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We study collective behavior of Brodmann regions of human cerebral
cortex using functional Magnetic Resonance Imaging (fMRI) and Random
Matrix Theory (RMT). The raw fMRI data is mapped onto the cortex re-
gions corresponding to the Brodmann areas with the aid of the Talairach
coordinates. Principal Component Analysis (PCA) of the Pearson correla-
tion matrix for 41 different Brodmann regions is carried out to determine
their collective activity in the idle state and in the active state stimulated
by tapping. The collective brain activity is identified through the statis-
tical analysis of the eigenvectors to the largest eigenvalues of the Pearson
correlation matrix. The leading eigenvectors have a large participation ra-
tio. This indicates that several Broadmann regions collectively give rise to
the brain activity associated with these eigenvectors. We apply Random
Matrix Theory to interpret the underlying multivariate data.
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1. Introduction

The problem of understanding the brain activity is of fundamental im-
portance in basic research and clinical neuroscience. In recent years, sev-
eral advanced physical techniques, such as electroencephalography (EEG),
electrocorticography (ECoG) or magnetoencephalography (MEG), and the
functional Magnetic Resonance Imaging (fMRI), have been developed to
monitor the brain activity. The latter method uses the hemodynamic re-
sponse related to the oxygenation level of blood.

A common feature of these methods is that they require a massive ac-
cumulation and analysis of data, which is usually contaminated by sta-
tistical noise. In order to extract the relevant information, several algo-
rithms for maximizing the signal-to-noise ratio and for localization of the
sources of specific neuronal activities have been developed. Due to the high-
dimensionality of the system in question, its complex nature, nonlinearity,
potential non-stationarity and emerging collective behavior, problem is be-
coming hard to solve using the traditional methods of multivariate statistical
analysis. In many respects, it resembles probabilistic problems encountered
in different areas of research and engineering including contemporary wire-
less networks [1, 2], financial markets [3, 4] and complex biological systems
[5–7], to name few of them, where one deals with huge multivariate data
sets. Recently, in order to come forward researchers in these fields have
started to borrow ideas from emergent domains of physics and mathematics
such as statistical theory of networks, percolation theory, spin glasses, Ran-
dom Matrix Theory, free random probability, game theories, etc. We believe
that the same methodology can be applied to neuroscience. In this letter,
we start this program by applying Random Matrix Theory to address the
problem of the brain activity detection in large multivariate experimental
data sets.

More specifically, we use fMRI data to study collective correlations of
Brodmann areas. Those are specific regions of brain with empirically as-
signed role. More details can be found in Section 4 and Table I. In our
experimental setup, the brain is stimulated by some simple tasks. We mea-
sure the activity of different Brodmann areas and try to determine the col-
lective behavior of several areas under a given stimulus. We focus not on
the response mechanism to a particular stimulus of an individual brain area
but rather on the collective response of many Brodmann areas. We apply
principal component analysis to the fMRI data to extract eigenspaces of
the matrix of the Pearson coefficients for pairs of fMRI signals coming from
different Brodmann areas. The largest eigenvectors of this matrix give col-
lections of Brodmann areas that take part in collective independent brain
activities.
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We supplement this analysis by showing how to apply Random Matrix
Theory in multivariate analysis of the experimental data to maximize the
signal-to-noise ratio. The random matrix methodology is general and it can
be applied to analyze other multivariate data sets in neuroscience like those
in EEG and MEG. Actually, Random Matrix Theory has already been in-
troduced in the analysis of neurophysiological data. More than a decade
ago, Drożdż et al. [9] used the non-Hermitian random matrix model for
analyzing the MEG data. In 2003, Seba [8] suggested to use random ma-
trix theories in order to identify generic and subject-independent features of
certain correlation matrices extracted from human EEG. Then, Beckmann
and Smith [11] have proposed to modify the Independent Component Anal-
ysis (ICA) algorithm commonly used for fMRI data in order to take into
account the asymmetry between the number of observations and the num-
ber of sources and the mixing of the noise, constituting the probabilistic
ICA models (PICA), resembling the MIMO (multiple input multiple out-
put) systems based on Wishart ensemble. Only very recently, the Random
Matrix Theory (RMT) approach has been suggested as a tool to analyze
temporal correlations in EEG data in order to find synchronization patterns
characteristic for seizures in epileptic attacks [10].

