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We theoretically study the subdiffusion of B particles which can chem-
ically react with A particles according to the formula A + B → ∅(inert).
The A particles are static and located at the wall which bounds the system.
To describe the process, we use a fractional subdiffusion-reaction equation
in which the character of the transport process is included in the reaction
term. We find the exact solution to the equation for arbitrarily chosen
initial conditions in terms of the Laplace transform. The inverse Laplace
transform of this solution is calculated over a long time limit. We also
briefly discuss the possibility of experimental verification of the model.
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1. Introduction

A diffusion process in which particles of types A and B can chemically
react has been intensively studied during recent years [1–10]. The equa-
tion describing this process is usually assumed to be a diffusion equation
supplemented by the operator Π(CA, CB) which represents the velocity of
particles vanishing due to a chemical reaction; then, the diffusion-reaction
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equation reads ∂CA,B/∂t−DA,B∆CA,B = −Π(CA, CB). Usually, operator
Π is defined by the kinetic reaction equation Π ≡ −dCA,B/dt. However,
the above equation is derived under the condition that the particle solution
is well mixed up. This situation is quite different when particles are trans-
ported by diffusion. A reaction term is then derived within the mean field
approximation [1–3] and for the reaction

A+B → ∅(inert) (1)

reads
Π(x, t) = kCA(x, t)CB(x, t) , (2)

where k is the reaction coefficient. Within the mean-field approximation, the
process is considered in a ‘cellular system’ in which the cells are assumed to
be sufficiently large to neglect the fluctuations of the particles’ concentration
and sufficiently small to assume that the solution is homogeneous within a
cell [1]. Then, the chemical reactions within each cell can be approximately
described by the kinetic reaction equation mentioned above.

The dynamics of the reaction are controlled by the ‘mixing process’ of
the particles. When particles A and B meet each other (this means that
both are located at a reaction distance at which the reaction is possible),
they can chemically react. If the reaction is absent in some time interval, the
particles can move away from the reaction zone and again return to it. Thus,
the occurrence of a reaction in a time interval depends on the kind of particle
transport (diffusion or subdiffusion). To find an influence of a transport pro-
cess on a reaction, we should consider the reaction between two arbitrarily
chosen diffusive particles A and B. The frequency of the particles’ meetings
depends on diffusion or subdiffusion parameters. Subdiffusive transport is
usually described by means of an equation with a fractional time derivative.
There were few attempts to determine the form of the subdiffusion-reaction
equation. In paper [11] the authors have postulated the subdiffusion-reaction
equation in which the reaction term — characteristic for normal diffusion
— was only added to the subdiffusion equation, which provides the follow-
ing equation ∂CA,B/∂t − DA,B∆∂1−αCA,B/∂t

1−α = −Π(CA, CB) (in this
paper, we use the Riemann–Lioville fractional derivative definition). In pa-
pers [12, 13], the type of particle transport was included in the derivation of
the subdiffusion-reaction equation. This model will be used in this paper. It
was used in describing the subdiffusion-reaction process in which substances
were separated at the initial moment [14, 15]. The subdiffusion-reaction
equation in one-dimensional system reads

∂CA,B(x, t)

∂t
−DA,B

∂1−α

∂t1−α
∂2CA,B(x, t)

∂x2
= −∂

1−αΠ(CA, CB)

∂t1−α
. (3)
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A different subdiffusion-reaction equation was proposed by Sokolov et al. [16]
in which the process of simple molecular conversion A→ B was considered.
Therefore, the reaction term depends on the concentration of A at all pre-
vious times.

As far as we know, the correctness of the above mentioned models has
not been experimentally decided upon to date. The lack of experimental
verification seems to be caused technical difficulties. For example, the very
useful interferometric method of the investigation of concentration profiles,
which has been used to study normal diffusion and subdiffusion in various
media [17–19], provides the concentration profiles CA + CB, and there is
no possibility of finding the concentration of particles A and B separately.
Thus, within this method, the influence of subdiffusion on the dynamic of
reaction (1) can be found experimentally only when one of the substances is
static. Let us note that there is additional difficulty in performing a compar-
ison of experimental and theoretical results. Namely, since the subdiffusion-
reaction equation is a fractional nonlinear one, therefore, it is difficult to
solve and its general solutions have not yet been found (except in a few
special cases). To find an approximate solution, one uses various method
such as the perturbation method, the scaling method and the quasistatic
approximation method. Unfortunately, the usefulness of all these methods
is strongly limited (see, for example, [15, 20] and references cited therein).

