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We discuss the role of non-equilibrium conditions in the context of
anomalous dynamics. We study in detail the response properties in dif-
ferent models, featuring subdiffusion and superdiffusion: in such models,
the presence of currents induces a violation of the Einstein relation. We
show how in some of them it is possible to find the correlation function
proportional to the linear response, in other words, we have a generalized
fluctuation-response relation.
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1. Introduction

One of the most important and useful results of statistical mechanics
is the fluctuation-dissipation relation (FDR). Its relevance, both practical
and conceptual, is in the link between the statistical properties of an un-
perturbed system and the behavior of the relaxation of a perturbation. The
first example of FDR has been found by Einstein in his seminal work on
the Brownian Motion: it is possible to understand the response to an ex-
ternal field in terms of the statistical features of the unperturbed system.
Namely denoting by x the position of the Brownian particle, we have that
in the unperturbed system 〈x(t)〉 = 0 and 〈x2(t)〉 ' 2Dt; once a small con-
stant external force F is applied, one has δx(t) = 〈x(t)〉F − 〈x(t)〉 ' µFt,
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where 〈. . .〉F indicates the average on the perturbed system, and one has the
proportionality between δx(t) and 〈x2(t)〉〈

x2(t)
〉

δx(t)
=

2

βF
. (1)

Therefore, the mobility µ is determined by D: µ = D/kBT .
In the last decades, many researchers have studied anomalous diffusion,

i.e. 〈
x2(t)

〉
∼ t2ν with ν 6= 1/2 . (2)

When the diffusion is sublinear, ν < 1/2, the dynamics is called sub-diffusive,
a phenomenon found, for instance, in disordered systems where the leading
mechanism for the relaxation is barriers jumping or in chaotic systems with
long-time correlations. Differently, when ν > 1/2, the systems features
superdiffusion. The latter phenomenon characterizes particles diffusing in
media where the distribution of free jumps is scale free (Lévy flights), that
can be either porous media or systems with turbulent flows. It is quite
natural to wonder if the Einstein relation (1) holds even in the presence of
anomalous diffusion.

In this contribution, we discuss the FDR for systems with anomalous
diffusive dynamics. Some results in this context have been already obtained
for specific systems [1, 2] and for non-standard noise [3]. The main aim of
this paper is to discuss the role of out-of-equilibrium conditions.

In Secs. 2 and 3, we study transport properties of the comb lattice. In
such a system, in the absence of an external drift, we have a subdiffusive
behavior 〈x2(t)〉 ∼ t1/2, but, in spite of this, the Einstein relation (1) holds.
This relation fails when one perturbs a state where a current is already
present. Quite remarkably in this case, the Einstein relation (1) can be sub-
stituted with a generalized FDR which is always valid, even in the presence
of non-equilibrium currents.

Section 4 is devoted to the study of a system, the continuous time random
walk (CTRW), showing superdiffusion. Also, in this case, in the absence of
an external drift, the relation (1) holds, while it is violated when a drift is
present. At variance with the diffusion on the comb lattice, in the superdiffu-
sive case, we are not able to find in an explicit way how the response formula
Eq. (1) can be modified by adding correlations with physical observables in
the presence of non-equilibrium currents.

In Sec. 5, we will illustrate the behavior of the single-file model, which
is a one-dimensional gas on a ring, coupled with a thermostat, where the
collisions between particles can be taken either elastic or inelastic. In such
a model, which also shows subdiffusive dynamics, even in the absence of
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directional current, an out-of-equilibrium regime is present due to a homo-
geneous flux of energy passing through the system. In this case, we will show
how in the out-of-equilibrium regimes a generalized FDR can be recovered
with a minimal assumption on the velocities probability density function
(PDF) and by exploiting the response formula introduced in [4]. Finally,
some conclusions are drawn.

