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The concept of diffusion on fractal structure of polymeric membrane
with magnetic powder is presented. The fractal characteristics, i.e. static
fractal dimension df and fractal dimension of the trajectory of the ran-
dom walk dw, were evaluated for qualitative and quantitative description
of membrane structures. The way of introducing the fractal dimension
and anomalous-diffusion exponent into the generalized diffusion equation
on fractal geometries obtained by Metzler et al. has been shown. The re-
sults showed that the random walk within the membranes of the smallest
granulation of magnetic powder was of the most subdiffusive character.
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1. Introduction

In recent years a great number of studies have been carried out in or-
der to gain a better understanding of transport phenomenon in membranes
with disordered structure [1–7]. The standard theories of transport poorly
apply in such systems, since many physical properties (in particular the
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diffusion) became anomalous [8]. Occasionally, even in fairly standard ap-
proach, an acceptable agreement with experimental data can be reached [9]
what “proofs”, in a sense, a nonuniqueness of a mathematical description
in most of the interesting cases i.e. quite a few different models can repre-
sent the same, uniquely existing, solution [10]. In cases, however, when the
structure of the “diffusive space” had been detected as self-similar, the con-
cept of fractals should be applied. Fractal models may be used both, in the
study of static as well as dynamic properties of disordered structures [1, 11].
Recently [12, 13], we have discussed structure-morphology problems of mag-
netic membranes used to the air separation. These were polymer mem-
branes filled with magnetic powder and magnetized. A dense polymer with
added magnetic powder could be considered as disordered system because of
penetrant-scale gaps whose size and position are changing randomly. Such
medium shows typical stochastic geometrical characteristics and could be
described within the percolation theory which is one of the tools for dealing
with the random systems [1]. Furthermore, our “magnetic” membranes with
molecular-scale gaps show distinctive fractal characteristics [12].

A process is referred to as anomalous diffusion if mean squared displace-
ment of the randomly walking molecule i.e.〈

r2(t)
〉
∼ tα (1)

deviates (with α 6= 1) from the linear dependence that characterizes normal
diffusion. The anomalous diffusion exponent α specifies the process of mass
transport in the following way: if 0 < α < 1, the motion is called subdif-
fusive, if α > 1, superdiffusive [14]. The diffusion on fractals is generally
anomalous and the mean square displacement of the walker scales with t as〈

r2(t)
〉
∼ t2/dw , (2)

where dw is defined as the dimension of a random walk, and its value is
usually dw > 2. This anomaly is due to the geometric obstacles existing
on all length scales that slow down the random walker and only reduced
diffusion speed occurs [15]. There is no doubt that the fractal dimension
of a membrane should be taken into account while constructing relations
like (2). For a certain type of fractals, such relation already exists [1, 16]〈

r2(t)
〉
∼ t2/(2+θ) , (3)

where
θ = 2(df − ds)/ds (4)

and
ds = 2df/dw . (5)
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If one wants to use relations (1) and (3), one needs to know the values of
df and dw for a given membrane. The value of df can be estimated using
the method of box counting, in the case where we have cross section or
surface images from optical microscopy of membranes, while estimation of
dw is based on random walk simulation and relation (2). The most famous
example of a fractal is the Sierpinski gasket, which has a fractal dimension
df = 1.58 and dimension of random walk dw = 2.32 [1]. The dynamical prop-
erties of complex systems are characterized through the probability densities
of a random walker or simply of its normalized concentration, that are of
general interest and of great importance. Several authors presented asymp-
totic probability density functions for the location of a random walker on a
fractal object. Metzler et al. [2] introduced the generalized diffusion equa-
tion on fractals, where the parameters of this fractional partial differential
equation are uniquely determined by the fractal Hausdorff dimension of the
underlying object and the anomalous diffusion exponent. The generalized
diffusion equation can be written out as follows

∂
2

dw P (r, t)

∂t
2

dw

=
1

rds−1
∂

∂r

(
Drds−1

∂P (r, t)

∂r

)
. (6)

The equation, compatible with condition (2), can be solved exactly in terms
of Fox’ H-function. The solution procedure with conditions, that for r → 0,
P (0, t) ∝ t−

ds
2 and for t → 0, rdf−1P (r, t) approaches δ(r), is shown in [2].

The authors re-scale the diffusion equation to absorb the diffusion constant.
This equation (6) is a generalization of the spherically symmetric diffusion
equation in Euclidean spaces, where the domain of r is [0,+∞).