The paper is organized as follows. In Section 2 we outline the basic result
of RMT on multivariate data and sketch some general ideas on large random
matrices and free probability. Then, we recall how to derive the well known
Marchenko–Pastur distribution [13]. This law serves as a calibrating tool in
multivariate statistical analysis providing one with a benchmark for uncor-
related data. Deviations between this benchmark and spectral properties
of the real data signal potential correlations. In Section 3 we describe the
experimental set-up of fMRI experiments. In Section 4 we recall Talairach
coordinates, describe the data structure and provide some basic information
on physiological activities of the Brodmann areas. In Section 5 we present
the results. We compare the data to the Marchenko–Pastur benchmark,
identify outliers and discuss their interpretation. We conclude the paper in
Section 6, where we shortly summarize the paper and discuss generalizations
and perspectives.

2. Large matrices and freeness

Random matrices find nowadays ubiquitous applications in many
branches of science. The reason for this is two-fold. First, random ma-
trices posses a great degree of universality that is: eigenvalue properties of
large matrices do not depend on details of the underlying statistical matrix
ensemble. Second, random matrices can be viewed as non-commuting ran-
dom variables. As such, they form a basis of a non-commutative probability
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theory, where the whole matrix is treated as an element of the probabilistic
space. In the limit when the size of the matrix tends to infinity, the connec-
tion to the probability theory is becoming exact in the mathematical sense.
This is the celebrated free probability theory, where independent matrices
play the role of free random variables (hereafter FRV) [14]. Nowadays, data
sets are usually organized as large matrices whose first dimension is equal
to the number of degrees of freedom and the second to the number of mea-
surements. Typical examples are large economic/financial systems, wireless
networks and genetic data. In all these fields, FRV found already impor-
tant applications. It is, therefore, tempting to challenge the power of free
random variables on human brain data, where the recorded files can easily
take several gigabytes per person per session. In this work, we study the
simplest case of the so-called free Poisson process, that leads to a well known
Marchenko–Pastur [13] spectral distribution. We prefer to look at this pro-
cess from the perspective of FRV, which allows one for an easy incorporation
of time and/or space correlations into the data [4]. The eigenvalue density
of the empirical correlation matrix for uncorrelated independent identically
distributed (i.i.d.) Gaussian variables are given in the large matrix size limit
by the following distribution

ρ(λ) =
1

2πrλ

√
(λ+ − λ)(λ− λ−) (1)

which is usually called the Marchenko–Pastur distribution or Wishart dis-
tribution. Here, the rectangularity parameter r = N/T is the aspect ratio
between number of variables and the sample size in the data matrix. Ac-
cording to this formula, eigenvalues of the correlation matrix are located in
a finite support λ ∈ [λ−, λ+] whose end-points are λ± = (1 ±

√
r)2. This

result plays a similar role for multivariate analysis as normal distribution
for univariate statistics. One can see that, when r → 0 (T is much larger
than N) then ρ(λ) approaches a delta function, exactly as one expects for
genuine correlation matrix of uncorrelated i.i.d. variables. However, when
r = N/T is finite, the eigenvalue density is smeared. The case N = T
(r = 1) is critical, since then λ− = 0. When the number of measurements T
is less than the number of degrees of freedom N , one is unable to determine
the underlying correlation function and this is signaled by the appearance of
T–N zero eigenvalues in the spectrum. We shall not discuss this case here.
The distribution (1) serves us as a reference point — a benchmark to look
for non-trivial correlations between degrees of freedom in the data sets.



Collective Correlations of Brodmann Areas fMRI Study with . . . 1247

3. Experiment

Short description of the experiment itself is presented in this section.

Subject:
The subject was a 61 year old healthy male, right-handed and performed
the motor task with the right hand.