2. Comb: diffusion and response function

The comb lattice is a discrete structure consisting of an infinite lin-
ear chain (backbone), the sites of which are connected with other linear
chains (teeth) of length L [5]. We denote by x ∈ (−∞,∞) the position
of the particle performing the random walk along the backbone and with
y ∈ [−L,L], that along a tooth. The transition probabilities from (x, y)
to (x′, y′) are: W d[(x, 0) → (x ± 1, 0)] = 1/4 ± d, W d[(x, 0) → (x,±1)] =
1/4 and W d[(x, y) → (x, y ± 1)] = 1/2 for y 6= 0,±L. On the bound-
aries of each tooth, y = ±L, the particle is reflected with probability 1.
Here, we consider a discrete time process and, of course, the normalization∑

(x′,y′)W
d[(x, y)→ (x′, y′)] = 1 holds. The parameter d ∈ [0, 1/4] allows us

to consider also the case where a constant external field is applied along the
x axis, producing a non-zero drift of the particle. A state with a non-zero
drift can be considered as a perturbed state (in that case, we denote the
perturbing field by ε), or it can be itself the starting state where a further
perturbation can be added changing d→ d+ ε. Let us start by considering
the case d = 0.
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Fig. 1. 〈x2(t)〉0 and the response function δx(t) for L = 512. In the inset, the para-
metric plot δx(t) versus 〈x2(t)〉0 is shown. The scaling behavior of the crossover is
commented in [6].
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In the limit of infinite teeth, L→∞, one has a subdiffusive behavior [7],
〈x2(t)〉0 ∼ t1/2. The FDR in its standard form is fulfilled at any time,
namely, if we apply a constant perturbation ε pulling the particles along the
backbone, one has numerical evidence that 〈x2(t)〉0 ' Cδx(t) ∼ t1/2. In the
following section, we derive this result from a generalized FDR. Moreover,
the proportionality between 〈x2(t)〉0 and δx(t) is fulfilled also with L <∞,
where both the mean square displacement and the drift with an applied force
exhibit the same crossover from subdiffusive, ∼ t1/2, to diffusive, ∼ t (see
Fig. 1). Therefore, the FDR is somehow “blind” to the dynamical crossover
experienced by the system. When the perturbation is applied to a state
without any current, the proportionality between response and correlation
holds despite anomalous transport phenomena.

On the contrary, in the presence of a non-zero drift [8], the emergence
of a dynamical crossover is connected to the breaking of the FDR. Indeed,
what we found in the infinite L comb model is〈

x2(t)
〉
d
∼ a t1/2 + b t , δxd(t) ∼ εt1/2 , (3)

with a and b two constants and δxd(t) = 〈x(t)〉d+ε − 〈x(t)〉d: at large times
the Einstein relation breaks down (see Fig. 2). The proportionality between
response and fluctuations cannot be recovered by simply replacing 〈x2(t)〉d
with 〈x2(t)〉d−〈x(t)〉2d, as it happens for Gaussian processes, namely we find
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Fig. 2. Response function (black line), mean squared displacement (dash-
dotted/red line) and second cumulant (dotted/black line) measured in the comb
model with L =∞, field d = 0.01 and perturbation ε = 0.002. The correlation with
the quantity A defined in the text (dashed/green line) yields the right correction to
recover the full response function (squares/blue), in agreement with the FDR (6).
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numerically 〈
[x(t)− 〈x(t)〉d]2

〉
d
∼ a′ t1/2 + b′ t , (4)

where a′ and b′ are two constants, as reported in Fig. 2.

3. Comb: application of a generalized FDR

In order to find out a relation between 〈x2(t)〉d and 〈x(t)〉d, we need a
generalized fluctuation-dissipation relation. In the comb model discussed
here, the relation between transition rates in presence of small perturba-
tion d, W d, and with a slightly enhanced one W d+ε can be written as

W d+ε
[
(x, y)→

(
x′, y′

)]
=W d

[
(x, y)→

(
x′, y′

)]
e

h(ε)
2

(x′−x) (5)

with h(ε) = 8ε. Such a relation between transition probabilities in pres-
ence of a different perturbation is usually called in the literature local detail
balance condition. For general models, where the perturbation enters the
transition probabilities according to such a local detailed balance condition,
the following formula for the integrated linear response function has been
derived [9–13]

δOd
h(ε)

=
〈O(t)〉d+ε − 〈O(t)〉d

h(ε)

= 1
2 [〈O(t)x(t)〉d − 〈O(t)x(0)〉d − 〈O(t)A(t, 0)〉d] , (6)

where O is a generic observable, and A(t, 0) =
∑t

t′=0B(t′), with

B[(x, y)] =
∑
(x′,y′)

(
x′ − x

)
W d

[
(x, y)→

(
x′, y′

)]
. (7)

