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DEFINING CHAOS IN THE LOGISTIC MAP
BY SHARKOVSKII’S THEOREM∗
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The fixed points of 3-cycle in the logistic map are obtained by solving
a sextic polynomial analytically. Therewith, the domain of chaos is estab-
lished by Sharkovskii’s theorem. A fix-point spectrum is then constructed
in the chaotic domain. By Sharkovskii’s theorem, a chaotic trajectory is
shown to be a superposition of all finite cycles, termed an aleph cycle. An
aleph cycle means chaos and it defines chaos in the logistic map in an ab-
solute sense. In particular, a trajectory which is ergodic is aleph-cyclic,
hence it is also chaotic.
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1. Introduction

Although the term chaos is used to describe a certain class of iterative
trajectories in the logistic map, the precise meaning of this term seems elu-
sive. A trajectory is said to be chaotic if the Lyapunov exponent for it is
positive [1]. Since the exponent is of a phenomenological origin, it might
not be all inclusive and it might even mislead. Trajectories are also said to
be chaotic if they show initial-value sensitivity. This topological condition
is also of a phenomenological origin. It is thus possible that a trajectory
is initial-value sensitive but yet periodic. Given these possibilities, it is
desirable to have a definition of chaos that might be derived from some
fundamental principles of chaos.
∗ Presented at the XXV Marian Smoluchowski Symposium on Statistical Physics,
“Fluctuation Relations in Nonequilibrium Regime”, Kraków, Poland, September
10–13, 2012.
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In math texts on chaos, one finds various definitions of chaos. In De-
vaney’s book [2], for example, he gives a definition as: If V is a set of points,
f : V→V (transl. function f transforms or maps V onto itself) is said
to be chaotic on V if f has sensitive dependence on initial values, if f is
topologically transitive, if periodic points are dense in V .

As far as we can determine, this definition and others do not derive
from some higher principles of chaos. To no surprise, chaos thus defined is
sometimes referred to as (in this instance) chaos in Devaney’s sense. That
would suggest that there may be chaos but not in Devaney’s sense, or even
possibly that chaos in Devaney’s sense may not be chaos.

Is it possible to define chaos in an absolute sense? One possible way is:
Establish unambiguously by some higher principles where chaos exists in a
map and then extract therefrom its basic properties with which to arrive at
a definition. If this program could be implemented, one might be able to
say that chaos is now defined in an absolute sense or from first principles at
least for this map.

Probably the most widely studied map in chaos is the logistic map, a
1d continuous non-invertible map. A fundamental principle of chaos which
is applicable to this map is a theorem due to Sharkovskii [3]. Another
applicable theorem is one due to Li and Yorke [4], once said to be the only
rigorous theorem on chaos [5]. But it is now known that the Li–Yorke
theorem, a later arrival but perhaps the better known, is a corollary of the
Sharkovskii theorem [6].

Although Sharkovskii’s theorem has existed for 5 decades and often been
quoted “remarkable” in math texts, to our knowledge no math definitions
have been constructed based on it. To see why, let us look at this theorem.
It states that if there is 3-cycle (period 3) in a 1d continuous non-invertible
map, there are all other cycles which imply chaos. More closely examined,
the theorem really has two parts to it: (a) The existence of 3-cycle which
establishes the domain of chaos. (b) The existence of a multitude of all
cycles which characterizes chaos in that domain.

To apply this theorem, one must first prove that 3-cycle exists in a spe-
cific map to establish the domain of chaos. For the logistic map, it would
mean solving a sextic polynomial, which no one seems to have taken the
challenge of. Not having taken the first step, the second cannot be taken.

