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Three-dimensional electrodynamics in the spinor (i.e. two-component)
version is considered. With the use of the so-called Salam’s vertex, the
infinite hierarchy of Dyson–Schwinger equations is turned into a set of
four self-consistent equations for four parameters describing the infrared
behavior of fermion and boson propagators. It is shown numerically, that
this set of equations has solutions, at least for certain values of gauge
parameter. For weak coupling (i.e. for heavy fermions), the values of all
these quantities are found analytically. In the case of massless bare fermion,
masses of both particles are generated leading thereby to parity breaking.
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1. Introduction

Studying gauge field theories in low-dimensional space-time allowed for
investigations both perturbative and nonperturbative aspects of quantum
field theory. Among Abelian models of this kind, the particular mention de-
serve quantum electrodynamics in two dimensions — the so-called Schwinger
Model (SM) [1] — and in three dimensions. The former, due to its full
solvability, at least in the massless case, has become particularly fruitful
and many nonperturbative effects have been discovered and analyzed. One
can mention here the generation of the gauge boson mass, via the so-called
Schwinger mechanism, fermion confinement, chiral symmetry breaking, the
presence of instantons and the θ-vacuum (see, for instance, [2–6]), bound
state formation [7] but also the status of the perturbation series [8–10]. Due
to these nontrivial features, the Schwinger Model has become a testing lab-
oratory for various aspects of the theory of strong interactions. The massive
version of this model in no longer solvable but is still attractive thanks to
its relative simplicity and remarkable physical content [11, 12].

(1297)



1298 T. Radożycki

Quantum electrodynamics in three dimensions — the so-called Planar
QED — plays an important role in understanding some aspects of QFT
too. One can recall here confinement [13–17], chiral symmetry breaking
[15, 17–20], bound states [21–23] and the analysis of the gauge dependence of
the nonperturbative results with various approximations [24, 25]. Contrary
to the SM, the photon becomes in QED3 a dynamic particle and corresponds
to real degree of freedom, although it has some peculiar features connected
with the fact that the magnetic field is now a (pseudo) scalar and electric
one a two-component vector restricted by the Gauss law. The number of
dimensions attributes to this model also other specific features. The model
may be formulated in two inequivalent versions: the fundamental fermion
field may be chosen as four- or two-component one. In the latter — which we
concentrate on in the present work — the most interesting is the appearance
of the topological photon mass term [26]. This term may be, just in three
dimensions, added to the standard Lagrangian from the very beginning, since
it exhibits both Lorentz and gauge (up to the surface terms) invariance —
such a theory is called the Chern–Simons QED3 — but even if absent, it is
generated by the interactions with fermions.

Both low-dimensional models find their applications also beyond QFT:
for instance, in condense matter physics [27–29].

Many of the above mentioned phenomena, as confinement, bound states
or topological aspects, require for their study nonperturbative language. The
problems with perturbation calculations in QED3 manifest themselves also
through ambiguity in proper regularization [26]. The set of Dyson–Schwinger
(DS) equations — which, as one believes, contains the whole information
about the quantum system — constitutes the main tool in nonperturbative
investigations of QFT. The common problem in this approach is, that these
equations form an infinite hierarchy, the solution of which seems a hopeless
task. To deal with this set, one is forced to truncate this hierarchy at
some level. In two dimensions (in SM), thanks to two gauge symmetries of
the theory, it turned out to be possible to express the three-point (vertex)
function by fermion propagator (i.e. two-point function) and obtain the close
equation for the latter. Not a whole hierarchy, but just one equation, which
turned out to be easily solvable [30, 31]. Similar method, but now applied
to higher functions (five-point), allowed to write a self-consistent equation
for two-fermion Green’s function [32].

In greater number of dimensions, i.e. in QED3 and QED4, gauge symme-
try is, however, not sufficient to fully express fermion–photon vertex function
by lower ones and, therefore, we are obliged to assume a certain ansatz for
Γµ(p+k, p). Gauge covariance constitutes here a hint but does not solve the
whole problem of truncating the hierarchy. Various such ansätze have been
proposed based on kinematic properties, renormalizability and requirement
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of satisfying the Ward–Takahashi identity. One can mention in this context
the Ball–Chiu [33], Burden–Roberts [34] and Curtis–Pennington [35] ver-
tices with further improvements [36, 37]. In the present work, however, we
pay particular attention to the vertex introduced by Salam [38] and applied
afterwards in the so-called gauge technique [39–42]. The advantage of using
Salam’s ansatz in the form (16), apart from its elegance, is that Feynman in-
tegrations in DS equations, are similar to those of perturbation calculations
for which the computational technique is well elaborated.