The above observable yields an effective measure of the propensity of the
system to leave a certain state (x, y). Recalling the definitions for the tran-
sition probabilities from the above equation, we have B[(x, y)] = 2dδy,0 and,
therefore, the sum on B has an intuitive meaning: it counts the time spent
by the particle on the x axis. The results described in the previous section
can be then read in the light of the fluctuation-dissipation relation (6):

1. Putting O(t) = x(t) in the case without drift, i.e. d = 0, one has B = 0
and, recalling the choice of the initial condition x(0) = 0,

δx

h(ε)
=
〈x(t)〉ε − 〈x(t)〉0

h(ε)
= 1

2

〈
x2(t)

〉
0
. (8)

This explains the behavior 〈x2(t)〉0 ' Cδx(t) ∼ t1/2 even in the
anomalous regime and predicts the correct proportionality factor,
δx(t) = ε〈x2(t)〉0/W 0.
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2. Putting O(t) = x(t) in the case with d 6= 0, one has

δxd
h(ε)

= 1
2

[〈
x2(t)

〉
d
− 〈x(t)A(t, 0)〉d

]
. (9)

This explains the observed behaviors (3): the leading behavior at large
times of 〈x2(t)〉d ∼ t, turns out to be exactly canceled by the term
〈x(t)A(t, 0)〉d, so that the relation between response and unperturbed
correlation functions is recovered (see Fig. 2).

4. A model for superdiffusion

We consider an ensemble of probe particles of mass m endowed with
scalar velocity v and position x, interacting with particles of mass M and
velocity V extracted from an equilibrium bath at temperature T . The scat-
tering probability does not depend on the relative velocity between the probe
particle and the colliders as, for instance, in the case of Maxwell-molecule
models [14]. Velocity of the probe particle changes from v to v′ at each
collision, according to the rule

v′ = γv + (1− γ)V , (10)

where γ = (ζ − α)/(1 + ζ), with ζ = m/M , and α is the coefficient of
restitution (α = 1 for an elastic collision). The velocity V of the bath
particles is a random variable generated from a Gaussian distribution with
zero mean and variance T/M

PS(V ) =

√
M

2πT
exp

{
−M
2T

V 2

}
. (11)

The elementary steps of the dynamics are: (i) a flight, x(t + τ) = x(t) +
v′τ +1/2Eτ2, where x(t) is the position of the probe particle at time t, with
τ taken from a distribution Pτ (τ) and E a constant acceleration, followed
by (ii) a collision v′ = γv + (1 − γ)V , with V taken from the Gaussian
distribution (11). In the specific case α = 1 and M = m, one has γ = 0 and
the collision rule (10) results in a random update of the velocity according
to the distribution (11). The duration of each flight, τ , is an independent
identically distributed random variable with probability

Pτ (τ) ∼ τ−g (12)

with g > 1. This kind of process is called Lévy walk collision process [15],
and may be interpreted as due to scattering centers randomly distributed on
a fractal spatial structure as, for instance, in the case of molecular diffusion
in porous media [16]. If α 6= 1 or m 6=M , with α 6= ζ, a dependence on the
last velocity before the collision remains.
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According to the dynamic rules of the process described above, the dis-
placement of the probe particle is always finite in a finite time. The anoma-
lous dynamics of such a model has been studied in [17], showing that the
process is an example of “strong” anomalous diffusion, namely that it is not
possible to find a scaling for the PDF of displacements. Such a collision pro-
cess becomes a standard diffusive system when Pτ decays fast enough: in
this regime, the dynamics is qualitatively equivalent to that of a system with
exponential Pτ studied, for instance, in [18–20]. Extended investigations on
the dynamics of Levý walks, see for instance [21], showed how analytical
expressions for the mean square displacement are available.

We recall here a simple argument [17] to study the asymptotic behavior
of higher order moments of the displacements distribution; such an argu-
ment can be easily applied also to the case with an external perturbing field
discussed here in Sec. 4.2. In order to obtain in a simple way the dominant
asymptotic behavior of 〈x2(t)〉, we introduce a cut-off tc for Pτ (τ)

Pτ (τ) ∼
{
τ−g if τ < tc ,
0 if τ > tc .

