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We analyze the effects of different non-Gaussian noise sources on the
transient dynamics of an overdamped long Josephson junction. We find
nonmonotonic behavior of the mean escape time as a function of the noise
intensity and frequency of the external driving signal for all the noise
sources investigated.
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1. Introduction

The advances in the manufacture of high temperature superconductors
lead to increase the number of applications connected with Josephson junc-
tions (JJs). Recently, for example, in quantum computing applications, sev-
eral superconducting qubit circuits based on JJs devices have been analyzed
and used [1]. The application fields of the JJs are so numerous and varied
that a deep understanding of these devices is essential. Systems such as the
ultrafast rapid single-flux-quantum (RSFQ) digital circuits, based on JJs,
are strongly influenced by the external environmental variables [2]. These
systems show loss of stability, that is switching from the superconducting
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state to the resistive one, not only due to the thermal noise, but also because
of distributed non-Gaussian fluctuations. In particular, experimental works
indicate the presence of non-thermal fluctuations affecting the dynamics of
the bias current in JJs [3]. Recently, many efforts have been performed to
study the transient dynamics in short [4, 5] and long [6, 7] JJs in the pres-
ence of white and correlated noise sources. The effects of non-Gaussian noise
have been studied only in point Josephson junctions [8].

In this work, we analyze the effects of non-Gaussian fluctuations on the
dynamics of Josephson junctions. In particular, we analyze how the Lévy
noise sources affect the life time of the superconducting state, in the presence
of an oscillating driving signal. We observe the appearance of counterintu-
itive effects due to the noise presence, and suggest how the performance of
these circuits can be increased by controlling some external parameters.

2. The model

The phase difference of the wave functions in the ground state between
left and right superconductive sides of the long Josephson junction, in the
overlap geometry, obeys the following stochastic sine-Gordon equation [7, 9]

β
∂2ϕ(x, t)

∂t2
+
∂ϕ(x, t)

∂t
− ∂2ϕ(x, t)

∂x2
= i(x)− sin(ϕ(x, t)) + if(x, t) , (1)

with boundary conditions
∂ϕ(0, t)

∂x
=
∂ϕ(L, t)

∂x
= Γ . (2)

Equation (1) is written according to the resistive McCumber–Stewart model
framework [9]. Specifically, β = 1/α2 is the McCumber–Stewart parameter
with the damping coefficient α = ωp/ωc, where ωc and ωp are the char-
acteristic and plasma junction frequencies, respectively. We consider the
case with large damping, setting β � 1. Furthermore, the space and time
variables are normalized to the Josephson length λj and inverse of ω−1c , re-
spectively [7]. The two current terms i(x) and if(x, t) represent the bias
current density and fluctuational current density, both normalized to the
critical current density ic of the junction. Looking at Eq. (2), L is the junc-
tion length normalized to λj and Γ is the normalized magnetic field. Here,
we consider only the situation with Γ = 0. We analyze only the situation
with the bias current density homogeneously distributed along the whole
length of the junction, i.e. i(x) = i0.

The dynamics of this system is that of a phase string that rolls down
along the following tilted dimensionless washboard potential

U (ϕ, x, t) = 1− cos(ϕ (x, t))− i (t)ϕ (x, t) , (3)
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where

i(t) = i0 +A sin(ωt) , (4)

and i0 = ib/ic, A = is/ic are the normalized dimensionless bias current and
driving current amplitude, respectively.

To avoid the creation of fluxons along the junction in the initial time, we
impose that the string is entirely located inside one of the potential wells,
described by the equations ϕ(x, 0) = ϕ0 = arcsin(i0) + 2kπ, with k integer
number. For simplicity, in our calculations we set k = 0. The closest left
and right maxima, along the washboard potential, are chosen as thresholds
for the escape events of the phase cells of the string. The bias current gives
rise to a tilted potential. We work with two different bias current values,
i0 = 0.5 and i0 = 0.9. In these conditions each well, during the whole
dynamics and along the washboard potential, plays the role of a metastable
state, with respect to the well located in its right side. Two-dimensional
projections of the potential are shown in Fig. 1, for the two values of bias
current considered and at three different times. The variations in the slope
of the washboard profile and height of the potential barriers, and the absence
of structure with peaks and valleys for large values of the driving current
are well visible in Fig. 1.

Fig. 1. Washboard potential (3) for a Josephson junction with oscillating driving
current (see Eq. (4)) with two different values of bias current, i0 = 0.5 (left panel)
and i0 = 0.9 (right panel). Each picture shows three different curves corresponding
to three different times: t = 0, t = T0

4 (maximum negative slope) and t = 3T0

4

(minimum slope).

