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In this paper, we discuss three methods to calculate energy splitting
in cosine potential on a circle, Bloch waves, semi-classical approximation
and restricted basis approach. While the Bloch wave method gives only
a qualitative result, with the WKB method we are able to determine its
unknown coefficients. The numerical approach is most exact and enables
us to extract further corrections to previous results.
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1. Introduction

In this article, we study tunneling in quantum mechanical cosine poten-
tial with periodic boundary conditions. The Hamiltonian of this system is
given by the formula

H = 1
2P

2 +
1

4π2g
(1− cos (2π

√
gX)) (1)

with X ∈ (0, g−1/2K), where K is the number of minima and with periodic
boundary conditions. For shorter notation, we put V (x)= 1

4π2 (1−cos(2πx)).
Within perturbative calculus vacuum energy of the system is degenerate.
Each ground state is localized in different minimum. Tunneling is respon-
sible for splitting of the energies. In general, this effect cannot be studied
analytically. One can give a first approximation to the splitting using semi-
classical approximation (or WKB approximation) which was developed by
G. Wentzel, H. Kramers and L. Brillouin in 1926. In this approach, one finds
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that the ground energy is shifted by a quantity which is a nonperturbative
function of coupling constant. This classical solution is called an instanton.

Validity of the instanton calculus is limited to systems with widely sepa-
rated minima with a large potential barrier in between. Nevertheless, it has a
vast range of applications to modern field theories. In the Yang–Mills theory
with SU(2) symmetry group zero energy states are pure gauge (see [1, 2]).
Such fields can be viewed as mappings of SU(2) group into itself and they
can be divided into sectors due to topological properties. These sectors are
labeled by topologically invariant Pontryagin index which takes only integer
values. Clearly, there is no continuous pure gauge transformation connect-
ing two topological vacua belonging to different sectors. There are, however,
configurations with non-vanishing field strength which interpolate between
different topological vacua |n〉, where n is the Pontryagin index. A special
configuration is the BPST instanton which is the minimal action path con-
necting |n〉 and |n+ 1〉 in the Euclidean space. The presence of the BPST
instanton has dramatic consequences for structure of the real vacuum. The
true vacuum of the theory is not a single topological vacuum |n〉 but a super-
position of all such vacua |θ〉=

∑
n e

inθ |n〉, where θ is called vacuum angle.
Such system can be modeled in one dimensional quantum mechanics by

a periodic potential. According to the Bloch theorem, the energy spectrum
consists of continuous bands. Each eigenenergy is labeled by an angle θ and
energy states are superpositions of states localized in single minima. Unlike
in the quantum mechanical case, in the Yang–Mills theory only one value
of θ is admissible due to superselection rule. No energy bands are present
and there is a mass gap between the vacuum and the first excited state.
The vacuum angle in QCD is responsible for violating CP symmetry. On
the other hand, there is no experimental evidence for CP breaking which
imposes a limit on the angle |θ| < 10−9 [3].

The periodic potential in the weak coupling limit shares many features
of the double well potential which was extensively studied since 1960s [4–9].
It was discovered that there are further corrections to the WKB approxima-
tion which can be derived from the modified Bohr–Sommerfeld quantization
condition [10]. They come from multi-instanton molecules (i.e. a classical
path in the Euclidean space which is composed of instantons that are close
to each other) and contribute to the ground energy much weaker than a
single instanton. Secondly, each instanton molecule contribution (including
single instantons) is multiplied by a series, which is presumably asymptotic.
Moreover, as stated recently by Ünsal [11], interactions between instantons
can heal non-Borel summability of perturbation series for potentials with
degenerate global minima. All above mentioned effects take place also in
the case of periodic potential.
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One has to keep in mind that instanton considerations neglect perturba-
tive contributions to energies, which are much bigger. Secondly, there are
higher order corrections to instanton contributions which become significant
at larger coupling. It is understandable that there is a need to verify state-
ments concerning instantons and see in what regime of the coupling constant
the instanton picture is valid. In quantum mechanics, there is a very efficient
approach, called restricted basis method [12]. It originates from the vari-
ational Tamm–Dancoff method [13]. In the restricted basis approach, one
takes basis states |n〉 with n smaller than a certain large cut-off and finds
energies in this subspace. A price for taking many states, rather than a few
trial functions as in the original paper by Dancoff, is that the calculations
have to be performed numerically. On the other hand, it is very efficient in
one dimensional quantum mechanics. Indeed, a good convergence of ener-
gies with growing cut-off has been observed numerically [14]. Accuracy of
this technique is limited only by precision of computations and the size of
the Hilbert space. Apart from these limitations, this method is exact and
provides a powerful tool for testing WKB approximation.

