advantage over the Boltzmann’s equation itself is that this latter is
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a nonlinear kinetic equation that cannot be considered as the master equa-
tion of a stochastic process. For this purpose, the master equation should
indeed be linear. Nonlinear kinetic equations are familiar in macroscopic
chemical kinetics for the time evolution of the concentrations of the differ-
ent chemical species taking part in reactions [21]. At the mesoscopic level of
description, these concentrations are fluctuating because they represent par-
ticle densities known to fluctuate since the pioneering work of Smoluchowski
[22, 23]. The densities and concentrations are fluctuating fields extending
in space and ruled by stochastic partial differential equations as in fluctu-
ating hydrodynamics [48]. The situation is analogue to the case of a single
particle although a whole field is fluctuating. Therefore, time-reversal sym-
metry relations can also be envisaged for these spatially extended systems
under out-of-equilibrium conditions where fluctuating currents are induced
by external driving. In this way, a current fluctuation relation has been ob-
tained for processes ruled by the fluctuating diffusion equation in Ref. [12].
Drawing on the analogy between a fluctuating particle density n(r, t) and
a fluctuating single-particle distribution function f(r,v, t), the scheme can
be generalized to the fluctuating Boltzmann equation under nonequilibrium
conditions [49].

As an example, we may consider a dilute or rarefied gas flowing through
a nanopore in a wall separating two reservoirs at different temperatures and
particle densities (see Fig. 2). The difference with respect to the situation
treated in Section 3 is that the particles are no longer independent because
they interact and exchange energy and momentum during binary collisions.
Moreover, the particles may also exchange energy by scattering on surfaces
at given temperatures, inducing gas–surface interactions [50].

T
L 

, n
L

T
R 

, n
R

Fig. 2. Schematic representation of a dilute or rarefied gas flowing through a
nanopore between two reservoirs at given temperatures and particle densities.
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6.2. The fluctuating Boltzmann equation

The fluctuating Boltzmann equation is a stochastic differential equation
for the single-particle distribution function f(r,v, t) of the form

∂f

∂t
= AF[f ] +AC[f ] +AR[f ] +AS[f ] + g(r,v, t) , (45)

whereAF,C,R,S[f ] are the deterministic rates due to the single-particle Hamil-
tonian flow, the binary collisions, the particle exchanges with the reservoirs,
and the gas–surface interactions, while g(r,v, t) is a Gaussian white noise
satisfying

〈g(r,v, t)〉 = 0 , (46)〈
g(r,v, t) g

(
r′,v′, t′

)〉
= δ

(
t− t′

) (
BF[f ] + BC[f ] + BR[f ] + BS[f ]

)
, (47)

where the diffusivities BF,C,R,S[f ] depend on f(r,v, t) itself [38–47].
The single-particle Hamiltonian flow is described by

AF[f ] = −v · ∂f
∂r
− F

m
· ∂f
∂v

(48)

and BF[f ] = 0 because it is noiseless.
The binary collisions contribute by the Boltzmannian collision term

AC[f ] =

∫
dv2 dv

′
1 dv

′
2 w

(
v1,v2|v′1,v′2

) (
f ′1 f

′
2 − f1 f2

)
, (49)

where f = f1 is the distribution function at the position r = r1 and the
velocity v = v1 of the first particle before the binary collision, f ′1 the dis-
tribution function of the first particle after the binary collision, while f2

and f ′2 the distribution functions of the second particle before and after the
collision. The corresponding diffusivity is given by

BC[f ] = δ(r − r′)

∫
dv2 dv3 dv4 w (v1,v2|v3,v4) (f1 f2 + f3 f4)

×
[
δ
(
v1 − v′

)
+ δ

(
v2 − v′

)
− δ

(
v3 − v′

)
− δ

(
v4 − v′

)]
, (50)

where fa = f(r,va) for a = 1, 2, 3, 4 [45–47]. The transition rate coefficients
are related to the differential cross section σdiff of the binary collisions by

w
(
v1,v2|v′1,v′2

)
= σdiff δ

(
v1 + v2 − v′1 − v′2

)
δ
(
v2

1 + v2
2 − v′ 21 − v′ 22

)
,

(51)
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where the delta’s express the conservation of linear momentum and kinetic
energy in every binary collision. In general, the transition rate coefficients
have the following symmetries

time-reversal symmetry: w (v1,v2|v′
1,v

′
2)=w (−v′

1,−v′
2| − v1,−v2) , (52)

space-orthogonal symmetry: w (v1,v2|v′
1,v

′
2)=w

(
R · v1,R · v2

∣∣R · v′
1,R · v′

2

)
,

(53)

where R is a matrix belonging to the orthogonal group O(3) including spatial
rotations and reflections [51].