The main idea of the present work is similar to that of our previous pa-
per [43] on QED4, where it was successfully applied and the correct infrared
form of propagators was established without the need of infinite renormaliza-
tion. Here again we assume the possible infrared behavior of propagators up
to a set of certain unknown constants and try to determine these constants
from the requirement of self-consistency. One has to emphasize that in this
approach loop integrations are performed with infrared forms of Green’s
functions as integrands. Since we do not wish to extend the results beyond
the infrared domain, this procedure is fully acceptable. Firstly, we have to
note that right-hand sides of DS equations (18) and (27) have the form of
convolutions, so the infrared behavior of the integrals should be dictated
by the infrared behavior of integrands, secondly, our method should not be
worse than ordinary perturbation calculations, where free functions are used
as integrands. Finally, one has to stress that Salam’s ansatz (16) in the
infrared domain becomes exact.

This work is organized as follows. In Sec. 2, we collect the main defini-
tions and properties of the model. In Sec. 3, we formulate the assumptions
as to the infrared behavior of the photon propagator, fermion propagator
and fermion–photon vertex. The following two sections are devoted to ob-
taining, from the DS equations, the set of four nonlinear equations for four
parameters: β, τ , δm and Z3. In the last section, we present the numeri-
cal results and the dependence of all the parameters on the strength of the
interaction. We find also the analytical results for the case of weak coupling.

2. Basic definitions and identities

Below, we briefly summarize conventions used in this work and specify
basic properties of Dirac gamma matrices in three dimensions. As to the
set of matrices γµ, we use the two-dimensional, i.e. spinor representation in
which all gammas may be expressed by Pauli matrices in the following way

γ0 = σ3 =

(
1 0
0 −1

)
, γ1 = iσ1 =

(
0 i
i 0

)
,

γ2 = iσ2 =

(
0 1
−1 0

)
, (1)



1300 T. Radożycki

and matrix γ5 does not exist. Due to this nonexistence, the phenomenon
of chiral symmetry breaking can be investigated only in four-dimensional
representation, unless we introduce an even number of flavors in the model.

The metric tensor gµν and the totally antisymmetric tensor εµνα are
defined as follows

g00 = −g11 = −g22 = 1 ,

ε012 = −ε102 = 1 , (2)

with all other nonzero elements of the latter obtained by cyclic permutations.
In three dimensions, the peculiar feature of the choice (1) is that, apart

from ordinary relations

{γµ, γν} = gµν , Tr γµ = 0 , Tr [γµγν ] = 2gµν ,

Tr [γµγνγργσ] = 2 (gµνgρσ − gµρgνσ + gµσgνρ) , (3)

also the trace of the product of three (i.e. odd number) gamma matrices has
a nonzero value

Tr [γµγνγρ] = −2iεµνρ . (4)

This identity is (mathematically) responsible for the photon mass generation
by the vacuum polarization loop.

In Secs. 4 and 5, we will also make use of other identities, which can be
easily derived

εµναγµγ
βγν = 2εµβαγµ + 2iγαγβ ,

εµναγµγνkα = −2i 6k ,
γµ6k γµ = −6k . (5)

The Lagrangian density of three-dimensional electrodynamics with gauge
fixing term has the following form

L(x) = Ψ(x) (iγµ∂µ −m0 − e0γµAµ(x))Ψ(x)

−1

4
Fµν(x)Fµν(x)− λ

2
(∂µA

µ(x))2 , (6)

where λ is the gauge parameter. The quantities m0 and e0 are the bare
fermion mass and the bare coupling constant (charge), respectively, and the
former may eventually be put equal to zero leading to the parity invariant
theory (at least on the classical level). It is worth mentioning that coupling
constant has a dimension of

√
mass and, as a result, the quantum theory is

superrenormalizable. The strength tensor Fµν has only three independent
elements, two of which (F 10 and F 20) constitute the two-component vector
of electric field, and one (F 12) pseudoscalar magnetic field.
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It is well known [26], that in three space-time dimensions to this La-
grangian density may be added the so-called Chern–Simons (CS) term, pro-
portional to εµναAµ∂νAα. Although it is not invariant under gauge trans-
formations, its change reduces to a total derivative inessential for physical
observables. Due to this term, the photon field acquires a nonzero mass. In
this work, however, we do not include explicitly CS term into the Lagrangian
and the photon mass will be generated dynamically.