Plan of this paper is the following. In Section 2 we present the traditional
approach to periodic potential with the use of Bloch waves. In Sections 3
we apply the instanton calculus in order to find low energies of the system.
Results of the semi-classical approximation are consistent with preceding
section and give more quantitative answer. Section 4 provides the most
complete answer. It confirms results obtained by the WKB method and
show further perturbative corrections. A few coefficients of the series are
extracted from numerical data.

2. Bloch waves

Let us first consider system of infinite size, i.e. K =∞. According to the
Bloch theorem, the lowest energies of the system form a continuous band of
width ∆. They are usually parameterized by an angle

E(θ) = Ē − ∆

2
cos θ , θ ∈ (−π, π) . (2)

Corresponding wavefunction is a plane wave modulated by a periodic func-
tion uθ(x) with period g−1/2, which is the period of the potential

ψθ(x) = exp
(
iθxg1/2

)
uθ(x) . (3)

Both, Ē and ∆ depend on specific shape of the potential and are not deter-
mined by the Bloch theorem.
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For finite K, the wavefunction satisfies periodic boundary condition
ψθ(0) = ψθ(Kg

−1/2) and only discrete values of θ are allowed. They are:
θ = 2πj/K with j = −K/2 + v1, . . . ,K/2 for even K and j = −(K −
v1)/2, . . . , (K − 1)/2 for odd K. One can see that energies are doubly de-
generate: E(θ) = E(−θ) for all θ except θ = 0, π.

The Bloch theorem gives a qualitative answer to what are low energies
of the system. Still, values of the mean energy of the band Ē and width ∆
need to be found.

3. WKB approximation

In this section, we will show how lowest energies of the Hamiltonian may
be obtained in the well known instanton calculus. Analogous calculation
was given in detail for the double well potential by Coleman in [15]. A gen-
eral discussion concerning periodic potentials can be found in [16]. These
methods will be applied to the special case of cosine potential with periodic
boundary conditions. The transition amplitude from minimum x = 0 to
x = g−1/2k, k = 0, . . . ,K − 1 in the Euclidean time T may be expressed as
a path integral 〈

g−1/2k
∣∣∣e−TH ∣∣∣0〉 = N

∫
D[x(τ)]e−SE[x(τ)] , (4)

where N is a normalization factor. The integral is over trajectories which
satisfy boundary conditions x(−T/2) = 0, x(T/2) = g−1/2k. The Euclidean
action SE is

SE[x(τ)] =

T/2∫
−T/2

dτ
(
1
2 ẋ(τ)2 + g−1V (g1/2x(τ))

)
. (5)

A trajectory x̄(τ) that minimizes the action for k = 1 is called an instanton.
For T → ∞, analytical solution yields x̄(τ) = 2

πg
−1/2 arctan(eτ ) with S0 ≡

SE[x̄(τ)] = 2/π2g. For k > 1, minimal solutions are composed of many such
instantons and are called multi-instanton paths. Each instanton in such path
connects two neighbor minima and begins where its predecessor ended. The
integral (4) is calculated in Gaussian approximation around multi-instanton
paths and yields

N
∫
D[x(τ)]e−SE[x(τ)] =

1√
π
e−T/2

∞∑
n=0

cn,k
1

n!