In this work, we shall try to establish the domain of chaos in the logistic
map by proving 3-cycle and therewith to deduce from it a definition of chaos
for the logistic map. It would be a definition for chaos in the logistic map
which could be said to be in an absolute sense or from first principles.
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2. Logistic map and 3-cycle equation

The logistic map is defined by f(x) = ax(1− x), where a is the control
parameter ranging from 0 to 4 and 0 < x < 1 [1]. One defines 3-cycle by

f3(x)− x = 0 , (1)

where f3(x) = f(f(f(x))). Equation (1) is a polynomial of some high degree
in x, whose roots are the fixed points of f3. The roots of f are among them,
which are removed if we consider Qa(x) = 0, where

Qa(x) =
(
f3 − x

)
/(f − x) . (2)

It is straightforward if tedious to obtain

Qa(t) = t6 − (3a+ 1)t5 +
(
3a2 + 4a+ 1

)
t4 −

(
a3 + 5a2 + 3a+ 1

)
t3

+
(
2a3 + 3a2 + 3a+ 1

)
t2 −

(
a3 + 2a2 + 2a+ 1

)
t+

(
a2 + a+ 1

)
, (3)

where t = ax. We find that t is a more natural variable than x for Qa. It is
a sextic polynomial for which there are no ready made solutions. That does
not mean that it is not solvable. To solve it, we shall proceed as follows:
Since Qa(t) is real if t is real, there are two possibilities:

1. If the roots are complex, they must be 3 complex conjugate pairs.

2. If roots are real, there are two sets of three unequal roots. There are
no other possibilities i.e., a combination of complex and real roots for
3-cycle.

To see the complex roots, let us take a = 0. (Although not allowed by the
definition x = at, Qa is still well-defined if a = 0.) If a = 0,

Q0 = t6 − t5 + t4 − t3 + t2 − t+ 1 . (4)

The r.h.s. is easily summed to

Q0 =
(
t7 + 1

)
/(t+ 1) , t 6= −1. (5)

The roots are: exp±i(π/7), exp±i(3π/7) and exp±i(5π/7), 3 complex con-
jugate pairs, all lying on the unit circle, t = −1 excluded. As a increases, at
some value the three pairs must become 3 real roots each doubly degenerate.
Let us denote the value of a, where it occurs by a = ã. If a > ã, we may
assume that (3) is a product of two cubic equations

Qa = qa×q′a . (6)

Factorizing the sextic equation into a product of two cubic equations appears
daunting. At first, we shall look for special solutions to guide us.
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3. a = ã

When a = ã, evidently (6) reduces to

Qã = q̃2 , (7)

where at least formally,

q̃ = t̃ 3 − α̃t̃ 2 + β̃t̃− γ̃ . (8)

It has already been shown [7] that ã = 1 +
√
8 = 3.828427 . . . ,

α̃ = 1/2 (3ã+ 1) , (9)
β̃ = 2ã+ 3 , (10)
γ̃ = 1/2 (ã+ 5) . (11)

Since the coefficients are given in terms of ã, the cubic polynomial (8) is solv-
able in a standard way. We can do it more simply by a reflection property,
deferred to a later section, see Section 5. But observe that α̃− β̃ + γ̃ = 0.

4. a = 4

When a = 4 [8, 9], we obtain from (3)

Q4 = t6 − 13t5 + 65t4 − 157t3 + 189t2 − 105t+ 21 , (12)

The above, indeed, is a product of two cubic equations: Q4 = q4×q′4, where

q4 = t3 − 7t2 + 14t− 7 , (13)
q′4 = t3 − 6t2 + 9t− 3 . (14)

Both cubic polynomials yield cyclic solutions in the form (recalling that
x = t/a = t/4)

x = sin2(πy/2) (15)

with cyclic values y/2 = 1/7, 2/7, 3/7 for q4 and 1/9, 2/9, 4/9 for q′4. In both
cases 0 < y < 1.

Now by the theorem of Sharkovskii, all other cycles exist at a = 4.
That is, without solving for higher cycles, we may assert that y takes on all
rational values in the interval from 0 to 1 continuously to accommodate all
possible cycles, infinitely many of them. One can actually show by solving
for several higher cycles, this assertion is borne out [10].
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4.1. Aleph cycle

As the collection of n-cycles, n = 1, 2, . . . , N , grows, their roots of cycles
begin to coalesce. In the N→∞ limit, each finite root is pinched from both
sides in a manner recalling Yang–Lee zeros pinching the real temperature
axis from above and below in the complex temperature plane. As a result,
y is continuous from 0 to 1. By (15), x is thus made continuous in its interval
from 0 to 1. The y interval consists of rational and irrational points, giving
measure 1. A trajectory which begins from a point x corresponding to a
point y belonging to a set of points of measure 1 behaves as

x1, f(x1) = x2, f(x2) = x3, . . . f(xN ) = xN+1, N→∞ . (16)