Due to the presence of fluctuations, after some random time, the string
overpasses the potential barrier, reaching another washboard minimum.
A key quantity for our investigation is the mean escape time (MET), ob-
tained as the average of the random passage times calculated in N different
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numerical realizations. This is the mean permanence time of the total phase
string inside the first valley of the washboard potential, that is inside the
interval [−π,+π], according to the nonlinear relaxation time (NLRT) def-
inition [10]. Unlike the mean first passage time, which provides only the
average time of the first passage through the right or left potential barrier,
the NLRT allows to take into account all the possible retrapping events in
the first washboard valley.

2.1. Lévy noise

Here, we analyze some properties of the Lévy distributions, which are
exploited in this paper to model non-Gaussian perturbations. We recall
that Lévy distributions are frequently used to describe the noise impulsive
properties in real applications [11]. In a lot of different fields, random fluc-
tuations present jumps or flights, which are impossible to be described by
using only a Gaussian noise source [12], and whose evidence can be found
in several contexts such as diffusion phenomena by geophysical turbulence,
paleoclimatic data, thermohaline circulation in deep ocean, biomedical ap-
plications, financial markets, and social systems (for a recent review on Lévy
flights, see Ref. [13]).

The probability distributions associated with Lévy processes belong to
the class of infinitely divisible distributions, a subset of which is that of
stable distributions [14]. These form a family of continuous probability dis-
tributions, dependent on two shape parameters α and β, a scale term σ and
a real number µ. The parameter α ∈ ]0, 2], known as stability index or char-
acteristic exponent, indicates the asymptotic behavior of the distribution.
In fact, for large values of the argument x, the distribution tails show an
asymptotic power law behavior ∼ |x|−(1+α), strongly related to the divergent
trend of the moments 〈xn〉 for n ≥ 2 and α < 2. The index β (∈ [−1, 1])
is an asymmetry parameter. In particular, for β = 0, the symmetrical Lévy
distributions are obtained. The scale term σ is any positive real number
that identifies the distribution weight and µ is any real number indicating,
for α > 1 and β = 0, the average value of the distribution [8].

An α-stable (or Lévy) distribution is denoted by Sα (σ, β, µ) and, when-
ever µ = 0 and σ = 1, the distribution is called standard. In correspondence
of (α, β) values equal to (2, 0), (1, 0), (12 , 1) and (12 ,−1), one obtains Gaus-
sian (G), Cauchy–Lorentz (CL), Lévy–Smirnov (LS) and reflected (with
respect to the vertical axis) Lévy–Smirnov distributions. In our analysis,
Lévy noise has been implemented by using a numerical method proposed by
Weron [15]. The stochastic dynamics has been obtained integrating Eq. (1)
by an implicit finite difference method based on a tridiagonal algorithm.
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3. Discussions and results

Our analysis is performed in overdamped regime, setting in Eq. (1)
β = 0.01. Each MET value is calculated performing the average of the escape
time over N = 5000 experiments for each combination of system parameters.
The amplitude of the driving signal is kept fixed, A = 0.7. This value allows,
at least for one of the two i0 values chosen, to switch alternatively between
superconducting (i(t) < 1) and resistive regime (i(t) > 1). The values used
for the discretized spatial and time steps are ∆x = 0.05 and ∆t = 0.05,
respectively. The curves obtained by numerical calculations are shown in
Figs. 2 and 3. Panels (a), (b), (c) of Fig. 2 show results obtained fixing the
value of the noise intensity, i.e. γ = 0.1, and varying the driving frequency
in the range ω ∈

[
10−2, 101

]
. Each graph contains the curves obtained for a

different statistics (depending on α and β) of the noise source, and varying
the value of i0 and L.