(√
S0
2π
T

)n
Kne−nS0 . (6)
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The coefficient cn,k is the number of topologically different n-instatnon con-
figurations which satisfy appropriate boundary conditions. Constant K is

K =

 det
[
− d2

dτ2
+ 1
]

det ′
[
− d2

dτ2
+ V ′′

(
g−1/2x̄(τ)

)]
1/2

= 2 . (7)

Determinants in the above formula are understood as products of all eigen-
values and symbol ′ indicates that the lowest eigenvalue is omitted. Calcu-
lation of K is postponed to Appendix A.

Let us now calculate cn,k. Obviously, c0,k = δ0,k and the boundary
condition is cn,K ≡ cn,0. Let x(τ) be an n-instanton path ending at kth
minimum. Then, the penultimate instanton has to end at minimum k−1 or
k+1. Therefore, cn,k = cn−1,k−1+cn−1,k+1. Recursive relations can be writ-
ten as a matrix equation cn,k =

∑
lRklcn−1,l with Rkl = δk−1,l + δk+1,l. Let

us notice that eigenvalues of R are λj = 2 cos(2πj/K) with corresponding
eigenvector (vj)k = exp(2πijk/K). Then, cn,k =

∑
j αj(vj)kλ

n
j . Coefficients

αj are determined from initial condition c0,k = δ0,k and yield αj = 1/K for
all j. Finally,〈

g−1/2k
∣∣∣e−TH ∣∣∣0〉

=
1

K
√
π
e−T/2

∞∑
n=0

K−1∑
j=0

e2πijk/K
1

n!

(
cos(2πj/K)K

√
2S0
π
e−S0T

)n

=
1

K
√
π
e−T/2

K−1∑
j=0

e2πijk/K exp

(
4 cos(2πj/K)

1√
π3g

e−2/π
2gT

)
. (8)

One can use the identity |E〉 〈E| = 1 to expand the amplitude
〈g−1/2k|e−TH |0〉 as follows〈

g−1/2k
∣∣∣e−TH ∣∣∣0〉 =

∑
E

〈
g−1/2k

∣∣∣E〉 〈E|0〉 e−TE . (9)

By comparison with formula (8), we extract energies and values of wave-
functions at minima

Ej = 1
2 − 4 cos(2πj/K) 1√

π3g
e−2/π

2g , (10)〈
g−1/2k

∣∣∣Ej〉 =
1√
K
√
π
e2πijk/K . (11)

Note that Ej = EK−j . Therefore, each energy for j = 1, . . . , bK−12 c is
degenerate. The lowest energy E0 is always non-degenerate and EK/2 is
non-degenerate for even K.
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For infinite K, the parameter θ = 2πj
K becomes continuous. Energies and

eigenstates take the same form as in (2) and (3)

Eθ = 1
2 − 4 cos(θ) 1√

π3g
e−2/π

2g , (12)〈
g−1/2k

∣∣∣θ〉 = π−1/4eiθk . (13)

To each energy Eθ = E2π−θ correspond two states |θ〉 and |2π − θ〉.
According to [7], there are perturbative corrections to formula (12)

Ej =
∞∑
k=0

akg
k − 2 cos(2πj/K)

√
2S0
π
e−S0

∞∑
k=0

bkg
k +O

(
e−2S0 log(g)

)
(14)

with a0 = 1
2 , b0 = 1.

4. Restricted basis approach

Yet another technique, restricted basis method, can be used to obtain
eigenenergies of the Hamiltonian. It is performed after [14]. Instead of the
Fock basis, we use plane waves which are more convenient in the case of
periodic potential

〈x|n〉 =
g1/4√
K

exp
(

2πing1/2x/K
)
. (15)

The Hamiltonian is symmetric under ZK group transformation. Let T be
the shift operator: T |x〉 = |x+ g−1/2〉. Its action on the basis vectors is
T |n〉 = exp(−2πin/K) |n〉. Since [H,T ] = 0, the Hamiltonian H can be
diagonalized on each eigensubspace of T , separately. There are K eigensub-
spaces of T , Hj,K = span{|n〉j , n ∈ Z}, where |n〉j = |j + nK〉. Then, the
Hamiltonian is an infinite tridiagonal matrix

j〈m|H|n〉j = g

(
2π(j + nK)

K

)2

δm,n +
1

8π2g
(2δm,n − δm,n−1 − δm,n+1) ,

m, n ∈ Z . (16)

Let us note that the Hamiltonian H in sector Hj,K is the same as in the
sector Hlj,lK for any l ∈ N. Therefore, the spectrum for K = ∞ contains
all energies from sectors Hj,K′ with p and K ′ being coprime integers. The
set of lowest energies from all sectors form a dense set in an interval which
is the continuous energy band for infinite K.