A trajectory having this behavior is termed an aleph cycle. An aleph cy-
cle is clearly a superposition of all finite cycles and it represents a chaotic
trajectory after Sharkovskii’s theorem. An aleph cycle is a single trajectory,
which contains almost all points in the interval, (0, 1) for a = 4. It does not
include a countable set of points since such a set has measure 0.

4.2. Periodic trajectories

If a trajectory starts from a point belonging to a set of points of mea-
sure 0, it ends up at some finite value of N by xN+1 = x1, generating a
periodic trajectory. We shall now see whether the results obtained from
3-cycle at a = 4 are contained in other values of a from ã up to 4.

5. Reflected solutions at ã

Although the cubic equation q̃ = 0, see (8), could have been solved
directly by the formula of Cardano and Tartaglia, we deferred it for the
following remarkable reason. If we substitute t̃ in (8) by γ̃ − t, q4 = 0 is
obtained. That is

q̃(t̃ = γ̃ − t) = −q4(t) . (17)

This means that if t̃1, t̃2, t̃3 are the three roots of (8),

t̃1 = γ̃ − 4 sin2(π/7) , (18)
t̃2 = γ̃ − 4 sin2 (2π/7) , (19)
t̃1 = γ̃ − 4 sin2(3π/7) . (20)

Thus 3-cycle at a = ã is also cyclic. Now, we see how Sharkovskii’s theorem
makes the cyclic value y continuous in the interval from 0 to 1. The spectrum
is not completely filled because γ̃ is greater than 4 by about 10%. Thus a
trajectory starting from this gap is not chaotic. Outside the gap, there can
be an aleph cycle as when a = 4.
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6. General solution

The reduction of the sextic polynomial into a product of two cubic poly-
nomials was rather easily achieved at a = ã and 4. It gives us an impetus to
look for the same reduction, which evidently is not simple nor elementary.
In deriving the value a = ã = 1+

√
8 [7], we found the condition that σ = 0,

where
σ =

(
a2 − 2a− 7

)1/2
. (21)

Observe that if a = 4, σ = ± 1. The two values are like two values of some
parity. The two solutions for 3-cycle at a = 4 could mean that they represent
+ and − parity states. In fact, if there are two solutions for 3-cycle in the
interval between ã and 4, they could differ only in their parity. Thinking
along these lines and using the results for a = ã and 4, we are able to find
the reduction form. The analysis is rather lengthy, thus it will not be given
here. We find that it is possible to write: If qa = qa(+σ), q′a = qa(−σ),
where

qa(+σ) = t3 − αt2 + βt− γ , (22)

then

α = 1
2 (3a+ 1 + σ) , (23)

β = 1
2

(
a2 + 2a− 1 + (a+ 1)σ

)
, (24)

γ = 1
2

(
a2 − a− 2 + aσ

)
. (25)

Observe that α − β + γ = 0. Given the above coefficients, (22) is now
solvable. We put it in the reduced form by taking t = α/3 + τ ,

τ3 − uτ + v = 0 , (26)

where

u = α2/3− β , (27)
v = −2(α/3)3 + (α/3)β − γ/27 . (28)

Before proceeding for a solution, we simplify the problem by introducing

r =
(
7− σ + σ2

)1/2
. (29)

In terms of r, u and v are simplified to read

u = r2/3 , (30)

v = −(1− 2σ)r2/27 (30a)

= −(1− 2σ)(u/9) . (30b)
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Instead of following Cardanao and Tartaglia, we deviate by changing the
variable τ to θ defined by

τ = (4u/3)1/2 cos(θ/3) . (31)

Then, (26) can be expressed as

4cos3θ/3− 3cosθ/3−A = 0 , (32)

where
A = −(v/2)/(u/3)3/2 = (1− 2σ)/2r . (33)