3. Assumptions for the fundamental Green’s functions

Underneath the low momenta forms of the dressed two-point Green’s
functions and three-point vertex are given. They reflect their analytic struc-
tures suggested by the perturbation calculation.

3.1. Boson propagator

For the free propagator of massless vector particle, we have the usual
formula

D(0)µν(k) =
1

k2

(
−gµν +

kµkν

k2

)
− 1

λ

kµkν

(k2)2
. (7)

It is well known from the perturbative approach [26, 44], that in three space-
time dimensions „photon” field acquires a (topological) mass, due to the
vacuum polarization process. Even if CS term is initially absent in the
Lagrangian, it is generated through the interaction with fermion loop. In
the first approximation, we can then assume for the dressed propagator

Dµν(k) =
Z3

k2 − τ2

(
−gµν +

kµkν

k2

)
+

iZ3τ

k2(k2 − τ2)
εµνρkρ −

1

λ

kµkν

(k2)2
, (8)

where τ is the photon mass to be determined from the consistency conditions,
with the renormalization constant Z3 present only in the transverse part of
Dµν(k). This is a known fact by virtue of the gauge invariance and the
Ward–Takahashi identity

kµD
µν(k) = kµD

(0)µν(k) = − 1

λ

kν

k2
, (9)

which ascertains that only transverse part is modified by the interactions.
By the reason of unitarity, we expect the nonperturbative value of Z3 to

satisfy the condition 0 < Z3 ≤ 1 [45]. In our work on QED4, we obtained
this value to be equal to 7

9 [43]. As we will see in Sec. 6, the above bounds
will also be satisfied in the present work.

We treat the denominator k2−τ2 in (8) as the first term in its Taylor ex-
pansion around k2 = τ2 and potentially admit also higher order polynomial
in k2.
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The inverse of Dµν is

D−1(k)µν = Z−13

[(
−k2gµν + kµkν

)
− iτεµνρkρ

]
− λkµkν . (10)

3.2. Fermion propagator

The free fermion propagator has the standard form

S(0)(p) =
1

6p−m0
(11)

with a pole in the bare mass m0. Contrary to that, the perturbative calcu-
lations [26] (at least in certain gauges) show that, even if initially massless
“photon” acquires a mass τ , the “dressed” fermion propagator should have,
as a result of infrared divergences, a branch point at p2 = m2, where m is
a physical mass. Therefore, we assume for further calculations the following
form

S(p) =
1

(6p−m)(1− p2/m2)β
, (12)

with exponent β to be determined (together with mass renormalization con-
stant δm = m−m0) by the later requirement of consistency. The additional
power 2β of p in denominator improves the high momentum behavior of
loop integrals (after the analytical continuation of (12)), making thereby
the theory free of any ultraviolet divergences.

To get the spectral representation of (12), which will be needed for the
construction of the vertex, we apply the Cauchy integral formula for the
function

f(z) =
1

(m2 − z2)β
,

choosing the contour as shown in Fig. 1 deformed to sandwich both cuts on
the real axis. This is possible for 0 < β < 1, since otherwise the integrals
over the small circles around branch points at z = ±m diverge. We have
then

1

(m2 − w2)β
=

1

2πi

∮
C

dz

(m2 − z2)β(z − w)

=
sinπβ

π

 ∞∫
m

dx

(x2−m2)β(x−w)
−
−m∫
−∞

dx

(x2−m2)β(x−w)

 . (13)
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Fig. 1. The contour of integration in formula (13), which leads to the spectral
function (14).

Applying this formula for w = /p and taking into account the additional
factor (6p−m) in denominator of (12), we get that way (cf. [43])

ρ(M) =
sin(πβ)

π

1

(M−m)(M2/m2 − 1)β
[Θ(M−m)−Θ(−M −m)] , (14)

where Θ is the Heaviside step function. We found it useful to separate out
in the above definition of ρ(M) a term, that describes free propagation of
fermion so that S(p) is represented as

S(p) =

∫
dMρ(M)

(
1

6p−m
− 1

6p−M

)
. (15)

The equations, we obtain in the following sections, turn out to be self-
consitent without assuming any nontrivial value of the fermion field renor-
malization constant Z2 and, therefore, in the present work, we have just
put it equal to unity. Eventual inclusion of this constant (i.e. an additional
unknown variable) would require to generate more equations by adjusting
higher Green’s functions. This complicates our method, but we keep it in
mind and leave for the next paper as a possible following step.