In order to obtain energies, one has to introduce a cutoff |n| < N and
use numerical methods to find energies. Because the matrix is sparse, the
Arnoldi algorithm is very efficient.
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One of the most important issues is the rate of convergence. We shall
note that in all known cases the convergence of energies is exponential if the
spectrum is discrete, and it converges roughly like N−1 if it is continuous.
For each finite K, the spectrum is discrete. For K = ∞, the spectrum is
continuous. However, it is discrete in each sectorHj,K separately, while there
is an infinite number of sectors. Convergence in each sector is exponential.
Energies as functions of cutoff N are presented in Fig. 1.

10 20 30 40 50 60 70
0

5

10

15

20

N

E

Fig. 1. The convergence of energies with growing cutoff N for K = 4 and g = 10−4.
Each line represents four energies which are almost degenerate. For larger g, the
convergence is even faster.

We are interested in calculating the width of the energy band∆ = EK/2−
E0, where Ej is the ground energy in the sector Hj,K . The smallest value of
coupling constant used in our computations was g = 9.13×10−6. Precision of
computations is determined by value of∆ for different g. For g = 9.13×10−6,
it is ∆ = 2.6× 10−9637. Needed cutoff was N = 13 000.

5. Comparison of results

We will first check the agreement between the Bloch wave approach and
the WKB method. By comparing (2) and (12), one can read the mean
energy and width of energy band in (2)

Ē = 1
2 , (17)

∆ = ∆WKB ≡ 8
1√
π3g

e−2/π
2g . (18)
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From (13), we can see that |θ〉 is an eigenstate of the translation operator T
with eigenvalue eiθ. Thus, the wavefunction 〈x|θ〉 has the same form as the
Bloch wave (3).

Comparison of the WKB and restricted basis methods requires more re-
fined analysis. The semiclassical method neglects perturbative corrections to
energies, which are seen in the other approach. Therefore, we will compare
only the width of the low energy band ∆, which is purely nonperturba-
tive. The semiclassical approximation is valid for small g, so we expect that
∆num/∆WKB − 1 → 0 as g → 0. This convergence is shown in Fig. 2. We
can read from (14) that the ratio ∆num/∆WKB is a power series

∆num/∆WKB =
∞∑
k=0

bkg
k . (19)

10-5 10-4 0.001 0.01 0.1

10-4

0.001

0.01

0.1

1

g

D
nu

m

D
W

K
B

-
1

Fig. 2. Relative difference between semiclassical and numerical results for splitting
of energies vanishes as g → 0. The linear convergence on the log–log plot indicate
that there are power corrections to the WKB prescription.

It turns out that numerical results are precise enough to extract several
coefficients bk. It appears that 25kπ−2kbk are integers well within error
estimates. Their numerical values are
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k 25kπ−2kbk

0 1 ± 6.3× 10−46

1 −14 ± 8.6× 10−40

2 −118 ± 5.1× 10−34

3 −3588 ± 1.8× 10−28

4 −150010 ± 4.0× 10−23

5 −7665092 ± 6.2× 10−18

6 −454322300 ± 6.7× 10−13

7 −30378374408 ± 5.3× 10−8

8 −2253225850810 ± 3.0× 10−3

9 −183329494073630 ± 1.2× 102

Also perturbative corrections can be extracted from any Ej . However,
they can be found more easily up to high orders by a Rayleigh–Schrödinger
perturbation theory in a selected minimum of the potential.

We also check whether energy dependence on the parameter θ = 2πj/K
agrees with (2). Results are presented in Fig. 3. One can see a very nice
agreement for g = 0.02. It is violated for larger values of coupling constant.