The inflow and outflow from and to the reservoirs are described by

AR[f ] =

r∑
i=1

∫
Si

d2S δ(r − ri) (n · v) θ(n · v) [fi(v)− f(r,v)] , (54)

BR[f ] = δ(r − r′) δ(v − v′)
r∑
i=1

∫
Si

d2S δ(r − ri) (n · v) θ(n · v)

× [fi(v) + f(r,v)] , (55)

where Si = {ri ∈ R3} is the boundary with the ith reservoir, n is a unit
vector normal to the boundary, the Heaviside function θ(n · v) selects the
incoming velocities, and

fi(v) =

(
mβi
2π

)3/2

ni exp(−βi ε) with ε = 1
2mv2 (56)

is the Maxwell–Boltzmann distribution function of the gas coming from the
reservoir at the temperature Ti = (kBβi)

−1 and the particle density ni (i =
1, 2, . . . , r).

The interaction of the gas with the surface of a solid depends on many
different aspects. The scattering of particles with surfaces has been much
studied and many processes are known besides elastic collisions: adsorption,
desorption, transport on the surface, transport into or from the bulk of
the solid, or possible reactions [52]. The solid surface is typically at some
temperature that may differ from the temperature of the gas so that energy
transfer to the solid can take place at the surface. Here, the solid forming
the surface is supposed to have a high enough thermal conductivity so that
its temperature is uniform. Under such circumstances, the contribution of
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the surface Sl to Eq. (45) is of the form

AS[f ] =

∫
Sl

d2S δ(r − rl)

×

 ∫
n·v′<0

dv′|n · v′| pr(v|v′) f(r,v′)− (n · v) θ(n · v) f(r,v)

 , (57)

where pr(v|v′) is the probability density that a particle impinging the surface
at the position r with the velocity v′ and n · v′ < 0 will be scattered to the
velocity v such that n · v > 0 [50]. In general, this function is normalized
according to ∫

n·v>0

pr(v|v′) dv = 1 if n · v′ < 0 , (58)

and it satisfies the following two properties. The first one guarantees the
preservation of equilibrium at the temperature Tl of the surface

|n · v| fl(v) =

∫
n·v′<0

pr(v|v′) |n · v′| fl(v′) dv′ , (59)

where fl(v) is the corresponding equilibrium Maxwell–Boltzmann distribu-
tion (56). The second is the property of reciprocity

|n · v′| fl(v′) pr(v|v′) = |n · v| fl(v) pr(−v′| − v) , (60)

which is implied by the time-reversal symmetry of the underlying micro-
scopic dynamics and the condition of local thermodynamic equilibrium of
the surface at the temperature Tl of the Maxwell–Boltzmann equilibrium
distribution fl(v) [50]. In the special case of elastic collision, the function is
given by

pr(v|v′) = δ
[
v′ − v + 2(n · v)n

]
(61)

uniformly on the whole surface, which satisfies all the aforementioned prop-
erties. However, energy exchange typically happens during the lapse of time
between the adsorption of the gas particles and their desorption. In the case
where the particles are adsorbed on the surface and soon desorbed with the
Maxwell–Boltzmann distribution of the surface temperature Tl = (kBβl)

−1,
the function can be taken as

pr(v|v′) = |n · v| (mβl)
2

2π
exp(−βlε) with ε = 1

2mv2 , (62)
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which also satisfies the required properties. More realistic gas–surface inter-
actions have been considered and discussed in the literature [50]. The con-
tribution (57) conserves the total number of particles, but the total energy
is not conserved during typical gas–surface interactions. The corresponding
diffusivity BS[f ] can be obtained as well.

In general, the gas is composed of several particle species p = 1, 2, ..., s,
it is flowing between r reservoirs at the temperatures and particles densities
{Ti, nip} with i = 1, 2, ..., r, and it is in contact with the surfaces of w walls
at the temperatures {Tl} with l = 1, 2, ..., w. Consequently, the steady state
of the system is controlled by r+w temperatures and rs particle densities. If
one of the reservoirs is taken to fix the reference equilibrium temperature and
chemical potentials, there should be (r − 1)(s+ 1) +w affinities controlling
the nonequilibrium conditions: r − 1 +w thermal affinities (2) and s(r − 1)
chemical affinities (3).