In this paper, we will solve the subdiffusion-reaction equation for a sys-
tem in which both one mobile and one static reactants are found. The static
reactant is placed on the wall restricting the one-dimensional system. We
add that a similar problem was considered in [21], where the stationary
situation was analyzed. In our paper, we will study the non-stationary pro-
cess. We will show the exact solution to the subdiffusion-reaction equation
in terms of the Laplace transform. The inverse Laplace transform will be
taken over the long time limit. The solutions which we will obtain could
be compared to experimental results. The experiment can be conducted by
means of the laser inferferometric method of concentration measurement.

2. The model

In our consideration, we adopt the model by Seki, Wójcik and Tachiya,
which was used to describe the subdiffusive motion of a B particle which
can chemically react with an A particle [12, 13]. The scheme of the model is
the following: B particle moves randomly at the discrete lattice in a system
in which an A particle is located at the origin of the system. The A particle
is represented by the sphere of radius R centred at system’s origin. The
diffusion-reaction process is then considered as the random walk, in which
the B particle can vanish when it enters into the vicinity of the sphere.
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The various models which take specific boundary conditions at the sphere
were considered. In the simplest Smoluchowski model, it was assumed that
the sphere was fully absorbing. A more general model assumes that the
sphere is partially absorbing or fully reflecting; in the latter case, the reaction
takes place in the region (R,R+ ∆R) (called the encounter region) with the
probability density

ψrea(t) = γ exp(−γ̃t) , (4)

γ̃ is the reaction rate. If theB particle leaves this region (with the probability
ψout(t)), then the chemical reaction cannot occur and the reaction can take
place during next particle’s visit inside the encounter region. In order to
find the subdiffusion-reaction equation, the following assumptions are taken
into consideration: the B particle moves at the discrete lattice and its every
jump has the same length, b̃, each jump of the B particle located inside
the encounter region moves the particle outside this region (in practice,
this means that ∆R < b̃) and the waiting time distribution of leaving the
encounter distance is as follows

ψout(t) = ψ(t) exp(−γ̃t) , (5)

where ψ(t) is the probability density of the waiting time to take the B par-
ticle’s next step (it is assumed that this function is independent of chemical
reactions and would be the same in a system without chemical reactions).
The Laplace transform of Eq. (5) reads

ψ̂out(s) = ψ̂(s+ γ̃) . (6)

Under the above mentioned assumptions, the subdiffusion-reaction equa-
tion reads in terms of the Laplace transform

sρ̂ (~r, s;~r0)− δ(~r − ~r0) =
b̃2sψ̂(s)

2
[
1− ψ̂(s)

]∇2ρ̂ (~r, s;~r0)

−
b̃s
[
ψ̂(s)− ψ̂(s+ γ̃)

]
2
[
1− ψ̂(s)

] δ(r −R)ρ̂ (~r, s;~r0) , (7)

where ρ(~r, t;~r0) denotes the probability density of finding B particle at a
position ~r at time t under the condition that the initial position of the
particle is ~r0.

To find the subdiffusion-reaction equation for ρ(~r, t;~r0), one must calcu-
late the inverse Laplace transform of Eq. (7). In practice, it is only possible
to calculate the inverse transform for small values of s, which corresponds
to the limit of long time t. In the following, we adapt the model to a one-
dimensional system.
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3. Subdiffusion-reaction in a one dimensional system

Let us assume that the system is homogeneous in the plane perpendicular
to the x axis. Therefore, the system can be considered as one-dimensional.
The system is bounded by a reflecting wall placed at x = xm. The particles
of substance A are uniformly located on this wall. A subdiffusive particle
B moves randomly in the space interval (−∞, xm). When B enters the
reaction region (xm − ∆xm, xm), it can chemically react according to the
formula (1). Transforming Eq. (7) to the system considered here, we get

sρ̂(x, s;x0)− δ(x− x0) =
b2sψ̂(s)

2
[
1− ψ̂(s)

] d2
dx2

ρ̂(x, s;x0)

−
bs
[
ψ̂(s)− ψ̂(s+ γ)

]
2
[
1− ψ̂(s)

] δ(x− xm)ρ̂(x, s) , (8)

where parameters b and γ correspond to the three-dimensional parameters b̃
and γ̃, respectively. The relations between the ‘one-dimensional’ and ‘three-
dimensional’ parameters are not important here, and will be discussed in
detail elsewhere. We mention here that γ depends on the value of γ̃ as well
as the concentration of particles A on the wall which bounds the system.