If |A| < 1 provided that u > 0, A = cosθ, θ real. If |σ| ≤ 1 and σ real, that
is if a ≥ ã, |A| < 1. Thus at once,

τ1 = 2r/3 cos(θ/3) , (34)
τ2 = 2r/3 cos{θ/3 + 2π/3} , (35)
τ3 = 2r/3 cos{θ/3− 2π/3} , (36)

where
θ = cos−1{(1− 2σ)/2r} . (37)

One can easily verify the sum rule that τ1+τ2+τ3 = 0. Since t = α/3+τ ,
the cubic equation (22) and the sextic equation (3) are both completely
solved. The solutions for when a = 4 previously obtained (15) are special
solutions. More important for chaos is that the general solutions are also in
the cyclic form. It means that the theorem of Sharkovskii can come in now
to sweep the angle, making it a continuous spectrum.

7. General reflection relations

Recall the remarkable reflection property between the cubic solutions of
a = ã and a = 4 (Section 5). We now show that it is a special case of a more
general property. In (32), if A → −A, the structure of the cubic equation
does not change if cos(θ/3) → − cos(θ/3). For σ ≥ 0 (i.e., positive phase
only), let

σ = η − 1/2 , (38)
where −1/2 ≤ η ≤ 1/2. In terms of η, A is antisymmetric

A(−η) = −A(η) . (39)

Observe that η = −1/2 corresponds to σ = 0(a = ã) and η = 1/2 to
σ = 1(a = 4). This explains the reflection we have used unawares of the
general reflection property in the cubic solution. There is a whole range
of reflection about η = 0 or σ = 1/2, which corresponds to a = a∗ =

1+
√

33/4 = 3.872281323 . . . , evidently another special point of the control
parameter.
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8. 3-cycle window

An n-cycle window is defined by |dfn/dx| ≤ 1. Thus the width of the
window begins at some value of a, where dfn/dx = +1 and ends at another
value of a, where dfn/dx = −1. The window is centered on the superstable
point defined by dfn/dx = 0. We consider the case of n = 3. Since df/dx =
a(1− 2x), by chain rule df3/dx = a3(1− 2x)(1− 2f)(1− 2f2). If evaluated
at any fixed point of f3,

m3 ≡ df3/dx = a3(1− 2x1)(1− 2x2)(1− 2x3) , (40)

where x1, x2, x3 are fixed points of f3. Using the three symmetric coefficients
α′, β′ and γ′,

α′ = x1 + x2 + x3 , (41)
β′ = x1x2 + x2x3 + x3x1 , (42)
γ′ = x1x2x3 , (43)

we obtain
m3 = a3

(
1− 2α′ + 4β′ − 8γ′

)
. (44)

If we write α′ = α/a, β′ = β/a2, γ′ = γ/a3 ,

m3 = a3 − 2a2α+ 4aαβ − 8γ, (45)

where α, β, and γ are given by (23), (24), and (25), respectively. Using
σ = (a2 − 2a− 7)1/2, after some straightforward algebra, we obtain

m3(σ ≥ 0) = 1 + 7σ − σ2 + σ3 , (45a)

m3(σ < 0) = 1− 7s− s2 − s3 , s ≡ |σ| . (45b)

Clearly, m3(σ ≥ 0) ≥ 1. It is 1 when σ = 0 or a = ã. To obtain m3 = −1,
we need to use one for σ < 0.

8.1. m3 = −1

s3 + s2 + 7s− 2 = 0 . (46)

By solving the cubic equation, σ = −.272243659 . . . Since a = 1+(8+σ2)1/2,
we obtain a = 3.841499008 . . . , in agreement with Gordon [11] obtained in
a different way, the only known solution.
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8.2. m3 = 0 (superstability)

s3 + s2 + 7a− 1 = 0 . (47)

By solving the cubic equation, σ = −.139680582 . . . It yields a =
3.831874055 . . . in agreement with our value obtained in a different way [12].