6.3. The coarse-grained master equation

The master equation of the Fokker–Planck type associated with the fluc-
tuating Boltzmann equation is a functional master equation ruling the time
evolution of the probability density functional, P[f ] = P[f(r,v)], that the
random single-particle distribution function would be given by the function
f(r,v) at the current time t [45]. A method to deal with this formidable
master equation is to coarse grain the system into fictitious cells of vol-
ume ∆r3∆v3 centered around the phase-space points (rα,vα). The random
number of particles in the cell α at the current time t is thus given by

Nα(t) ≡
∫
α

f(r,v, t) dr dv ' f(rα,vα, t) ∆r3∆v3 . (63)

The probability P (N , t) to find N = {Nα} particles in the cells {α} at the
current time t is ruled by the master equation

dP

dt
= L̂ P , where L̂ = L̂F + L̂C + L̂R + L̂S (64)

are the following contributions from:

free flights: L̂FP =
∑
λρ

WF
λρ

(
Ê−1
λ Ê+1

ρ − 1
)
NρP ; (65)

binary collisions: L̂CP =
∑
λµρσ

WC
λµρσ

(
Ê−1
λ Ê−1

µ Ê+1
ρ Ê+1

σ − 1
)

×NρNσP ; (66)
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exchanges with reservoirs: L̂RP =
∑
λ

WR,in
λ

(
Ê−1
λ − 1

)
P

+
∑
λ

WR,out
λ

(
Ê+1
λ − 1

)
NλP ; (67)

surface collisions: L̂SP =
∑
λρ

W S
λρ

(
Ê−1
λ Ê+1

ρ − 1
)
NρP . (68)

These operators are expressed in terms of the rising and lowering operators

Ê±1
α P (..., Nα, ...) = P (..., Nα ± 1, ...) (69)

adding or removing one particle in the cell α [41, 46].
At equilibrium where the affinities are vanishing so that the temperatures

and chemical potentials are equal, the stationary solution of the master
equation (64) is the multiple Poisson distribution

Peq(N) =
∏
α

e−〈Nα〉
〈Nα〉Nα
Nα!

with 〈Nα〉 = feq(vα) ∆r3 ∆v3 . (70)

The rate coefficient of the events during which one particle is moving in
free flight ρ→ λ from the cell ρ to the cell λ is given by

WF
λρ =

1

∆r
(nλρ · v) θ(nλρ · v) δrλ,rρ+∆rnλρ δvλ,vρ , (71)

where nλρ is a unit vector directed from the center rρ of the cell ρ to the
center rλ of the cell λ [45, 47].

The rate coefficient of the transition ρσ → λµ due to some binary colli-
sion is given by [45, 46]

WC
λµρσ =

1

2∆r3∆v6

∫
λ

dv1

∫
µ

dv2

∫
ρ

dv′1

∫
σ

dv′2 w
(
v1,v2|v′1,v′2

)
×δrµ,rλ δrρ,rλ δrσ ,rλ . (72)

These transitions do not change the positions but modify the velocities ac-
cording to the collision rule.

Similar expression can be obtained for the rate coefficientsWR,in
λ ,WR,out

λ ,
andW S

λρ from the deterministic kinetic rates (54) and (57) for exchanges with
the reservoirs and gas–surface interactions.
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The exchange of particles between two reservoirs is schematically de-
picted in Fig. 3 for particles of velocity ±v jumping between the cells α =
(i,±) with i = 1, 2, ..., I extending from the left-hand to the right-hand
reservoirs. The time-reversal transformation maps every cell with a given
velocity ±v onto the cell with the opposite velocity ∓v: Θ(i,±) = (i,∓).
Restricting ourselves for simplicity to the particles of velocities ±v, the flow
operator L̂FR = L̂F + L̂R, including the contributions of the free flights (65)
and the exchanges with the reservoirs (67) reads