Fig. 2. Log–log plot of the MET as a function of the driving signal frequency for
(a) Gaussian, (b) Cauchy–Lorentz (CL) and (c) Lévy–Smirnov (LS) statistics. Each
of these pictures shows 6 different curves, obtained for 3 different junction lengths
(L = 1, 6, 10) and 2 values of the bias current (i0 = 0.5, 0.9). The legend in panel
(a) refers also to panels (b) and (c).
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In particular, panels (a), (b), (c) of Fig. 2 show evidence of a nonmono-
tonic behavior, with a reduction of the lifetime of the metastable state and
the appearance of an evident minimum, which is the signature of the res-
onant activation phenomenon [10, 16, 17]. Moreover, noise sources with
Cauchy–Lorentz and Lévy–Smirnov statistics provide further reductions of
the MET values, in comparison with results obtained in the presence of
Gaussian noise. This stronger decrease of the MET depends on the heavy
tails, which characterize Cauchy–Lorentz and Lévy–Smirnov distributions
and cause the well known jumps, called Lévy flights [13], affecting the dy-
namics of the order parameter. The behaviors obtained with G and CL
distributions do not present pronounced variations in the MET trends as
the junction length is varied. However, much more important effects appear
when the current value switches between i0 = 0.5 and i0 = 0.9. Increasing
the value of i0, determines a reduction of the MET, due to the enhancement
of the potential slope and the consequent lowering of the potential barrier.
We can also note a significant shift of the minimum towards higher values
of frequency, for bias current going from i0 = 0.5 to i0 = 0.9.

The behavior of MET, as a function of the noise intensity γ, is shown in
Figs. 3 (a)–(c) for a fixed value of frequency, i.e. ω = 0.4, and three differ-
ent values of junction length (L = 1, 6, 10). Each panel presents six curves
obtained varying the statistics of the noise source (G, CL, LS distributions)
and the bias current (i0 = 0.5, 0.9). In all curves, the nonmonotonic behav-
ior with maxima reveals the presence of a trapping phenomenon observed
for suitable values of the noise intensity, i.e. the noise enhanced stability
(NES) phenomenon [10, 18]. This causes the system to remain in the initial
metastable state for a longer time respect to the deterministic case. First, we
focus on the results obtained for the higher potential slope, that is i0 = 0.9.
In the presence of a Gaussian noise source, two peaks can be clearly distin-
guished at values of γ which differ from each other approximately by two
orders of magnitude. The first maximum is less evident, and its amplitude is
reduced as the junction length increases. The appearance of this peak is con-
nected with a resonance effect occurring between noise and driving signal.
In fact, because of the combined action of the stochastic force and oscillating
potential profile, the cells of the phase string tend to remain inside the first
valley, causing a resonance trapping phenomenon. The presence of the sec-
ond peak is instead, due to a further entrapment phenomenon, caused by the
return of the phase string within the interval [−π,+π]. This behavior is typ-
ically found when the NLRT is calculated, because no absorbing barriers are
present. The results obtained using Cauchy–Lorentz noise sources show an
evident, but single, peak. The mechanism which determines this maximum
is the same as that responsible for the first peak observed in the presence
of Gaussian noise. We note, however, a shift towards higher γ values, due



The Role of Non-Gaussian Sources in the Transient Dynamics of Long . . . 1003

to the limited space displacement [8] that characterizes the Cauchy–Lorentz
distributions. The absence of the second peak is instead due to a dynam-
ics mainly governed by intense fluctuations (due to “fat” distribution tails),
whose influence grows up as the noise intensity increases. The curves with
i0 = 0.5 show the same qualitative behavior as that found for i0 = 0.9,
providing a magnification of the same effects. In particular, for i0 = 0.5,
the potential barriers are higher and, as a consequence, the MET values are
larger than those observed setting i0 = 0.9. Finally we note that, for low
values of γ, the stochastic fluctuations are not able to determine an escape
event, so that the phase string remains definitively trapped inside the first
washboard valley. In these conditions, the MET reaches approximately the
value 100 (see Figs. 3 (a)–(c)), that is the maximum time fixed in our nu-
merical analysis. This maximum time is large enough to allow to consider
the string “definitively trapped”.

Fig. 3. Log–log plot of the MET as a function of the noise amplitude for three dif-
ferent noise distributions, i.e. Gaussian, Cauchy–Lorentz (CL) and Lévy–Smirnov
(LS) statistics. The values of the parameters are i0 = 0.5, 0.9, ω = 0.4. The junc-
tion length is L = 1 (panel a), L = 6 (panel b) and L = 10 (panel c). The legend
in panel (a) refers also to panels (b) and (c).
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4. Conclusions

In this paper, we studied the effects of both Gaussian and non-Gaussian
noise sources on the lifetime of the superconductive state of a long over-
damped Josephson junction, considered in the overlap geometry configu-
ration. Specifically our analysis, performed in the presence of an oscillat-
ing driving signal and for three different noise distributions, i.e. Gaussian,
Cauchy–Lorentz and Lévy–Smirnov statistics, shows nonmonotonic behav-
ior of the mean escape time, from the superconductive state, as a function
both of the frequency ω of the driving signal and the noise amplitude γ.
These findings clearly indicate the presence of noise induced phenomena
such as resonant activation and noise enhanced stability. Moreover, strong
differences are observed in the behavior of the lifetime of the superconduc-
tive state, depending on the statistics used to obtain the noise source and
the values fixed for the bias current and junction length.