The problem with properly defining constant Z2 raised in [26] does not
arise in our approach, since we do not require the full fermion propagator
to have a pole at mass m. On the contrary, we know that such a pole does
not exist in (12) due to the infrared divergences and only the additional
coefficient in numerator come into play. Its value would be fixed by self-
consistency and not by normalization requirement of the residue.

3.3. Fermion-boson vertex

Having expressed the full propagator S through the spectral function,
we can now make use of the slightly modified (by inclusion of the second
term) Salam’s ansatz for the vertex function Γµ(p+ k, p)
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S(p+ k)Γµ(p+ k, p)S(p)

=

∫
dMρ(M)

[
1

6p + 6k −m
γµ

1

6p−m
− 1

6p + 6k −M
γµ

1

6p−M

]
. (16)

By acting on it with a vector kµ, one automatically obtains the appropriate
WT identity, which must be incorporated in any method, that is expected
to satisfy gauge invariance

kµS(p+ k)Γµ(p+ k, p)S(p)

=

∫
dMρ(M)

[
1

6p + 6k −m
6k 1

6p−m
− 1

6p + 6k −M
6k 1

6p−M

]
=

∫
dMρ(M)

[
1

6p−m
− 1

6p + 6k −m
− 1

6p−M
+

1

6p + 6k −M

]
= S(p)− S(p+ k) . (17)

It is a necessary condition but does not guarantee by itself the invariance of
physical quantities.

The longitudinal part of the vertex is then correctly fixed, and transverse
part (obviously (16) is not purely longitudinal) is postulated in an elegant
way, naturally being a subject of further improvements [41, 42].

The expressions (10), (15) and (16), together with (14) will be now re-
quired to satisfy DS equations for small momenta.

4. Dyson–Schwinger equation for the boson propagator

The Dyson–Schwinger equation for the photon propagator may be writ-
ten as

Dµν(k) =
1

k2

(
−gµα +

kµkα

k2
− 1

λ

kµkα

k2

)
×
[
δνα − ie20 Trγα

∫
d3p

(2π)3
S(p)Γβ(p, p− k)S(p− k)Dβν(k)

]
, (18)

and has the graphical representation shown in Fig. 2.

= +

Fig. 2. The Dyson–Schwinger equation for the gauge boson propagator Dµν(k).
Light lines represent free propagators and heavy ones dressed propagators. The
full circle stands for the full fermion-boson vertex.
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This equation, rewritten for inverse propagator, will be more suitable for
deriving self-consistency relations since Dµν decouples from other functions.
If we make use of the ansatz (16), it can be given in the form

D−1(k)µν = −k2gµν + kµkν − λkµkν + ie20Trγµ

×
∫
dMρ(M)

∫
d3p

(2π)3

(
1

6p−m+ iε
γν

1

6p − 6k −m+ iε

− 1

6p −M + iε
γν

1

6p − 6k −M + iε

)
. (19)

The expression under the integral is well known from one-loop perturba-
tion calculation and its evaluation is straightforward, for instance, by passing
into the Euclidean space. It is needless to show any details, so we give only
final (Minkowski) result. If we denote

Πµν
m (k) = ie20Trγµ

∫
d3p

(2π)3
1

6p−m+ iε
γν

1

6p − 6k −m+ iε
, (20)

and introduce Feynman parameters, we find

Πµν
m (k) =

e20
2π

[ (
−k2gµν + kµkν

) 1∫
0

dx
x(1− x)

(m2 − k2x(1− x))1/2

− i
2
mεµνρkρ

1∫
0

dx
1

(m2 − k2x(1− x))1/2

]
, (21)

where x is the Feynman parameter. When k2 < 4m2, both integrals are well
defined.

The tensor Πµν
m (k) turns out to be transverse with respect to kµ, as is

required by gauge invariance, and particularly by WT identity (9). What is
important, it the appearance of the novel term, peculiar for three dimensions,
which is proportional to εµνρ — a result of the nonzero trace of the product
of three gamma matrices (4). This property is responsible for the gauge field
acquiring a mass.