L̂FRP =
v

∆r

[(
Ê−1

1,+ − 1
)
〈N+〉L P +

I−1∑
i=1

(
Ê+1
i,+Ê

−1
i+1,+ − 1

)
Ni,+ P

+
(
Ê+1
I,+ − 1

)
NI,+ P +

(
Ê+1

1,− − 1
)
N1,− P

+
I−1∑
i=1

(
Ê+1
i+1,−Ê

−1
i,− − 1

)
Ni+1,−P +

(
Ê−1
I,− − 1

)
〈N−〉RP

]
. (73)

In the first term of this expression, 〈N+〉L = fL∆r3∆v3 denotes the average
number of particles coming into the cell (1,+) with the velocity +v from
the left-hand reservoir at the temperature TL and density nL. In the last
term, 〈N−〉R = fR∆r3∆v3 is the average number of particles coming into the
cell (I,−) with the velocity −v from the right-hand reservoir. These aver-
age numbers are expressed in terms of the equilibrium Maxwell–Boltzmann
distribution function (56) in the corresponding reservoir. These average
particle numbers at the reservoirs are related to the thermal and chemical
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Fig. 3. Schematic phase portrait of the free motion between two reservoirs from
which the particles are incoming with different temperatures and densities.
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affinities

AE = βR − βL , (74)

AN = βLµL − βRµR = ln
nLβ

3/2
L

nRβ
3/2
R

, (75)

where µL,R are the chemical potentials of the monoatomic gas in the left-
and right-hand reservoirs and βL,R the corresponding inverse temperatures.
Indeed, the logarithm of the ratio of the aforementioned average particle
numbers is given by

ln
〈N+〉L
〈N−〉R

= ln
fL

fR
= AN + εAE ≡ A , (76)

where ε = mv2/2 is the kinetic energy of the particles. The stationary solu-
tion of the master equation (1) for nonvanishing values of the affinities gives
the invariant probability distribution of the corresponding nonequilibrium
steady state.

The interaction of the gas with a surface is schematically represented
in Fig. 4, in a similar diagram as in Fig. 3. To fix the ideas, the surface is
taken as z = 0 so that the normal unit vector is n = (0, 0, 1). If we discretize
position and velocity, the term (57) describing gas–surface interaction in the
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Fig. 4. Schematic phase portrait of free motion from the right reservoir, elastic
or inelastic collisions with a surface, and the motion back to the right reservoir.
At the surface, the different vertical arrows depict the different possible transitions
due to elastic or inelastic collisions. Elastic collisions induce transitions at constant
kinetic energy ε = mv2/2, which is not the case for inelastic collisions.
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coarse-grained master equation is given by

L̂SP =
∑
r

δz,0
∑
v

vz>0

∑
v′

v′z<0

∆v3 |v′z|
∆r

p(v|v′)
(
Ê+1

rv′ Ê
−1
rv − 1

)
Nrv P (77)

expressing the adsorption of a particle of velocity v′ with v′z < 0 and its
desorption at the velocity v with vz > 0 distributed according to a func-
tion p(v|v′) satisfying the three properties (58), (59), and (60) inducing a
thermalization at the temperature Tl of the surface. Accordingly, the total
number of particles is conserved by this operator, although the total energy
is not conserved if the collisions are inelastic at the surface.

6.4. The modified operator

Now, the linear operator (65)–(68) of the master equation (64) can be
modified in order to perform the counting of the particles and the energy
exchanged with the reservoirs and the surfaces. In the case of an open system
in contact with two reservoirs, the counting parameters are λλλ = (λN , λE).
The off-diagonal elements of the modified operator are given in terms of the
operator L̂ = L̂0 of the master equation (64) by(

L̂λλλ

)
N ′N

=
(
L̂
)
N ′N

e−λλλ·∆GN→N′ for N ′ 6= N , (78)

where

λλλ ·∆GN→N ′ = (λN + εv λE) ∆Nrv with ∆Nrv = N ′rv −Nrv = ±1
(79)

for a transition in which a particle of kinetic energy εv = mv2/2 enters
or exits the system through the cell α = rv in contact with the left-hand
reservoir. The diagonal elements are not modified(

L̂λλλ

)
NN

= −
∑

N ′(6=N)

(
L̂
)
N ′N

. (80)

In particular, the operator (73) ruling the inflow, outflow and free flights
of particles between two reservoirs and acting on functions Φ(N) is modified
into