(13)

Assuming x = 0 as initial condition for each trajectory, the mean square
displacement after the time t, where N(t) collisions occurred, can be written
in full generality as

〈
x2(t)

〉
=

〈[
N(t)∑
i=1

viτi

]2〉
'

N(t)∑
i=1

〈
v2i τ

2
i

〉
+ 2N(t)

N(t)∑
i=1

〈viv0τiτ0〉 . (14)

Here, vi denotes the velocity of the probe particle after the ith collision, τi is
the time elapsed between the collisions i and i + 1 and N(t) is the average
number of collisions occurred up to time t. The average 〈· · ·〉 is taken over
the distributions (11) and (12). From Eq. (13), we have for n+ 1− g > 0

〈τn〉c ∼ tn+1−g
c , (15)

where 〈· · ·〉c denotes an average over the distribution (13) with the cut-off tc.
We start by considering the case with independent velocities vi, this

corresponds to γ = 0. Then, estimating 〈x2(t)〉 at a time t� tc, so that the
average number of collisions along the trajectory can be approximated with
N(t) ' t/〈τ〉c, and considering that the cross terms in Eq. (14) are zero, we
can write 〈

x2(t)
〉
' t

〈τ〉c

〈
v2
〉 〈
τ2
〉
c
. (16)

In the case of g > 3, both 〈τ〉c and 〈τ2〉c are finite, even in the limit tc →∞,
so that we find the simple diffusive behavior 〈x2(t)〉 ∼ t. For t . tc and
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1 < g < 3 instead of (16), we expect〈
x2(t)

〉
∼ t2ν . (17)

One can easily find the exponent ν with a matching argument. Compar-
ing (16) and (17) at t ∼ tc and using (15), we obtain ν = 1/2 for g > 3,
ν = 2− g/2 for 2 < g < 3, and ν = 1 for 1 < g < 2 (logarithmic corrections
appear at the values g = 2 and g = 3 [21]).

4.1. Einstein relation

We discuss here the validity of the Einstein relation for superdiffusive
anomalous dynamics. In particular, such a relation can be checked in two
different situations:

(A) The drift due to the external force is compared with the mean square
displacement (MSD) of the probe particle in the absence of any pulling
force. This case corresponds to a fluctuation-dissipation experiment
realized by switching on from zero the external perturbation.

(B) The drift is compared to the MSD in a state where a current is already
present. This procedure corresponds to increase the intensity of the
perturbation in a state already perturbed and compare the average
current in this state with the fluctuations in the initial reference state.

In the following, we will refer to situation (A) as a test of the fluctuation-
dissipation relation at equilibrium while to case (B) as a test out of equilib-
rium. We will show that these two cases are very different.

4.2. Perturbation of a state without current

The argument used in Sec. 4 to study the MSD can be applied to the
drift, yielding

〈x(t)〉E =

〈
N(t)∑
i=1

(
viτi +

E
2
τ2i

)〉
=

t

〈τ〉c

[
〈τ〉c〈v〉+

E
2
〈τ2〉c

]
=
E
2

t

〈τ〉c

〈
τ2
〉
c
,

(18)
which perfectly matches the result for the MSD found in Eq. (16). Therefore,
when we perturb an equilibrium state, namely a state without currents, we
have for any value of g > 1 〈

x2(t)
〉

〈x(t)〉E
= const. (19)
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Let us note that the Einstein relation holds quite generally, namely it per-
sists even if we make our process non-time-independent by allowing some
memory across collisions, that is, we put γ > 0 in the collision rule Eq. (10),
preventing a complete reshuffling of velocities [22].

4.3. Perturbation of a state with a current

In order to study the Einstein relation out of equilibrium, let us first con-
sider a simple Gaussian process, namely the Brownian motion of a colloidal
particle when we add a constant force pulling the particle. In this case, it
is sufficient to replace the MSD around the average position 〈[δx(t)]2〉E =
〈x2(t)〉E − 〈x(t)〉2E in place of the simple MSD, in order to recover the Ein-
stein relation with the drift 〈x(t)〉E+δE − 〈x(t)〉E (here 〈· · ·〉E+δE denotes the
average over a state where the further perturbation δE is applied). In what
follows, we consider that a non-trivial violation of the Einstein relation hap-
pens when also the MSD around the drift lacks the proportionality with the
drift itself. This is indeed the case of superdiffusive dynamics.