To find the full form of the polarization tensor, we have to calculate —
according to (16) — the following integral involving the spectral function
ρ(M)

Πµν(k) =

∫
dMρ(M)

(
Πµν
m (k)−Πµν

M (k)
)
. (22)

Various integrals of that kind, containing spectral function ρ(M), are col-
lected in Appendix A. When we apply formulae (A.3) and (A.4), the only
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integrals that are left are those over Feynman parameter x

Πµν(k) =
e20Γ (β + 1/2)

2π3/2Γ (β + 1)m

×

[ (
−k2gµν + kµkν

) 1∫
0

dx
x(1− x)

1− k2/m2 x(1− x))β+1/2

− i
2
mεµνρkρ

1∫
0

dx
1

1− k2/m2 x(1− x))β+1/2

]
. (23)

Both turn out to be expressed through the hypergeometric (Gauss) func-
tion (see Appendix B, formulae (B.1) and (B.2)). These results allow us to
bring the whole Dyson–Schwinger equation (19) to the form

D−1(k)µν = −λkµkν + (−k2gµν + kµkν)

×
[
1 +

e20Γ (β + 1/2)

12π3/2Γ (β + 1)m
2F1

(
2, β + 1/2; 5/2; k2/4m2

)]
−iεµνρkρ

e20Γ (β + 1/2)

4π3/2Γ (β + 1)
2F1

(
1, β + 1/2; 3/2; k2/4m2

)
(24)

and adjust the first two terms in the infrared domain, i.e. close to the photon
mass (k2 ≈ τ2). In that way, we get two equations for Z3 and τ

Z−13 = 1 +
e20Γ (β + 1/2)

12π3/2mΓ (β + 1)
2F1

(
2, β + 1/2; 5/2; τ2/4m2

)
, (25)

τZ−13 =
e20Γ (β + 1/2)

4π3/2mΓ (β + 1)
2F1

(
1, β + 1/2; 3/2; τ2/4m2

)
, (26)

which will be solved in Sec. 6 together with the other two derived form the
DS equation for the fermion propagator.

5. Dyson–Schwinger equation for the fermion propagator

The Dyson–Schwinger equation for the fermion propagator has the form

S(p) =
1

6p−m0

[
1+ ie20γ

µ

∫
d3k

(2π)3
S(p+ k)Γ ν(p+ k, p)S(p)Dµν(k)

]
, (27)

and may be represented as shown in Fig. 3.
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= +

Fig. 3. The Dyson–Schwinger equation for the fermion propagator. As in Fig. 2,
heavy lines stand for full functions and light for free ones.

It can be rewritten in a simpler manner

( 6p−m0)S(p) = 1 +Σ(p)S(p) , (28)

where

Σ(p)S(p) = ie20γ
µ

∫
d3k

(2π)3
S(p+ k)Γ ν(p+ k, p)S(p)Dµν(k) . (29)

Now, we have to substitute (16) for the vertex, and (8) forDµν , obtaining

Σ(p)S(p) = [Σ(p)S(p)]A+ [Σ(p)S(p)]B+ [Σ(p)S(p)]C+ [Σ(p)S(p)]D ,(30)

where, to avoid lengthy expressions, we separated the contributions coming
from different tensor structures in the photon propgator: gµν , kµkν , εµνρkρ,
and from gauge-dependent longitudinal part

[Σ(p)S(p)]A = −iZ3e
2
0

∫
dMρ(M)

∫
d3k

(2π)3

×
[
γµ

1

6p+ 6k −m+ iε
γµ

1

(k2 − τ2 + iε)( 6p−m+ iε)
− (m→M)

]
, (31)

[Σ(p)S(p)]B = iZ3e
2
0

∫
dMρ(M)

∫
d3k

(2π)3

×
[
6k 1

6p + 6k −m+ iε
6k 1

(k2 + iε)(k2 − τ2 + iε)( 6p−m+ iε)
− (m→M)

]
, (32)

[Σ(p)S(p)]C = −Z3e
2
0τ

∫
dMρ(M)

∫
d3k

(2π)3

×
[
εµνργµ

1

6 p + 6k −m+ iε
γν

kρ
(k2 + iε)(k2 − τ2 + iε)( 6p−m+ iε)

− (m→M)

]
,

(33)

[Σ(p)S(p)]D = − ie
2
0

λ

∫
dMρ(M)