L̂FR
λN ,λE

Φ =
v

∆r

[(
e−λ Ê−1

1,+ − 1
)
〈N+〉L Φ+

I−1∑
i=1

(
Ê+1
i,+Ê

−1
i+1,+ − 1

)
Ni,+ Φ

+
(
Ê+1
I,+ − 1

)
NI,+ Φ+

(
e+λ Ê+1

1,− − 1
)
N1,− Φ

+

I−1∑
i=1

(
Ê+1
i+1,−Ê

−1
i,− − 1

)
Ni+1,− Φ+

(
Ê−1
I,− − 1

)
〈N−〉R Φ

]
(81)
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with the counting parameter λ = λN + ελE appearing in the only terms
contributing to the exchange of particles with the left-hand reservoir, where
the quantity (79) is non-zero. For particles at the energy ε = mv2/2, the
flow operator (73) is thus modified by inserting a factor exp(±λ) in the
terms responsible for incoming or outgoing particles from or to the left-hand
reservoir.

Similarly, the operator (77) describing gas–surface interaction is modified
by introducing an extra counting parameter λS

E for the energy exchanged
during inelastic collisions with the surface to get

L̂S
λSE
Φ =

∑
r

δz,0
∑
v

vz>0

∑
v′

v′z<0

∆v3 |v′z|
∆r

p(v|v′)
[
eλ

S
E(ε′−ε)Ê+1

rv′ Ê
−1
rv − 1

]
Nrv Φ ,

(82)
where ε = mv2/2 and ε′ = mv′2/2.

In contrast, the collision operator (66) is not modified because the binary
collisions locally exchange particles among all the cells corresponding to the
same position in the bulk of the system so that the quantity (79) remains
equal to zero for these transitions.

Therefore, the operator is modified into

L̂λN ,λE ,λSE
= L̂C + L̂FR

λN ,λE
+ L̂S

λSE
. (83)

We notice the additive structure due to the statistical independence between
the different types of transitions. Accordingly, every operator can be treated
separately.

6.5. The symmetry of the modified operator

The symmetry relation (11) can be established for each one of them by
taking η(N) as the multiple Poisson distribution (70) at the temperature TR

and density nR of the right-hand reference reservoir and the time-reversal
transformation as

ΘΦ({Nr,v}) = Φ({Nr,−v}) . (84)

We find that

η−1Θ L̂C (Θ η Φ) = L̂C†Φ , (85)

η−1Θ L̂FR
λN ,λE

(Θ η Φ) = L̂FR†
AN−λN ,AE−λEΦ , (86)

η−1Θ L̂S
λSE

(Θ η Φ) = L̂S†
AS
E−λ

S
E

Φ , (87)

in terms of the thermal and chemical affinities (74)–(75) controlling the
energy and particle currents from the left-hand reservoir to the right-hand
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reference reservoir, and the thermal affinity controlling the energy current
from the surface to the same right-hand reference reservoir

AS
E = βR − βS , (88)

where βS = (kBTS)−1 characterizes the Maxwell–Boltzmann distribution
(56) at the surface temperature TS [49].

The symmetry (85) results from the time-reversal symmetry (52) of the
transition rate coefficients of Boltzmann’s equation itself, which thus also
concerns the rate coefficients (72).

The symmetry (86) of the modified operator (81) is obtained by using
the properties (

Ê±1
α

)†
= Ê∓1

α , (89)

Ê−1
α η Φ =

Nα

〈Nα〉
η Ê−1

α Φ , (90)

Ê+1
α η Φ =

〈Nα〉
Nα + 1

η Ê+1
α Φ (91)

of the lowering and rising operators (69), where Φ(N) is an arbitrary func-
tion and η(N) is given by the multiple Poisson distribution (70). This dis-
tribution has the symmetry Θη = η under the time-reversal transformation
ΘNi,± = Ni,∓ reversing the velocities ±v at every position i = 1, 2, . . . , I.
Therefore, the transformation in the left-hand side of Eq. (86) has the ef-
fect of permuting the terms of positive velocity with those of negative ve-
locity. Furthermore, the boundary term with e−λ〈N+〉L is transformed into
e−λ〈N+〉L/〈N1,−〉R and the boundary term with e+λ into e+λ〈N1,+〉R. Now,
the left-hand reservoir is at the temperature TL and density nL while the
right-hand reservoir is used as reference so that 〈Ni,±〉R = fR∆r3∆v3 for all
i = 1, 2, ..., I, whereupon we find the required consistency between the two
equalities

e−λ
〈N+〉L
〈N1,−〉R

= eA−λ , (92)

e+λ〈N1,+〉R = e−(A−λ) 〈N+〉L (93)

with the affinity A defined by Eq. (76). Consequently, the two boundary
terms with the counting parameter λ may exchange their role if we carry out
the transformation λ→ A− λ. We thus obtain the symmetry relation (86).