For simplicity, we will refer to the case γ = 0 but the physical picture
remains the same also when the case with memory is considered. In our
model, by applying the constant field E > 0, we have

〈
x2(t)

〉
E =

〈[
N(t)∑
i=1

(
viτi +

E
2
τ2i

)]2〉
tc

' E
2

4
t2
〈
τ2
〉2
c

〈τ〉2c
+ t

(
E2

4

〈
τ4
〉
c
−
〈
τ2
〉2
c

〈τ〉c
+

〈
v2
〉 〈
τ2
〉
c

〈τ〉c

)
, (20)

〈
[δx(t)]2

〉
E =

〈
x2(t)

〉
E − 〈x(t)〉

2
E ' t

(
E2

4

〈
τ4
〉
c
−
〈
τ2
〉2
c

〈τ〉c
+

〈
v2
〉 〈
τ2
〉
c

〈τ〉c

)
.

(21)

In the case of 2 < g < 3, namely when the distribution Pτ (τ) has finite mean
and infinite variance, imposing the cut-off, the diffusion around the average
position behaves asymptotically as

〈
[δx(t)]2

〉
E ' t

(
E2

4

t5−gc − t6−2gc

〈τ〉c
+

〈
v2
〉
t3−gc

〈τ〉c

)
. (22)

Considering, for instance, the case g = 5/2, by applying the matching argu-
ment to Eq. (22), we find that the leading behaviors are〈

x2(t)
〉
E ∼ t

3 ,
〈
[δx(t)]2

〉
E ∼ t

7/2 , (23)
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whereas, from Eq. (18), we have that

〈x(t)〉E+δE − 〈x(t)〉E ∝ 〈x(t)〉E ∼ t3/2 , (24)

as shown in Fig. 3. The Einstein relation is, therefore, violated in the out-of-
equilibrium regime for both the MSD and MSD around the average current
for all the values of the flight time distribution exponent g < 5.
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Fig. 3. Log–log plot of the MSD (black line) in the presence of a constant external
field E = 1.5 and drift (dashed/red line) with the same value of the field, in the case
of superdiffusive dynamics with g = 5/2. We observe a breaking of the Einstein
relation with leading asymptotic behaviors, 〈[δx(t)]2〉E ∼ t7/2, see Eq. (22), and
〈x(t)〉E ∼ t3/2, see Eq. (18).

The study of the Einstein relation in a state with non-zero current in-
duced by a constant field E allows us to show that there is some “anomaly” in
the dynamics also when the exponent of the power law distribution of times
is g > 3. More precisely, when 3 < g < 5, at equilibrium, i.e. in the absence
of current, a fluctuation-dissipation experiment would not show any anomaly
in the dynamics, because 〈[δx(t)]2〉 ∼ 〈x(t)〉E . On the other hand, the same
experiment done out of equilibrium, i.e. comparing the MSD around the
drift with the drift itself, shows an evident violation of the Einstein relation〈

[δx(t)]2
〉
E

〈x(t)〉E
∼ t5−g . (25)

5. Single file model: the role of correlations

Let us now discuss the single-file model, consisting ofN Brownian rods on
a ring of length L interacting with elastic or inelastic collisions and coupled



Einstein Relation in Systems with Anomalous Diffusion 909

with a thermal bath. The equation of motion for the single particle velocity
between collisions is

mv̇(t) = −γv(t) + η(t) , (26)

where m is the mass, γ ≡ 1/τb is the friction coefficient (with τb the typ-
ical interaction time with the bath), and η is a white noise with variance
〈η(t)η(t′)〉 = 2Tγδ(t − t′). The combined effect of collisions, noise and ge-
ometry (since the system is one-dimensional the particles cannot overcome
each other) produces a non-trivial behavior. In the thermodynamic limit,
i.e. L, N →∞ with N/L→ ρ, a subdiffusive behavior occurs [7].

Differently from the comb model, where we studied the effect of a con-
stant field, we apply here an impulsive small force, which produces an
instantaneous variation of the velocity of a certain particle, δvi(0), and
we compare the response R(t) = δvi(t)/δvi(0) to the correlation C(t) =
〈vi(t)vi(0)〉/〈vi(0)2〉. When collision are elastic, the stationary PDF of ve-
locities is factorized in the contribution of each particle, which provides a
Gaussian term, so that, by applying a perturbation of the kind just de-
scribed, one finds that the Einstein relation is always fulfilled [23–26].