Such equation used with aforementioned conditions can model process
of desorption as in the case of diffusive release from polymeric microspheres.
The solution of Eq. (6), i.e. probability density function for a random walker
on a fractal lattice, is given by

P (r, t) = A∗
2

dw
t−

df
dw ×

 ∞∑
j=0

Γ
(
df
dw
− 1− j

)
Γ
(
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dw
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rdw
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) 2
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j
 , (7)
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where the constant A∗ is defined as

A∗ =
2−dw−3dw

Γ
(
1
2 + df − 1

2ds
)
Γ
(
1
2df
) . (8)

Equation (6) may be reduced to the standard diffusion equation in d-dimen-
sional Euclidean space by appropriate choice of the free parameters, i.e.
df = 2 and dw = 2 [2].

2. Membrane preparation

In this paper, we have worked with the ethylcellulose (EC) magnetic
membranes. The membranes, of thickness of 90–250 µm (depending on mag-
netic powder granulation) were prepared by solution-casting and evapora-
tion [17, 18]. Membranes were cast from 3% EC solution in 40:60
ethanol/toluene. The membranes with 1.5 g of magnetic powder MQP-16-7
(Pr-Fe-Co-Nb-B alloy)1 and granulation: 5–50 µm were cast in external field
of a coil (stable magnetic field with range of induction 0–40 mT). Membranes
removed from Petri dish were dried in 40◦C for at least two days and, fi-
nally, magnetized in the field magnet with magnetic induction B of about
2.5 T before any further analysis. Magnetic membranes with 1.0–10.5%
of neodymium powder content in polymer solution and 19.1–73.0% in dry
membrane were obtained. The membranes were stored in a desiccator under
the vacuum conditions (p = 3 mmHg).

3. Structure-morphology analysis of magnetic membranes

We have used a box counting method (BCM) for calculating fractal di-
mension df . BCM is one of the most common methods for calculating the
fractal characteristics of a self-similar object and is described more precisely
in [19–21]. For the self-similar sets, the number of nonempty coverings N(ε)
scales with the current size of covering ε in the following way [19, 22]

N(ε) ∝ ε−df , (9)

where df is a fractal (or box) dimension. Taking the logarithm at the limit
ε→ 0, we get

df = lim
ε→0

lnN(ε)

ln 1/ε
. (10)

The above formulas are used to the image analysis of a sufficiently large sec-
tion of the membrane. Images were acquired using the optical microscopy

1 For simplicity, later in the text, we use MQP-16 to represent MQP-16-7.
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Leica DM2500M. Figure 1 shows the image of membranes with magnetic
powder MQP-16 (granulation 5 µm) of amount of 1.5 g. Texture of mem-
brane with magnetic powder was observed with 1350× magnification.

We assumed that morphology plane and across membrane is the same.
We studied a random walk across the membrane.

Fig. 1. Typical structure for ethylocellulose membrane with magnetic powder
MQP-16 (5µm) (top) from optical microscopy, (bottom) digitized image, as re-
quired for the fractal analyses, i.e. grey-level threshold techniques provide bi-
nary image.
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4. Fractal dimension of random walk

Random walk simulation were used to determine the α coefficient — the
scaling factor between mean square displacement of molecules diffusing in
modelled membranes and time. According to relation (1)

ln
〈
r2(t)

〉
∼ α ln t . (11)

In this specific case, the 〈·〉 denotes averaging over 100 independent path
starting from randomly distributed membrane points. Successive steps along
a trajectory were generated as follows:

(i) a vector of a fixed length d and orientation given by uniform probability
distribution over (0, 2π] was selected randomly. The vector added to
the last trajectory component points a new virtual point;

(ii) if the virtual point belonged to the polymeric and magnetic part of
membrane, it was added to the path;

(iii) otherwise the virtual point was abandoned.

Due to the scale-free character of relation (11), the choice of units for measur-
ing distance and time is irrelevant. On the other hand, the simulations were
performed using digitised image of a membrane and the digitisation process
introduces the intrinsic scale connected with a size of a pixel. Therefore, the
value of d should be comparable with this size to avoid the trajectory jump-
ing over an obstacles (large d) or not noticing them at all (small d) during
the simulation. For this reason, d = 0.5 [px] were used in our simulations.
The time was measured as a number of steps along a path. The simulation

Fig. 2. Exemplary mean square displacements.
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time assured at least 104 points in each trajectory. An exemplary mean
square displacements dependence on time is presented in figure 2. Slope of
the lines corresponds to the exponent α in relation (11).

5. Results and discussion

The parameters required for diffusive transport description, like anoma-
lous exponent α, fractal dimension of random walk dw and fractal dimension
of structure df , are collected in Table I. The table covers membranes made
of ethylcellulose with 1.5 g of magnetic powder, it collects also information
of its granulation.

TABLE I

Fractal characteristics: fractal dimension df , fractal dimension of random walk dw
and anomalous diffusion exponent α, for ethylcellulose membranes with various
granulation of magnetic powder. Amount of magnetic powder 1.5 g.