The symmetry (87) of the modified operator (82) holds because the func-
tion p(v|v′) satisfies the property of reciprocity (60) that finds its origin in
the microreversibility of the gas–surface interactions.
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For an open system in contact with two reservoirs and a thermalizing
surface, the symmetry relation (11) can thus be proved with the counting
parameters λλλ = {λN , λE , λS

E} and the affinities A = {AN , AE , AS
E} given

by Eqs. (74), (75), and (88) [49]. As a consequence, the cumulant gener-
ating function (6) of the corresponding fluctuating currents obeys the sym-
metry relation (7). As explained in Section 2, this establishes the current
fluctuation relation (4) for dilute or rarefied gases ruled by the fluctuating
Boltzmann equation.

7. Conclusions and perspectives

The time-reversal symmetry relations obtained in the present paper char-
acterize the fluctuations of the particle and energy currents flowing across
systems subjected to nonequilibrium constraints. They find their origin in
the microreversibility of the underlying Hamiltonian dynamics. Yet, they
arise because the stationary probability distribution breaks the time-reversal
symmetry at the statistical level of description, as shown for the case of ef-
fusion in noninteracting gases.

The generality of the relationship between fluctuation relations and sym-
metry breaking phenomena is suggested by recent work showing that fluctu-
ation relations also hold for equilibrium probability distributions where the
spin-reversal symmetry is broken by an external magnetic field, as in the
Ising model [53, 54]. The mathematical scheme is similar with the external
magnetic field playing the role of the affinities and the fluctuating magne-
tization the role of the fluctuating currents. This connection also supports
the result that the thermodynamic entropy production can be interpreted
as a quantity characterizing the time-reversal symmetry breaking, as shown
elsewhere [55].

Beyond the case of effusion in noninteracting gases, a fluctuation relation
for currents is here established for Smoluchowski’s master equation describ-
ing a Brownian particle driven out of equilibrium by an external force. This
result is valid not only close to equilibrium, but also far from equilibrium
in regimes where nonlinear response can become important. If the inertial
effects cannot be neglected, the driven Brownian motion is described by the
Fokker–Planck equation, for which the current fluctuation relation is also
deduced. The method used to obtain these relations consists in modify-
ing the linear operator of the master equation with parameters counting
the transfers of particles and energy. The cumulant generating function of
the fluctuating currents is thus obtained from the leading eigenvalue of the
modified operator. Remarkably, the modified operator of the Smoluchowski
and Fokker–Planck master equations present the special symmetry (11) un-
der time reversal. This symmetry is expressed in terms of the affinities or
thermodynamic forces driving the system out of equilibrium with respect to
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some reference equilibrium state. Since the symmetry holds for the operator,
it implies the symmetry relation of the cumulant generating function and,
therefore, the fluctuation relation for the currents.

This method turns out to be very powerful and allows us to extend these
results to stochastic processes taking place in dilute or rarefied gases ruled
by the fluctuating Boltzmann equation. In order to derive the symmetry
relation, the system is coarse grained into cells between which the particles
are randomly jumping. The symmetry relation can then be established for
the modified operator of the coarse-grained master equation. Several types
of processes take place in the gas: free flights, binary collisions, elastic or
inelastic collisions with surfaces, and the exchange of particles and kinetic
energy with the reservoirs. These different processes are ruled by different
operators as long as they are statistically independent. The time-reversal
symmetry of the collisions and the corresponding property of reciprocity sat-
isfied by the transition rates imply the symmetry of the modified operators,
allowing us to establish the fluctuation relation for the currents in dilute
and rarefied gases. As a corollary, the generalizations of the Green–Kubo
formulae and the Onsager reciprocity relations obtained in Refs. [11, 14] for
the nonlinear response coefficients are extended to these gases. The present
results are complementary to those obtained elsewhere for open quantum
systems [56, 57].