0 2 4 6 8 10

0.47370

0.47375

0.47380

0.47385

0.47390

0.47395

0.47400

0.47405

j

E
j

Fig. 3. Dependence of energies on the index j for K = 20, g = 0.02. There
are 2 non-degenerate and 9 doubly degenerate energies. Dots represent numerical
data. The continuous line is function E(θ) = Ē − ∆

2 cos θ with θ = 2πj/K, Ē =

EK/4, ∆ = EK/2 − E0. Agreement is weaker for larger values of g.

Structure of wavefunctions is consistent with Bloch waves. Indeed, since
the state |Ej〉 is in the sector Hj,K , it is an eigenvector of translation opera-
tor T corresponding to eigenvalue exp(−2πij/K). Therefore, the wavefunc-
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tion ψj(x) = 〈x|Ej〉 satisfies〈
x+ g−1/2

∣∣∣Ej〉 = 〈x|T †|Ej〉 = exp(2πij/K) 〈x|Ej〉 , (20)

i.e. it is a periodic function modulated by a plane wave.

6. Summary

We have considered three approaches to find low energies for the cosine
potential in the small coupling limit — Bloch waves, instanton calculus and
restricted basis approach. They all gave consistent results, both for finite
and for infinite K. Wavefunctions corresponding to each energy also have
the same form. While the Bloch theorem gave us only qualitative results,
we found values of the mean energy Ē and band width ∆ with the use of
instanton calculus.

Next, we established agreement of the WKB approximation and the
restricted basis space method. It turned out that values of Ē and ∆ deter-
mined by the former method are only zero order approximation. We found
perturbative corrections to ∆ with the numerical technique while calculating
corrections to Ē is trivial.

Another interesting issue is summability of aforementioned series. The
perturbative series of ground energy is known to be asymptotic and thus
not summable. Though, its Borel sum can be given a meaning when one
includes correction due to interactions of instantons. The author addresses
this problem in [17].

The series
∑
bkg

k also appears to be asymptotic. From coefficients (5),
one can estimate the asymptotic behavior bk ≈ −1.1 × 2.8kk!. The Borel
sum of this series may be given a meaning after including corrections due to
interaction of triples of instantons. General scheme of resummation for all
orders is proposed in [11].

Appendix A

Calculation of the determinant

We will now show the method of calculating ratio of determinants

K =

 det
[
− d2

dτ2
+ 1
]

det ′
[
− d2

dτ2
+ V ′′

(
g−1/2x̄(τ)

)]
1/2

. (A.1)
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Let Li = − d2

dτ2
+Wi(τ) and let ψ(i)

λ (τ) satisfy

Liψ
(i)
λ (τ) = λψ

(i)
λ (τ) , ψ

(i)
λ (−T/2) = 0 ,

d

dτ
ψ
(i)
λ (τ)

∣∣∣∣
τ=−T/2

= 1 .

(A.2)
We say that λ is an eigenvalue of Li if ψ

(i)
λ (T/2) = 0. It was shown in [15]

that for two bounded functions W1(τ) and W2(τ) it holds that

det
[
− d2

dτ2
+W1(τ)

]
det
[
− d2

dτ2
+W2(τ)

] =
ψ
(1)
0 (T/2)

ψ
(2)
0 (T/2)

. (A.3)

Let us take W1(τ) = 1 and W2(τ) = V ′′(g−1/2x̄(τ)). One can check that
the solution of (A.2) for i = 1, λ = 0 is ψ(1)

0 (τ) = sinh(τ + T/2). The two
solutions of the equation L2y(τ) = 0 are

y1(τ) = cosh−1(τ) ,

y2(τ) = sinh(τ) + τ cosh−1(τ) . (A.4)

Function ψ(2)
0 (τ) is a superposition of those and for large T it reads ψ(2)

0 (τ) ≈
1
4e
T/2y1(τ) + e−T/2y2(τ). Green’s function for operator L2 is

G(τ, τ ′) =

{
−W−1y1(τ ′)y2(τ) for τ > τ ′ ,
−W−1y1(τ)y2(τ

′) for τ < τ ′ ,
(A.5)

where W ≡ y1(τ)ẏ2(τ) − ẏ1(τ)y2(τ) = −2 is the Wronskian. Let λ0 be the
smallest eigenvalue of L2. Then,