Type of membrane α dw df

MQP-16 (5 µm) 0.86± 0.02 2.32± 0.01 1.85± 0.01
MQP-16 (5 µm) 0.84± 0.01 2.38± 0.01 1.86± 0.01
MQP-16 (5 µm) 0.84± 0.01 2.38± 0.01 1.86± 0.01
MQP-16 (5 µm) 0.84± 0.01 2.38± 0.01 1.88± 0.01
MQP-16 (< 20µm) 0.87± 0.01 2.30± 0.01 1.90± 0.01
MQP-16 (< 20µm) 0.87± 0.01 2.30± 0.01 1.91± 0.01
MQP-16 (20–50 µm) 0.92± 0.02 2.17± 0.01 1.93± 0.01

As can be seen from figure 3, an increase of powder granulation increases
the value of alpha, which approaches 0.92, and the process is getting closer
to normal diffusion. Decrease in magnetic powder granulation gives the op-
portunity to observe subdiffusion, where the particles of gas, transported
through the membrane awaiting execution to the next move (local immobi-
lization due to the magnetic field interaction), while in the case of normal
diffusion, such molecule can make a move at any time. Mobility of gas par-
ticles is limited by the existing obstacles in the polymer matrix, in the form
of magnetic powder. With the increase of powder granulation, an increase
of df and decrease of dw values is observed.

Based on the data from Table I, figures 4 (A)–(C) are plotted, i.e. prob-
ability density P (r, t)/A∗ is plotted versus r for times t = 0.15, 0.25, 0.5, 1
and for membranes with magnetic powder granulation (A) (< 5µm), (B)
(5–20µm), (C) (> 20µm). As can be seen from aforementioned figures, the
probability density is monotonically decreasing with r. The spreading of the
probability in time is slower than in the case of normal diffusion (see Fig. 5).
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Fig. 3. Comparison of alpha values for the various magnetic powder granulation.

(A) (B)

(C)
Fig. 4. Probability density at times t = 0.15, 0.25, 0.5, 1 for membranes with dis-
persed magnetic powder (A) MQP-16 (< 5µm), df = 1.86, dw = 2.38 (B) MQP-16
(5–20µm) df = 1.90, dw = 2.30 (C) MQP-16 (> 20µm) df = 1.93, dw = 2.17.
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Fig. 5. Comparison of the spreading of the probability density for normal diffusion
(solid line) and for the case from figure 4 (A) (dashed line).

The phenomenological diffusion equation (6) for df = 1.83 and dw = 2.06
i.e. for membranes with magnetic powder MQP-B (granulation < 5µm), has
a form

∂0.97P (r, t)

∂t0.97
=

1

r0.78
∂

∂r

(
r0.78

∂P (r, t)

∂r

)
(12)

and according to (7) it leads to

P (r, t) = A∗0.97t−0.89

 ∞∑
j=0

Γ (−0.11− j)
Γ (0.11− 0.97(0.11 + j))

×(−1)j

j!

(
r2.06

t

)0.97(0.11+j)

+

∞∑
j=0

Γ (0.11− j)
Γ (0.11− 0.97j)

(−1)j

j!

(
r2.06

t

)0.97j
 , (13)

where the constant A∗ is

A∗ =
1.07

Γ (1.44)Γ (0.915)
= 1.143 . (14)

As observed, the increase of powder granulation causes increase of the
probability density, i.e. the spreading of the probability density function in
time for magnetic powder with smaller granulation is slower than in the
case when powder granulation is larger. Most likely, the free volume for
gas molecules increases with the increasing granulation and the probability
density of encountering a particle of the gas in the polymer matrix also
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increases. The MQP-16 powder has diverse elemental composition, which is
probably directly related to its different structure properties and influences
the value of the probability density.

6. Conclusions

The complex systems, i.e. polymeric membrane with magnetic powder
and the investigation of their structural and dynamical properties has been
shown. The structure and morphology of the membrane is one of the most
important information about the membrane system that should be incorpo-
rated into the transport equation. The fractal dimension df is responsible for
the scaling of the mass the membrane consist of. Looking at the transport
from that point of view, we consider the problem of random walk as a micro-
scopic behaviour of the transported mass. This provides another measure
of fractal structure called the random walk dimension dw. In summary, we
observed that with increasing powder granulation the values of df increase
and dw decrease. The knowledge of the parameters df and dw gave us the
opportunity to use the generalized diffusion equation on fractal structure ob-
tained by Metzler et al., i.e. equation (6). This equation is a generalization
of the spherically symmetric diffusion equation in Euclidean spaces. Such
equation can be used for modelling of diffusive drug release from polymeric
microspheres. In our experiment, we observed that the spreading of the
probability density function in time for membranes with magnetic powder
is slower than in the case of normal diffusion. The increase of powder gran-
ulation caused the rise of the probability density function. This phenomena
could be connected with an increase of a free volume in the polymer matrix,
generated by higher powder granulation. Moreover, for lower granulation of
the powder, the random walk has more subdiffusive character. This is prob-
ably due to the existence of the obstacles in the polymer matrix (magnetic
powder) which limit the mobility of diffusing gas particles.