MR Data Acquisition:
Data was collected at the National Research Council of Canada Institute for
Biodiagnostics MR facilities in Winnipeg and approved by the NRC‘s Human
Research Ethics board. Informed consent was obtained prior to the subject’s
entry into the magnet. Experiments were conducted with a 3 Tesla Siemens
TRIO whole body magnet with a homogeneous birdcage coil. Conventional
BOLD imaging techniques were used. Whole brain EPI images were refer-
enced and acquired parallel to the AC–PC line (anterior/posterior commis-
sure, [15]). Single-shot blipped gradient-echo planar images were acquired
with the following parameters: TR/TE = 3000/60 msec, flipangle = 80◦,
64 × 64 matrix, 25 cm FOV. High-resolution T1-weighted gradient-echo
images will be obtained for the overlay of functional activation maps. Whole
brain axial slices were acquired using a spoiled gradient-echo sequence
(1.5 mm slice thickness, field of view = 25 cm, in plane resolution
0.94× 0.94 mm, TE = 5 ms, TR = 24 ms). During the motor task, the par-
ticipant was instructed to observe a display which indicated either “REST”
or “TAP FINGERS”. During the “rest” display, the subject was instructed
to simply lay still and rest. During the “tap fingers” display, the subject
performed an alternating finger tapping sequence of thumb to index, ring,
middle, and pinky finger repeatedly. The participant was instructed to pay
attention to this finger tapping task and to not perform it absent-mindedly.
The motor task paradigm consisted of four one-minute blocks interspersed
with one minute rest blocks, for a total of 8 minutes during which 163 vol-
umes were acquired. The subject started to tap his fingers on volume 1 and
continued in the following sequence: volumes 1–22, 43–62, 83–102, 123–142.

4. Data structure

Brain sizes and shapes vary greatly among individuals. This makes a di-
rect comparison of spatial data very difficult. Furthermore, even consecutive
surveys of the brain activity of the same person are prone to a translation
and rotation of the subject, resulting in sets of completely different slices.

In order to enable spatial comparisons between different scans and dif-
ferent individuals, a standardization is required that brings different mea-
surements to a common reference frame with the given coordinate system.
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A commonly used coordinate system is a Talairach space — a reference
frame proposed by Talairach in his atlas of anatomy [15]. We use it through-
out this paper.

The most important landmark for the Talairach space is the anterior
commissure. It is a fibre tract connecting the two hemispheres, running just
in front of the fornix. It is the origin of the Talairach space. The coordinates
are written in format (x, y, z), where the X axis refers to left–right, Y to
posterior–anterior, and Z to ventral–dorsal.

To transform a dataset onto the Talairach space, two transformations
are required. The first one is translation and rotation of the coordinate sys-
tem. Two points need to be fixed: the first is the aforementioned anterior
commissure and the second one is the posterior commissure. The line be-
tween them becomes the horizontal Y axis. Two other axes are defined by
the plane separating the hemispheres. In the next step, the scan is warped
onto standardized dimensions of the brain. This transformation is not linear
and takes into account both commissures as well as the farthest points of
the cerebrum in all directions. The standardized dimensions are: length —
172 mm, height — 116 mm, width — 136 mm. J. Talairach based his atlas
on postmortem sections of a subject with a less than average brain size,
therefore, in most cases the scans are shrunk in this step.

As mentioned in the introduction, fMRI techniques are capable of mea-
suring brain activity, through hemodynamic response, at the scale of mil-
limeters. The most common approach in the data analysis is to use purely
geometrical voxels and to neglect all the information about cellular organi-
zation and brain inner structure. In the present work, we use Brodmann
areas as elementary units for which we want to study correlations. The
cerebral cortex of a brain is divided into 52 Brodmann areas. The division
is based on cytoarchitectonics. For over century now, the Brodmann classi-
fication has been the subject of many intensive studies and still remains a
most widely known and frequently cited brain atlas. Introduction of such a
division for the data allows us to analyze correlations, taking into account
the physiological aspects and to compare our results with those known from
previous neurological studies.

In practice, each Brodmann area contains many voxels, so in the first
of the analysis we ascribe voxels to Broadmann areas by comparing voxels’
spatial coordinates with Brodmann regions boundaries. Then, for each time
slice and for each Brodmann area we calculate the mean value of fMRI signals
for all voxels in the given region. In this way, we obtain N time series, where
N is the number of analyzed Brodmann areas. These times series form the
basis for further analysis. The data points yit are indexed by an index
i = 1, . . . , N that runs over the set of Brodmann areas and t = 1, . . . , T
that runs over the set of T consecutive measurements at different times.
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One may ask whether the arithmetic mean should be used in this case,
since regions are not perfectly fitted. An optional approach would be to
calculate a weighted mean with a weight that varies with the voxel position
within the given Brodmann area. In this prescription, voxels nearer to the
region center would contribute more than those on boundaries. This would
be, however, more complicated and there would be still some ambiguity in
assigning the weights. We know, for example, that neurons responsible for
performing some tasks (e.g. processing visual stimulus) are located in one
Brodmann region, but this distribution is not uniform. Different aspects
of processing may cause activation in different parts of the region. So we
see, that calculation of the weighted mean might enhance some uncontrolled
effects and thus lead to larger uncertainties. To summarize, the simplest
choice corresponding to the arithmetic mean seems to be the easiest and for
the moment the best for our purposes.