8.3. Significance of 3-cycle window

The 3-cycle window is bounded by a = 3.828427125 . . . and
3.841499008 . . . , centered on the superstable point 3.83187480 . . . For any
value of a which lies in this interval, a trajectory starting from any point
in x = (0, 1) save the fixed points of f and f3 are initial value insensitive.
By the standard math definitions of chaos, this 3-cycle window cannot be
chaotic. But it is chaotic according to Sharkovskii and Li–Yorke. We must
conclude that the math definitions are at fault.

We can also establish a 4-cycle window deep in the chaotic interval of a.
It is sufficient to show that there is a superstable 4 cycle since a window
is centered on it. In Appendix A, we show that there are two superstable
4 cycle values at a = 3.4985616999 . . . and 3.960270127 . . . The first one is
in the bifurcation domain. Thus the first one is not in a chaotic window.
The second one lies in the heart of the chaotic domain. In spite of the
fact that trajectories are initial value insensitive, this window is chaotic as
the 3-cycle window by Sharkovskii and Li–Yorke. This is because in this
window is 3-cycle since it exists from ã to 4, in the interval in which this
second 4-cycle window is contained.

9. Concluding remarks

To define chaos in an absolute sense, we have followed the two parts
of Sharkovskii’s theorem: First, we have solved the 3-cycle problem. This
means that chaos exist from a = ã to a = 4, where the solutions are real.
Second, we have deduced all cycles that are implied by 3-cycle. By doing
so, a definition of chaos has emerged in the form of an aleph cycle. It is a
continuous trajectory starting from a point which belongs to a set of points
of measure 1. A non-aleph cycle is a periodic trajectory which starts from a
point from the same interval but which belongs to a set of points of measure
zero. Both trajectories are initial-value sensitive since these points are all
fixed points of some cycles. Thus the initial-value sensitivity is not a good
indicator of a chaotic trajectory as has been believed.

The interval from which an aleph cycle starts is like an unbroken string
of irrational points. It implies an invariant measure and transitivity of space,
which are precisely the requirements of an ergodic trajectory according to
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Birkhoff [13, 14]. Thus a chaotic trajectory defined by an aleph cycle is also
ergodic. Since an aleph cycle is a linear superposition of all finite cycles,
another aleph cycle is merely a rearrangement or re-ordering of the same
cycles. Thus, the time average is the same for all aleph cycles under the
same condition. This is also what one finds in the classical theory of ergod-
icity: The time average is over any one of trajectories starting from a point
belonging to a set of phase points of measure 1. Our work implies that if a
trajectory is ergodic, it is also chaotic. The converse may not necessary be
always true.

Appendix A

Superstable 4-cycle

The superstable 4-cycle is defined by

f4(1/2)− 1/2 = 0 . (A.1)

Since one of the fixed points is at x = 1/2, the others can be expressed in
terms of it leaving only one variable a. Using y = a/2,(
f4 − 1/2

)
/
(
f2 − 1/2

)
= y12 − 6y11 + 12y10 − 5y9 − 12y8 + 12y7 + y6

−4y4 − y3 + 2y2 + 1 = 0 . (A.2)

Now, if we let y = 1/2(t1/2 + 1) or t = (2y − 1)2 = (a − 1)2, (A.2) may be
expressed as

t6 − 18t5 + 12t4 − 524t3 + 1511t2 − 1858t+ 4861 = 0 . (A.3)

There are only two positive real roots for (A.3), which may be obtained
by a fixed point analysis. The larger root is attractive, and the smaller
one is repulsive. The repulsive one may also be obtained by a reforming
method due to the author [15]. The roots are: t1 = 6.2428105653 . . .
t2 = 8.7631992261 . . . They correspond to a1 = 3.4985616999 . . . a2 =
3.960270127 . . . Since ã = 3.828427125 . . . , a1 < ã and a2 > ã, meaning
that a1 is not in the chaotic interval but a2 is. Observe that the onset value
of 4-cycle in the bifurcation domain is 1 +

√
6 = 3.449489743 . . . It is clear

that a1 is the superstable value in the bifurcation domain.

A portion of this work was completed at the Korea Institute for Advanced
Study, Seoul, South Korea. I thank Profs. Doochul Kim and Hyunggyu Park
for their warm hospitality and support during my visits. I thank Ms Mayuri
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by the Franklin College at the University of Georgia.
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