We solve Eq. (8) by means of the Fourier transform method. After calcu-
lations, this solution reads, in terms of the Laplace transform, as

ρ̂(x, s;x0)=
a(s)

2bs
e−

a(s)|x−x0|
b − a(s)

2bs
e−

a(s)|2xm−x−x0|
b

1− 1

1+ ψ̂(s)−ψ̂(s+γ)
4
√
ψ̂(s)[1−ψ̂(s)]

 ,
(9)

where

a(s) =

√
1− ψ̂(s)

ψ̂(s)
. (10)

In the following consideration, we take the Laplace transform of waiting
time distribution in the following form

ψ̂(s) = e−ταs
α
. (11)

For small values of s, there is

ψ̂(s) ≈ 1− ταsα . (12)
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From Eqs. (9), (10), and (12), within the limit of small values of s, we obtain
(here x, x0 < xm)

ρ̂(x, s;x0) =
1

2
√
Dαs1−α/2

e
− s

α/2|x−x0|√
Dα

− 1

2
√
Dαs1−α/2

e
− s

α/2(2xm−x−x0)√
Dα

[
1− 4

√
Dαs

α/2

1− e−ταγα

]
, (13)

where Dα = b2/τα.
Concentration profiles can be calculated using the following formula

C(x, t) =
∫ xm
−∞C(x0, t)ρ(x, t;x0)dx0, which in terms of Laplace transform

reads

Ĉ(x, s) =

xm∫
−∞

C(x0, 0)ρ̂(x, s;x0)dx0 . (14)

Let us assume that at the initial moment C(x, 0) = C0, −∞ < x < xm, so
we obtain

Ĉ(x, s) =
C0

s
− C0

s
e
− s

α/2(xm−x)√
Dα

+
2C0
√
τα

s1−α/2 [1− e−ταγα ]
e
− s

α/2(xm−x)√
Dα . (15)

Let us note that the first term on the right-hand side of Eq. (15) corresponds
to the initial concentration, which is reduced by two following terms.

The amount of substance which vanished in the time interval (0, t) due
to chemical reactions, denoted here by M(t), can be calculated by means
of the following formula M(t) =

∫ xm
−∞ [C(x, 0)− C(x, t)]dx, which in terms

of Laplace transform reads M̂(s) =
∫ xm
−∞ [C(x, 0)/s− Ĉ(x, s)]dx. Using the

above formula and Eq. (15), we obtain

R̂(s) =
C0

√
Dα

s1+α/2
− 4C0

√
Dατα

s1−α/2 [1− e−ταγα ]
. (16)

To obtain the functions over a long time limit, which is what interested us
the most, we compute the inverse Laplace transform of Eqs. (15) and (16) by
means of the following formulae L−1

{
1/sν+1

}
= tν/Γ (ν+1), where ν > −1,

L−1 {1/s} = 1 and [22]

L−1
{
sνe−as

β
}
≡ fν,β(t; a) =

1

t1+ν

∞∑
k=0

1

k!Γ (−kβ − ν)

(
− a
tβ

)k
, (17)
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(a > 0), fν,ρ(t; a) can be also expressed by the Fox function. Finally, we
obtain

C(x, t) = C0

[
1− f−1,α/2

(
t;
xm − x√
Dα

)]
+

2C0
√
τα

1− e−ταγα
f−1+α/2,α/2

(
t;
xm − x√
Dα

)
, (18)

and

M(t) =
C0

√
Dα

Γ (2 + α/2)
t1+α/2 − 4C0

√
Dατα

[1− e−ταγα ]Γ (2− α/2)
t1−α/2 . (19)

The examples of the plots of functions (18) are presented in Fig. 1.
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Fig. 1. The concentration profiles calculated for α = 0.6, Dα = 1.2, τα = 12.0,
γ = 0.1 and for times given in the legend, all quantities are given in arbitrarily
chosen units.

4. Final remarks

The main results presented in this paper are Eqs. (18) and (19). They
show influence of the subdiffusive transport on the intensity of chemical
reactions. Our theoretical study was based on the model adapted from the
one presented in [12, 13]. Functions (18) and (19), which were obtained for
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t � 1/γ show that the crucial role on the subdiffusion-reaction process is
played by the subdiffusion parameter α. The considerations were performed
for chemical reaction (1), but we suppose that qualitatively similar results
will be obtained for more complicated chemical reactions.

The choice of the system under consideration was not obvious. Namely,
the concentration profiles calculated for this system can be verified experi-
mentally, since experimental profiles can be obtained by means of the inter-
ferometric method of concentration measurements. We mention here that
this method has been used in the experimental study of sugar subdiffusion
in gel (water solution of agarose). We add that the functions (18) and (19)
can be also used to describe subdiffusion in real biological systems, in which
a membrane contains chemically active objects (see for example [23]).

This paper was partially supported by the Polish National Science Centre
under grant No. N N202 19 56 40 (1956/B/H03/2011/40).
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