5. Results

We calculate the Pearson correlation matrix for Brodmann areas. Given
a time series yit for ith Brodman region, t = 1, . . . , T , we first standardize it
to obtain a corresponding time series xit with zero mean and unit variance

xit =
1

σi
(yit − ȳi) , (2)

where ȳi is the estimated mean ȳi = 1
T

∑T
t=1 yit and σi the standard deviation

of the original time series, that is estimated by σ2i = 1
T−1

∑T
t=1(yit − ȳi)2.

Such a rescaling is quite standard and removes a potential heterogeneity
that might result in magnifying the importance of certain time series while
reducing the contribution of others. We can calculate the Pearson correlation
matrix using the standardized time series

Pij =
1

T − 1

T∑
t=1

(yit − ȳi) (yjt − ȳj)
σiσj

=
1

T − 1

T∑
t=1

xitxjt , (3)

where, in this particular case, the indices i and j run over the set of N = 41
Brodmann areas. The original atlas consists of 52 regions, but a few are too
small for fMRI resolution. For computational convenience, we have changed
the numbering of areas. The correspondence between the original atlas and
our numbering is given in Table I. The Pearson correlation matrix is sym-
metric and positive semidefinite. Moreover, it has unities on the diagonal,
so the trace of this matrix is equal N . Values of the matrix elements Pij lie
in the range [−1; 1] and are interpreted as correlation coefficients between
ith and jth Brodmann regions. Such a matrix can be diagonalized. Due to
the trace invariance, the sum of its eigenvalues is equal N .
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TABLE I

Indexing of Brodmann areas used in our analysis (first column) and its reference
to the standard atlas.

Area No. Ref. to Description
1 1 Primary Somatosensory C.
2 2 Primary Somatosensory C.
3 3 Primary Somatosensory C.
4 4 Primary Motor C.
5 5 Somatosensory Association C.
6 6 Premotor C.
7 7 Somatosensory Association C.
8 8 Part of the Frontal C.
9 9 Dorsolateral Prefrontal C.
10 10 Anterior Prefrontal C.
11 11 Orbitofrontal Area
12 17 Primary Visual Cortex
13 18 Secondary Visual Cortex
14 19 Associative Visual Cortex
15 20 Inferior Temporal Gyrus
16 21 Middle Temporal Gyrus
17 22 Superior Temporal Gyrus
18 23 Posterior Cingulate C.
19 24 Anterior Cingulate C.
20 25 Subgenual C.
21 26 Ectosplenial area 26
22 27 Piriform C.
23 28 Posterior Entorhinal C.
24 29 Retrosplenial Cingulate C.
25 30 part of Cingulate C.
26 32 Anterior Cingulate C.
27 34 Anterior Entorhinal C.
28 35 Perirhinal C.
29 36 Parahippocampal C.
30 37 Fusiform Gyrus
31 38 Temporopolar Area
32 39 Angular Gyrus
33 40 Supramarginal Gyrus
34 41 Primary Association C.
35 42 Auditory Association C.
36 43 Primary Gustatory C.
37 44 Pars Opercularis
38 45 Pars Triangularis
39 46 Dorsolateral Prefrontal C.
40 47 Inferior Prefontal Gyrus
41 48 Retrosubicular Area
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While individual entries of the Pearson correlation matrix tell us about
the mutual correlations of pairs of Brodmann regions, eigenvalues and eigen-
vectors of this matrix bear very interesting information about the collective
activity of the whole brain in which simultaneously participate many Brod-
mann areas. Such a collective behavior is signalized in principal component
analysis by the appearance of large eigenvalues sticking out from the bulk
of the eigenvalue spectrum given by the Marchenko–Pastur benchmark. As
we have discussed before, if the signals coming from the Brodmann regions
were completely uncorrelated, the density of eigenvalues would form the
Marchenko–Pastur distribution with the support [λ−, λ+] (1). In our case,
the end points of the spectrum would be located at λ− ≈ 0.25, λ+ ≈ 2.25
since the aspect ratio r = N/T ≈ 0.256. The corresponding probability
density function with such parameters is shown in figure 1.

Fig. 1. The Marchenko–Pastur distribution for r = 0.256.