These fundamental results open important perspectives, on the one hand,
to understand in a fundamental way the origins of thermodynamic irre-
versibility and, on the other hand, to investigate the properties of nonequilib-
rium stochastic processes down to the nanoscale. These symmetry relations
can be experimentally tested for the Brownian motion in optical lattices and
driven out of equilibrium by an external force. An experimental challenge
is to measure the fluctuations of the currents in gas flow such as effusion.
Ultrathin membranes such as graphene with a small hole could be envisaged
for the effusion of fluorescent molecules in order to perform their counting in
slow enough flows. Full counting statistics is already possible for electrons
in quantum dots [58], but the analogue with atoms or molecules has not yet
been carried out.

This research is financially supported by the Belgian Federal Government
(IAP project “DYGEST”) and the Université Libre de Bruxelles.

REFERENCES

[1] D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993).
[2] G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995).
[3] J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998).

http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1088/0305-4470/31/16/003


844 P. Gaspard

[4] J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999).
[5] C. Maes, J. Stat. Phys. 95, 367 (1999).
[6] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[7] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[8] G.E. Crooks, J. Stat. Phys. 90, 1481 (1998).
[9] G.E. Crooks, Phys. Rev. E 60, 2721 (1999).
[10] C. Jarzynski, J. Stat. Phys. 98, 77 (2000).
[11] D. Andrieux, P. Gaspard, J. Chem. Phys. 121, 6167 (2004).
[12] D. Andrieux, P. Gaspard, J. Stat. Mech.: Theory Exp. 1, P01011 (2006).
[13] D. Andrieux, P. Gaspard, J. Stat. Phys. 127, 107 (2007).
[14] D. Andrieux, P. Gaspard, J. Stat. Mech.: Theory Exp. 2, P02006 (2007).
[15] M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).
[16] P. Gaspard, in: G. Radons, B. Rumpf, H.G. Schuster, Eds., Nonlinear

Dynamics of Nanosystems, Wiley-VCH, Weinheim 2010, pp. 1–74.
[17] M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).
[18] P. Gaspard, Adv. Chem. Phys. 135, 83 (2007).
[19] P. Gaspard, D. Andrieux, Bussei Kenkyu 97, 377 (2011).
[20] D. Lacoste, K. Mallick, Phys. Rev. E 80, 021923 (2009).
[21] G. Nicolis, J. Stat. Phys. 6, 195 (1972).
[22] N. Wax, Selected Papers on Noise and Stochastic Processes, Dover, New

York 1954.
[23] R.M. Mazo, Brownian Motion, Clarendon Press, Oxford 2002.
[24] T. De Donder, P. Van Rysselberghe, Affinity, Stanford University Press,

Menlo Park CA, 1936.
[25] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes,

Wiley, New York 1967.
[26] H.B. Callen, Thermodynamics and an Introduction to Thermostatistics,

Wiley, New York 1985.
[27] H. Touchette, Phys. Rep. 478, 1 (2009).
[28] L. Onsager, Phys. Rev. 37, 405 (1931).
[29] B. Cleuren, C. Van den Broeck, R. Kawai, Phys. Rev. E74, 021117 (2006).
[30] P. Gaspard, D. Andrieux, J. Stat. Mech.: Theory Exp. 3, P03024 (2011).
[31] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).
[32] I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag,

New York 1982.
[33] P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge

University Press, Cambridge UK, 1998.
[34] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover,

New York 1972.

http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1023/A:1004541830999
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1023/A:1018670721277
http://dx.doi.org/10.1063/1.1782391
http://dx.doi.org/10.1088/1742-5468/2006/01/P01011
http://dx.doi.org/10.1007/s10955-006-9233-5
http://dx.doi.org/10.1088/1742-5468/2007/02/P02006 
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1002/9780470121917.ch2
http://dx.doi.org/10.1103/PhysRevE.80.021923
http://dx.doi.org/10.1007/BF01023688
http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRevE.74.021117
http://dx.doi.org/10.1088/1742-5468/2011/03/P03024 
http://dx.doi.org/10.1103/RevModPhys.48.571


Time-reversal Symmetry Relations for Fluctuating Currents . . . 845

[35] J.L. Lebowitz, E. Rubin, Phys. Rev. 131, 2381 (1963).
[36] P. Résibois, H.T. Davis, Physica 30, 1077 (1964).
[37] P. Résibois, J.L. Lebowitz, Phys. Rev. 139, A1101 (1965).
[38] A.J.F. Siegert, Phys. Rev. 76, 1708 (1949).
[39] M. Bixon, R. Zwanzig, Phys. Rev. 187, 267 (1969).
[40] R.F. Fox, G.E. Uhlenbeck, Phys. Fluids 13, 2881 (1970); Phys. Fluids 13,