0 = ψ
(2)
λ0

(T/2) = ψ
(2)
0 (T/2)−

T/2∫
−T/2

dτ ′G
(
T/2, τ ′

)
λ0ψ

(2)
λ0

(
τ ′
)
≈ 1− eT

8
λ0 ,

(A.6)
where we used the fact that ψ(2)

λ0
≈ ψ

(2)
0 to calculate the integral. It follows

that λ0 ≈ 8e−T . Finally,

K =
√
λ0

 det
[
− d2

dτ2
+ 1
]

det
[
− d2

dτ2
+ V ′′

(
g−1/2x̄(τ)

)]
1/2

=
√
λ0

(
ψ
(1)
0 (T/2)

ψ
(2)
0 (T/2)

)1/2

= 2 .

(A.7)



1272 Z. Ambroziński

REFERENCES

[1] M.A. Shifman, Lect. Notes Phys. 62, 1 (1999).
[2] T. Schäfer, E.V. Shuryak, Rev. Mod. Phys. 70, 323 (1998)

[arXiv:hep-ph/9610451].
[3] R.J. Crewther, P. Di Vecchia, G. Veneziano, E. Witten, Phys. Lett. B88, 123

(1979) [Erratum ibid. B91, 487 (1980)].
[4] C.M. Bender, T.T. Wu, Phys. Rev. 184, 1231 (1969).
[5] W.E. Caswell, Annals Phys. 123, 153 (1979).
[6] Y. Meurice, Phys. Rev. Lett. 88, 141601 (2002) [arXiv:hep-th/0103134].
[7] J. Zinn-Justin, Nucl. Phys. B192, 125 (1981).
[8] J. Zinn-Justin, Nucl. Phys. B218, 333 (1983).
[9] E.B. Bogomolny, Phys. Lett. B91, 431 (1980).
[10] U.D. Jentschura, J. Zinn-Justin, J. Phys. A 34, L253 (2001)

[arXiv:math-ph/0103010].
[11] M. Unsal, Phys. Rev. D86, 105012 (2012) [arXiv:1201.6426 [hep-th]].
[12] J. Wosiek, Nucl. Phys. B644, 85 (2002) [arXiv:hep-th/0203116].
[13] S.M. Dancoff, Phys. Rev. 78, 382 (1950).
[14] M. Trzetrzelewski, J. Wosiek, Acta Phys. Pol. B 35, 1615 (2004)

[arXiv:hep-th/0308007].
[15] S.R. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge

University Press, 1988.
[16] S.R. Coleman, Subnucl. Ser. 15, 805 (1979).
[17] Z. Ambrozinski, J. Wosiek, Acta Phys. Pol. B 44, 49 (2013)

[arXiv:1210.3554 [quant-ph]].

http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1016/0370-2693(79)90128-X
http://dx.doi.org/10.1016/0370-2693(79)90128-X
http://dx.doi.org/10.1016/0370-2693(80)91025-4
http://dx.doi.org/10.1103/PhysRev.184.1231
http://dx.doi.org/10.1016/0003-4916(79)90269-0
http://dx.doi.org/10.1103/PhysRevLett.88.141601
http://dx.doi.org/10.1016/0550-3213(81)90197-8
http://dx.doi.org/10.1016/0550-3213(83)90369-3
http://dx.doi.org/10.1016/0370-2693(80)91014-X
http://dx.doi.org/10.1088/0305-4470/34/18/101
http://dx.doi.org/10.1103/PhysRevD.86.105012
http://dx.doi.org/10.1016/S0550-3213(02)00810-6
http://dx.doi.org/10.1103/PhysRev.78.382
http://www.actaphys.uj.edu.pl/vol35/abs/v35p1615
http://dx.doi.org/10.5506/APhysPolB.44.49

	1 Introduction
	2 Bloch waves
	3 WKB approximation
	4 Restricted basis approach
	5 Comparison of results
	6 Summary
	A 