TABLE II

10 largest eigenvalues of the empirical correlation matrix and the inverse partici-
pation ratios of the corresponding eigenvectors.

n nth eigenvalue
1 22.627
2 4.478
3 2.113
4 1.623
5 1.420
6 1.211
7 1.014
8 0.781
9 0.727

10 0.546
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Comparing the pdf and eigenvalues summarized in Table II, we see that
at least two of them are outliers and, therefore, must be related to actual col-
lective correlations of Brodmann areas. In the next subsections, we discuss
the parameter λ+ and the two largest eigenvalues in more detail.

5.1. λ+ as a cutoff criterion

The main idea behind principal component analysis is to find an or-
thogonal transformation that transforms a multivariate system of correlated
random variables to new coordinates that are linearly uncorrelated. They are
called principal components and, in the case of normal distributions, they
represent independent constituents (features) of the underlying statistical
system. The task is formally accomplished by a decomposition of the Pear-
son correlation matrix P = UTΛU , where U is an orthogonal one and Λ —
a positive semidefinite diagonal matrix. Such a transformation exists since
the matrix P is by construction symmetric and positive semidefinite. Using
the orthogonal transformation, we can construct time series corresponding
to principal components by calculating the weighted mean of initial data

x̄a(t) =
N∑
i=1

xi(t)Ui,a . (4)

From now on, we will refer to them as eigenseries. It is easy to show that
cov(x̄a, x̄b) = δa,b and var(x̄a) = λa.

The transformation is revertible because the matrix U is orthogonal. The
original time series can be recalculated using the following formula

xi(t) =
N∑
a=1

x̄a(t)Ua,i . (5)

One can see, according to the formula (5), that the larger the variance
of eigenseries, the larger its contribution to the original time series. The
variance of the eigenseries is equal to the corresponding eigenvalue of the
correlation matrix. The main idea behind PCA is to reduce the complexity
of the problem by neglecting a part of less significant degrees of freedom.
It is clear that one should first neglect those eigenseries that have smallest
variances. In practice, one often reduces the number of principal compo-
nents to only a few leading ones. It is an open question what is the optimal
choice of the number of significant principal components. In the literature on
the subject, the choice varies from study to study and the criteria are rather
heuristic. For example, one sometimes assumes that one should take as many
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eigenvalues as to keep their net contribution to the spectrum between 70%
and 90%, but the exact number depends on the desired level of the balance
between the confidence level and the feature space dimension.

Such a criterion does not take into account the proportion between num-
ber of features and the number of observations, and it contradicts the in-
tuition that the number of nonsignificant principal components should de-
pend on the signal-to-noise ratio. The gap can be filled up by a RMT
analysis. According to this analysis, random eigenvalues are described by
the Marchenko–Pastur distribution localized on an interval [λ−, λ+] (that is
sometimes called the bulk of the distribution). Eigenvalues that carry a non-
statistical information, typically lie outside this interval. The end-points of
the interval depend on the aspect ration N/T that is related to the signal-
to-noise ratio. Most of the PCA criteria neglect the dependence on N/T .
We propose a new criterion that directly refers to λ+ and thus also to N/T .
The main idea behind this criterion is that eigenvalues smaller than λ+ can
occur just as a result of a finite sample size. In the new criterion, we treat
λ+ as a cut-off value to select the eigenvalues corresponding to significant
principal components for which the signal exceeds the statistical noise.

5.2. Eigenseries corresponding to λ1
The largest eigenvalue of the Pearson correlation matrix for the ana-

lyzed dataset has a magnitude of 22.627 which is more than a half of the
whole spectrum. According to the Marchenko–Pastur criterion formulated
in the previous subsection, it is greater than λ+ and, therefore, the in-
formation content of the corresponding eigenvector exceeds the statistical
noise. The elements of this eigenvector calculated for our data are shown in
Table III. As one can see, the estimated values of the elements are of the
same order. This means that all Brodmann regions give rise to this eigenvec-
tor, or in other words, the corresponding brain activity involves all regions.
This result can be quantified by measuring the inverse participation ratio
for this eigenvector, the concept borrowed from the localization theory [16].
Actually for our purposes, it is more convenient to use its inverse that is
the participation ratio being a statistical measure of the number of non-zero
vector components. In quantum systems, participation ratio PR is defined
as PR = 1/(

∑
i p

2
i ), where pi is the probability that the particle is in the

state i, given by the modulus squared of the wave function. Since in our
case, the role of the “wave functions” is played by the eigenvectors vi, we
define the participation ratio as

PR(v) =
1∑N
i=1 v

4
i

.
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In the limiting case, when all but one elements of the eigenvector are zero,
PR = 1. Such eigenvectors are called fully localized. The other extreme case
is when all elements have the same value. In this case, PR = N and the
eigenvectors are called fully delocalized. In the intermediate cases, when
for example N − n elements are zero and n have the same non-zero value,
PR = n.