REFERENCES

[1] J. Clarke, F. Wilhelm, Nature (London) 453, 1031 (2008).
[2] A.L. Pankratov, B. Spagnolo, Phys. Rev. Lett. 93, 177001 (2004).
[3] J.T. Peltonen et al., Physica E 40, 111 (2007).
[4] G. Augello, D. Valenti, B. Spagnolo, Int. J. Quan. Info. 6, 801 (2008).
[5] A.V. Gordeeva, A.L. Pankratov, B. Spagnolo, Int. J. Bifur. Chaos 18, 2825

(2008).
[6] G. Augello, D. Valenti, A.L. Pankratov, B. Spagnolo, Eur. Phys. J. B70,

145 (2009).
[7] K.G. Fedorov, A.L. Pankratov, B. Spagnolo, Int. J. Bifur. Chaos 18, 2857

(2008).
[8] G. Augello, D. Valenti, B. Spagnolo, Eur. Phys. J. B78, 225 (2010).
[9] A. Barone, G. Paternò, Physics and Applications of the Josephson Effect,

Wiley, New York 1982.
[10] A.A. Dubkov, N.V. Agudov, B. Spagnolo, Phys. Rev. E69, 061103 (2004).
[11] W. Szajnowski, J. Wynne, IEEE Signal Process. Lett. 8, 151 (2001).
[12] W.A. Woyczynski, In Lévy Processes: Theory and Applications,

O.E. Barndorff-Nielsen, T. Mikosch, S.I. Resnick (Eds.), p. 241, Birkhäuser,
Boston 2001; A.A. Dubkov, B. Spagnolo, Acta Phys. Pol. B 38, 1745 (2007);
A.A. Dubkov, A. La Cognata, B. Spagnolo, J. Stat. Mech.: Theory Exp. 1,
P01002 (2009); A.A. Dubkov, B. Spagnolo, Eur. Phys. J. B65, 361 (2008).

[13] A.A. Dubkov, B. Spagnolo, V.V. Uchaikin, Int. J. Bifur. Chaos 18, 2649
(2008).

[14] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2,
John Wiley Sons, Inc., New York 1971.

http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1103/PhysRevLett.93.177001
http://dx.doi.org/10.1016/j.physe.2007.05.017
http://dx.doi.org/10.1142/S0219749908004134
http://dx.doi.org/10.1142/S0218127408022068
http://dx.doi.org/10.1142/S0218127408022068
http://dx.doi.org/10.1140/epjb/e2009-00155-x
http://dx.doi.org/10.1140/epjb/e2009-00155-x
http://dx.doi.org/10.1142/S0218127408022111
http://dx.doi.org/10.1142/S0218127408022111
http://dx.doi.org/10.1140/epjb/e2010-10106-1
http://dx.doi.org/10.1103/PhysRevE.69.061103
http://dx.doi.org/10.1109/97.917700
http://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=38&page=1745
http://dx.doi.org/10.1088/1742-5468/2009/01/P01002
http://dx.doi.org/10.1088/1742-5468/2009/01/P01002
http://dx.doi.org/10.1140/epjb/e2008-00337-0
http://dx.doi.org/10.1142/S0218127408021877
http://dx.doi.org/10.1142/S0218127408021877


The Role of Non-Gaussian Sources in the Transient Dynamics of Long . . . 1005

[15] R. Weron, Stat. Prob. Lett. 28, 165 (1996).
[16] R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992).
[17] N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 84, 3025 (2000); A. Fiasconaro,

B. Spagnolo, Phys. Rev. E83, 041122 (2011).
[18] N.V. Agudov, B. Spagnolo, Phys. Rev. E64, 035102 (2001).

http://dx.doi.org/10.1016/0167-7152(95)00113-1
http://dx.doi.org/10.1103/PhysRevLett.69.2318
http://dx.doi.org/10.1103/PhysRevLett.84.3025
http://dx.doi.org/10.1103/PhysRevE.83.041122
http://dx.doi.org/10.1103/PhysRevE.64.035102

	1 Introduction
	2 The model
	2.1 Lévy noise

	3 Discussions and results
	4 Conclusions