REFERENCES

[1] S. Havlin, D. Ben-Avraham, Adv. Phys. 36, 695 (1987).
[2] R. Metzler, W.G. Glöckle, T.F. Nonnenmacher, Physica A 211, 13 (1994).
[3] Y. Shia et al., J. Power Sources 195, 4865 (2010).
[4] Q. Zheng, B. Yu, S. Wang, L. Luo, Chem. Eng. Sci. 68, 650 (2012).
[5] P. Sysel et al., Desalin. Water Treat. 34, 211 (2011).
[6] J. Hradil et al., React. Funct. Polym. 67, 432 (2007).
[7] F. Cesarone, M. Caputo, C. Cametti, J. Membr. Sci. 250, 79 (2005).
[8] I.M. Sokolov, Soft Matter 8, 9043 (2012).

http://dx.doi.org/10.1080/00018738700101072
http://dx.doi.org/10.1016/0378-4371(94)90064-7
http://dx.doi.org/10.1016/j.jpowsour.2010.01.080
http://dx.doi.org/10.1016/j.ces.2011.10.031
http://dx.doi.org/10.5004/dwt.2011.2859
http://dx.doi.org/10.1016/j.reactfunctpolym.2007.02.004
http://dx.doi.org/10.1016/j.memsci.2004.10.018
http://dx.doi.org/10.1039/C2SM25701G 


Anomalous Diffusion on Fractal Structure of Magnetic Membranes 965

[9] A. Strzelewicz, Z.J. Grzywna, J. Membr. Sci. 294, 60 (2007).
[10] Z.J. Grzywna, P. Borys, B. Kruczek, Sep. Sci. Technol. 46, 2427 (2011).
[11] D. Avnir, The Fractal Approach to Heterogeneous Chemistry, Surfaces,

Colloids, Polymers, John Wiley and Sons, 1992.
[12] M. Krasowska et al., J. Membr. Sci. 415–416, 864 (2012).
[13] A. Rybak, M. Krasowska, A. Strzelewicz, Z.J. Grzywna, Acta Phys. Pol. B

40, 1001 (2009).
[14] B. Dybiec, E. Gudowska-Nowak, Phys. Rev. E80, 061122 (2009).
[15] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific,

2000.
[16] B. O’Shaughnessy, I. Procaccia, Phys. Rev. A32, 3073 (1985).
[17] A. Rybak, Z.J. Grzywna, W. Kaszuwara, J. Membr. Sci. 336, 79 (2009).
[18] Z.J. Grzywna, A. Rybak, A. Strzelewicz, Air Enrichment by Polymeric

Magnetic Membranes, chapter in book: Membrane Gas Separation,
ed. Y. Yampolskii, B. Freeman, John Wiley and Sons, 2010.

[19] Z.J. Grzywna, M. Krasowska, Ł. Ostrowski, J. Stolarczyk, Acta Phys. Pol. B
32, 424 (2001).

[20] Z.J. Grzywna, M. Krasowska, J. Stolarczyk, Acta Phys. Pol. B 34, 3681
(2003).

[21] Z.J. Grzywna, M. Krasowska, Inżynieria Materiałowa 4, 369 (2001)
(in Polish).

[22] J.B. Bassingthwaighte, L.S. Liebovitch, B.J. West, Fractal Physiology,
Oxford University Press, New York 1994.

http://dx.doi.org/10.1016/j.memsci.2007.02.008
http://dx.doi.org/10.1080/01496395.2011.606864
http://dx.doi.org/10.1016/j.memsci.2012.06.005
http://www.actaphys.uj.edu.pl/vol40/abs/v40p1001
http://www.actaphys.uj.edu.pl/vol40/abs/v40p1001
http://dx.doi.org/10.1103/PhysRevE.80.061122
http://dx.doi.org/10.1103/PhysRevA.32.3073
http://dx.doi.org/10.1016/j.memsci.2009.03.027
http://www.actaphys.uj.edu.pl/vol32/abs/v32p0424
http://www.actaphys.uj.edu.pl/vol32/abs/v32p0424
http://www.actaphys.uj.edu.pl/vol34/abs/v34p3681
http://www.actaphys.uj.edu.pl/vol34/abs/v34p3681

	1 Introduction
	2 Membrane preparation
	3 Structure-morphology analysis of magnetic membranes
	4 Fractal dimension of random walk
	5 Results and discussion
	6 Conclusions