In Fig. 4 (left), the parametric plot of response versus correlation is dis-
played for cases where the Einstein relation is no more verified. The depar-
ture from the equality R(t) = C(t) can be quite strong: for fixed inelasticity
it increases with the packing fraction φ.
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Fig. 4. Left: parametric plot of response R(t) versus normalized autocorrelation
C(t). The dashed line is the Einstein relation R ≡ C. All data are obtained with
restitution coefficient r = 0.6. τb = 1 is kept constant, while φ is changed. Right:
comparison between R(t) and correlations C(t) and C1(t) ≡ Σ1,1〈v1(t)v1(0)〉 +
2Σ1,2〈v1(t)v2(0)〉.

In agreement with the observation in [26] for higher dimensions, the main
source of breakdown of the FDR for the single file model is a stationary
PDF that couples the velocities of different particles. We know [4] that a
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generalized response formula for systems with a stationary state is

Ri,j(t) =
δvi(t)

δvj(0)
= −

〈
vi(t)

∂ ln ρv({v})
∂vj

∣∣∣∣
t=0

〉
, (27)

where ρv({v}) is the joint distribution of velocities. Clearly, if the PDF of
velocities is not factorized, we cannot simply have 〈vi(t)vj(0)〉 on the right
of Eq. (27), and hence the FDR relation is broken.

The most natural way to proceed in the response analysis is to make some
Ansatz on the coupled probability distribution of velocities. For instance,
one can consider the Gaussian approximation

ln ρv({v}) ' −1
2

∑
i,j

viΣi,jvj + const. , (28)

and, as a first correction, one can take Σi,j different from zero only for
neighbor particles. By inserting the assumption of Eq. (28) in the generalized
response formula Eq. (27), one has

δv1(t)

δv1(0)
' Σ1,1〈v1(t)v1(0)〉+ 2Σ1,2〈v1(t)v2(0)〉 . (29)

Using such an approximation, it is possible to obtain a good prediction of
the response, as shown in Fig. 4 (right). Thus we have that, even if the
interest is for the autoresponse function, it is necessary to take into account
the correlations with the other variables.

6. Conclusions

In the last decades, many efforts have been devoted to the study of
anomalous diffusion. A natural issue is whether the presence of anomalous
diffusion can significantly change the response scenario, in both equilibrium
and non-equilibrium setups. With this problem in mind, we have studied
three models exhibiting anomalous diffusion with different dynamical fea-
tures. In the comb model, the distribution of the position shows strong
deviations from the Gaussian behavior [27]. On the contrary, the single file
model is Gaussian, but a power-law tail is present in the autocorrelation of
velocities [23]. The superdiffusive model is maybe more pathological, since
it belongs to the class of strong anomalous diffusion [28].

Despite these differences, the emerging scenario is essentially unified: the
fluctuation-dissipation properties are somehow blind to the presence of the
anomalous diffusion in the underlying dynamics if the perturbation is added
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to an equilibrium or to a zero current state. In these cases, the propor-
tionality between response and correlation is not altered by the presence
of anomalous dynamics. This result is quite robust and it is valid also in
presence of finite size effects and dynamical transitions from anomalous to
standard diffusion. A different scenario holds when one perturbs a state
out-of-equilibrium or already provided with a finite current. In the latter
case, we have shown the validity of generalized response relations, which
go beyond the Einstein response formula, and which amount to the fact
that response can be written in terms of correlators computed on the un-
perturbed dynamics: this happens for the comb model and the single file
model, both showing subdiffusion. They are somehow representative of the
two classes of models where generalized response formulas are easily writable:
comb is a paradigmatic example of stochastic models where the perturba-
tions modify in a simple way the transition rates of the process (local detail
balance is fulfilled); single file is representative of models where stationary
non-equilibrium is characterized by a probability distribution which can be
easily guessed although only approximately for the single-file. In these two
models, there are the two most important mechanisms by which an ordinary
response formula like the Einstein relation breaks down: either the presence
of directed current in the reference state (comb) or the presence of non-
trivial out-of-equilibrium correlations among the degrees of freedom (single
file). For the Lévy-walk model, where the violation of the Einstein relation
is also due to the presence of a current, we did not find a general response
formula, for a state already with a current, in terms of correlators. Probably
this pathological behavior is due to the “strong” anomalous nature of this
model, which amounts to the absence of a single scaling ansatz valid for the
PDF of displacements. This last results suggest how the out-of-equilibrium
response of systems with anomalous dynamics has a sensitive dependence on
the kind of anomaly that affects dynamics. A more systematic study on the
situations where one finds a strong anomalous behavior remains therefore as
an interesting field to be developed.
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