1893 (1970).
[41] N.G. van Kampen, Phys. Lett. A 50, 237 (1974).
[42] J. Logan, M. Kac, Phys. Rev. A 13, 458 (1976).
[43] A. Onuki, J. Stat. Phys. 18, 475 (1978).
[44] M.H. Ernst, E.G.D. Cohen, J. Stat. Phys. 25, 153 (1981).
[45] L. Brenig, C. Van den Broeck, Phys. Rev. A 21, 1039 (1980).
[46] N.G. van Kampen, Stochastic Processes in Physics and Chemistry,

North-Holland, Amsterdam 1981.
[47] C.W. Gardiner, Handbook of Stochastic Methods, 3rd edition, Springer,

Berlin 2004.
[48] J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids

and Fluid Mixtures, Elsevier, Amsterdam 2006.
[49] P. Gaspard, Physica A 392, 639 (2013).
[50] C. Cercignani, Rarefied Gas Dynamics, Cambridge University Press,

Cambridge 2000.
[51] K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York 1987.
[52] H.J. Kreuzer, Z.W. Gortel, Physisorption Kinetics, Springer, Berlin 1986.
[53] P. Gaspard, Phys. Scr. 86, 058504 (2012).
[54] P. Gaspard, J. Stat. Mech.: Theory Exp. 8, P08021 (2012).
[55] P. Gaspard, J. Stat. Phys. 117, 599 (2004).
[56] D. Andrieux, P. Gaspard, Phys. Rev. Lett. 100, 230404 (2008).
[57] D. Andrieux, P. Gaspard, T. Monnai, S. Tasaki, New J. Phys. 11, 043014

(2009) [Erratum ibid. 11, 109802 (2009)].
[58] B. Küng et al., Phys. Rev. X2, 011001 (2012).

http://dx.doi.org/10.1103/PhysRev.131.2381
http://dx.doi.org/10.1016/0031-8914(64)90099-0
http://dx.doi.org/10.1103/PhysRev.139.A1101
http://dx.doi.org/10.1103/PhysRev.76.1708
http://dx.doi.org/10.1103/PhysRev.187.267
http://dx.doi.org/10.1063/1.1692878
http://dx.doi.org/10.1063/1.1693183
http://dx.doi.org/10.1063/1.1693183
http://dx.doi.org/10.1016/0375-9601(74)90731-2
http://dx.doi.org/10.1103/PhysRevA.13.458
http://dx.doi.org/10.1007/BF01014519
http://dx.doi.org/10.1007/BF01008484
http://dx.doi.org/10.1103/PhysRevA.21.1039
http://dx.doi.org/10.1016/j.physa.2012.10.006
http://dx.doi.org/10.1088/0031-8949/86/05/058504
http://dx.doi.org/10.1088/1742-5468/2012/08/P08021
http://dx.doi.org/10.1007/s10955-004-3455-1
http://dx.doi.org/10.1103/PhysRevLett.100.230404
http://dx.doi.org/10.1088/1367-2630/11/4/043014
http://dx.doi.org/10.1088/1367-2630/11/4/043014
http://dx.doi.org/10.1088/1367-2630/11/10/109802
http://dx.doi.org/10.1103/PhysRevX.2.011001

	1 Introduction
	2 Time-reversal symmetry relations and their implications
	2.1 The microscopic and statistical levels of description
	2.2 Fluctuation relations for currents
	2.3 Symmetry of the modified operator

	3 Symmetry relation for effusion in Hamiltonian dynamics
	3.1 The invariant probability measure for a gas of noninteracting particles
	3.2 Exact current fluctuation relation for effusion

	4 Symmetry relation for the Smoluchowski equation
	5 Symmetry relation for the Fokker–Planck equation
	6 Symmetry relation for the fluctuating Boltzmann equation
	6.1 Interacting particles in dilute or rarefied gases
	6.2 The fluctuating Boltzmann equation
	6.3 The coarse-grained master equation
	6.4 The modified operator
	6.5 The symmetry of the modified operator

	7 Conclusions and perspectives