TABLE III

Eigenvectors to the first and second largest eigenvalues of the Pearson correlation
matrix.

eigv1 eigv2

0.099 0.31
0.17 0.15
0.17 0.19
0.18 0.18
0.16 0.21
0.17 0.22
0.17 0.2
0.17 0.042
0.18 0.063
0.07 −0.29
0.082 −0.31
0.17 0.063
0.19 0.055
0.18 0.079
0.17 −0.13
0.18 −0.091
0.18 −0.069
0.19 −0.059
0.18 0.058
0.061 −0.33
0.11 −0.069

eigv1 eigv2

0.12 −0.22
0.027 −0.17
0.1 −0.14
0.15 −0.14
0.17 0.071
0.11 −0.042
0.076 −0.036
0.12 −0.16
0.19 −0.095
0.14 −0.25
0.19 0.064
0.19 0.12
0.15 −0.067
0.17 −0.067
0.16 0.057
0.19 0.011
0.19 0.038
0.17 −0.052
0.13 −0.28
0.2 −0.042

The participation ratio for the first eigenseries is equal to 34.393 which
is relatively close to the maximum value of 41. This means that the first
eigenseries collects the signal nearly evenly from almost all Brodmann re-
gions. In the physiological sense, this corresponds to a strong collective
behavior in the brain. The participation ratio for this eigenseries is large
independently on whether the brain is in the idle state or in the process
of the “finger tapping” task. We have checked that by dividing the initial
dataset into two subsets corresponding to “tapping” and “idle” states, re-
spectively. The divided time series are shorter and thus rectangularity of
the data and eigenvalues of P matrix are a little different. Qualitatively,
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however, results are very similar. The largest eigenvalue is equal to 24.407
for tapping and 20.098 for the idle state. They are indeed very close. We
also check whether the corresponding eigenvectors are similar. The result is
shown in figure 2 as a plot and in figure 3 as an intensity map for Brodmann
regions in the Talairach model of the brain. Already looking at the plot we
see by inspection that the two plots in figure 2 are similar. Both they have
dips at the same positions even if differ a bit in the magnitude. If the un-
derlying process had been related to the finger tapping, the two eigenvectors
would have looked completely differently. This result provides us with an
indication that eigenseries is rather related to a generic brain activity and
not to any particular task-driven activity.

Fig. 2. The first eigenvector of the Pearson correlation matrix. The index of the
Brodmann areas is on the vertical axis and the value of the corresponding element
of the eigenvector is on the horizontal axis. Left figure shows the eigenvector for
the idle state, the right, one for tapping.

Fig. 3. Visualization of the first eigenvector of the Pearson correlation matrix in
the model brain. Values of the elements corresponding to different Brodmann areas
are mapped into a colored scale. Left figure — idle state; right one — tapping.
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5.3. Eigenseries corresponding to λ2
The second largest eigenvalue is equal to 4.478 and thus it is greater

than the cut-off λ+. Again, we expect that the information encoded in the
eigenvector bears some statistically relevant information that exceeds the
noise. The participation ratio for the eigenvector is equal to 16.42. This
indicates that less than a half of Brodmann areas take part in the corre-
sponding brain activity. As before, we divide our dataset into two separate
subsets for the tapping and the idle state. The corresponding eigenvectors
are presented as plots in figure 4. The horizontal axis shows the index of
the Brodmann region and the vertical the value of the vector element that
is proportional to its contribution to the collective behavior associated with
this eigenvector (principal component). The vectors are also visualized in
the brain model as colored Brodmann areas in figure 5. Unlike for the first
eigenvector, the differences here are significant between the vector for the
tapping and the idle state and easy to see. The largest deviation can be
seen in entries 9, 10, 20 and 40, which according to Table I correspond to
Brodmann regions No. 9, 10, 25 and 47. These are parts of the prefrontal
cortex (9, 10, 25) and frontal lobe (47). The former one is believed to be
responsible for motor tasks planning. While interpreting the results, one
should remember that the values of the eigenvector elements are related to
the contribution of the corresponding Brodmann region to the particular col-
lective behavior represented by the given eigenseries and not to the activity
of this region in the brain.

Fig. 4. The second eigenvector of the Pearson correlation matrix. The index of the
Brodmann areas is on the vertical axis and the value of the corresponding element
of the eigenvector is on the horizontal axis. Left figure shows the eigenvector for
the idle state and the right one for tapping.
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Fig. 5. Visualization of the first eigenvector of the Pearson correlation matrix in
the model brain. Values of the elements corresponding to different Brodmann areas
are mapped into a colored scale. Left figure — idle state; Right figure — tapping.

Actually, only the two leading eigenvalues pass the statistical significance
criterion based on the cut-off λ+ = (1+

√
r)2. Other eigenvalues are smaller

than λ+ and thus the associated with them principal components are basi-
cally shaped by statistical noise. Random Matrix Theory provides one with
more advanced tools to obtain more rigorous criteria for the statistics of
largest eigenvalues [17] close to the edge of the spectrum but the discussion
of this issue lies beyond the scope of this paper.

6. Conclusions

We have applied functional magnetic resonance imaging to study col-
lective correlations of Brodmann areas in human cortex. The analysis was
focused on the determination of collective correlations in which many Brod-
mann areas are simultaneously involved. To this end, we used principal com-
ponent analysis of the correlation matrix for fMRI intensities averaged over
voxels in individual Brodmann regions. PCA analysis was supplemented by
de-noising methods of Random Matrix Theory.

Our preliminary studies have shown that the principal component asso-
ciated with the largest eigenvalue of the Pearson correlation matrix for fMRI
signals is related to some physiological brain activity which is independent
of whether the brain is involved in a task-driven activity or not. We have
checked this by comparing the information content of the largest eigenvector
in the idle period and the period of tapping. This comparison has shown
that the eigenvector is basically statistically identical in the two periods. On
the contrary, we have found that the principal component associated with
the second largest eigenvalue is significantly different in the two states.

The principal components to the largest and the second largest eigenval-
ues differ also significantly in the number of Brodmann regions involved in
the associated brain activities. This number has been estimated statistically
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by the participation ratio that in the former case has been found to be of
the order of the number of studied regions, while in the latter one to be less
than a half of them. This means that in the first activity almost all Brod-
mann areas take part, while in the second one only a selected subset. The
analysis, however, was based on a single subject only, so it can be treated
as a strong indication rather than the final result. We believe though that
our preliminary studies reflect a generic pattern of correlations but it is to
be verified on a larger group of subjects.

Using a random matrix criterion, we have also shown that the remaining
eigenvalues of the Pearson correlation matrix belong to the noisy part of
the spectrum which means that the information content associated with the
corresponding principal components is mostly dominated by the statistical
noise as an effect of low statistics. Generally, in spectral analysis of multi-
channel data, the signal-to-noise ratio is related to the aspect ratio of the
data set that is calculated as the ratio of independent measurements to the
number of data channels. This criterion is derived by the analysis of the
benchmark for noise-driven data using Random Matrix Theory. In neuro-
science, all typical experiments like fMRI, EEG or MEG are related to the
analysis of multivariate data. We believe, it is very useful to think in terms
of random matrices and free probability while analyzing this type of data.

Using this methodology, one can generalize the analysis to the case when
in addition to correlations coming from collective behavior of many channels
also temporal correlations are present in the data. In this case, one can
also study lagged correlations at different times by introducing the lagged
correlations estimator 1

T−1−τ
∑T−τ

t=1 xitxjt+τ which is a natural extension
of Eq. (3) for the case of τ > 0. Such correlation matrices are, however,
generically non-Hermitian and require new developments in free probability.
The first step in this direction has been done in [18].

fMRI measurements have a good spatial resolution but rather poor tem-
poral resolution. On the contrary, EEG measurements have a good temporal
resolution and rather a poor spatial one. It would be tempting to attempt
to combine the two methods in the future in a way allowing one to measure
brain activity at localized brain regions with a better temporal resolution.
This would improve the signal-to-noise ratio in the spectral analysis of the
Pearson correlation matrix for Brodmann areas and increase the informa-
tion content in a larger number of principal components. In effect, one could
extend the analysis beyond the components associated with the two largest
eigenvalues.
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