∫
d3k

(2π)3

×
[
6k 1

6p + 6k −m+ iε
6k 1

(k2 + iε)2( 6p−m+ iε)
− (m→M)

]
. (34)
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Each of the above momentum integrals can be performed in an ordinary
way by performing Wick’s rotation and introducing Feynman parameters. In
the symmetric integration, no infinities arise even if the simple power count-
ing indicate an apparent logarithmic divergence. Disregarding all details of
the computation, as a result, we have (again in the Minkowski space)

IA = ie20

∫
d3k

(2π)3
γµ

1

6p + 6k −m+ iε
γµ

1

k2 − τ2 + iε

=
e20
8π

1∫
0

dx
6p(1− x)− 3m

(m2x− p2x(1− x) + τ2(1− x))1/2
, (35)

IB = ie20

∫
d3k

(2π)3
6k 1

6p + 6k −m+ iε
6k 1

(k2 + iε)(k2 − τ2 + iε)

=
e20
8π

1∫
0

dx

[
1

(m2x− p2x(1− x) + τ2(1− x))1/2
+
6p(6p+m)

τ2

×
(

x

(m2x− p2x(1− x))1/2
− x

(m2x− p2x(1− x) + τ2(1− x))1/2

)]
× ( 6p−m) , (36)

IC = e20

∫
d3k

(2π)3
εµνργµ

1

6p + 6k −m+ iε
γν

kρ
(k2 + iε)(k2 − τ2 + iε)

=
e20
4π

1∫
0

dx

[
−1

(m2x− p2x(1− x) + τ2(1− x))1/2
+
6p(6p−m)

τ2

×
(

x

(m2x− p2x(1− x) + τ2(1− x))1/2
− x

(m2x− p2x(1− x))1/2

)]
, (37)

ID = ie20

∫
d3k

(2π)3
6k 1

6p + 6k −m+ iε
6k 1

(k2 + iε)2

=
e20
8π

1∫
0

dx

[
1

(m2x− p2x(1− x))1/2
+
6p( 6p+m)

2

x(1− x)

(m2x− p2x(1− x))3/2

]
× (6p−m) . (38)
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Now, the contributions to Σ(p)S(p) may be written as

[Σ(p)S(p)]A = −Z3

∫
dMρ(M)

[
IA

1

6p−m+ iε
− (m→M)

]
, (39)

[Σ(p)S(p)]B = Z3

∫
dMρ(M)

[
IB

1

6p−m+ iε
− (m→M)

]
, (40)

[Σ(p)S(p)]C = −Z3τ

∫
dMρ(M)

[
IC

1

6p−m+ iε
− (m→M)

]
, (41)

[Σ(p)S(p)]D = − 1

λ

∫
dMρ(M)

[
ID

1

6p−m+ iε
− (m→M)

]
, (42)

and the appropriate spectral integrals, after a small rearrangement, are car-
ried out according to formulae of Appendix A.

Before performing x integrations, it is important to notice, that if one
substitutes (12) into the left-hand side of (27) and multiply both sides by
(6p+m0), there appear two singular terms, when p2 → m2

−m
2βδm( 6p+m)

(m2 − p2)β+1
+

m2β

(m2 − p2)β
. (43)

For our goal, it is sufficient to pick out the identical terms from the right-
hand side of (27). It is a very pleasant observation that it actually dis-
plays identical analytical structure, which is a strong sign of self-consistency.
Consequently, we do not need to preform explicitly all parameter integra-
tions, and can limit ourselves to those terms that contain singularities of the
kind (43). The appropriate results are given below

[Σ(p)S(p)]A ≈ −
e20Z3

8π
K1

(
p2, τ2

) 6p(6p+m)

(m2 − p2)(1− p2/m2)β
, (44)

[Σ(p)S(p)]B ≈ 0 , (45)

[Σ(p)S(p)]C ≈ −
e20Z3τ

4π
K2

(
p2, τ2

) 6p+m

(m2 − p2)(1− p2/m2)β
, (46)

[Σ(p)S(p)]D ≈
e20

8πλm

(
−1

(m2 − p2)(1− p2/m2)β
+

1− β
2β

1

m2(1− p2/m2)β

)
× 6p(6p+m) , (47)
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where ≈ 0 means that the expression does not diverge, when p2 → m2. The
functions K1 and K2 have the following form

K1

(
p2, τ2

)
=

1∫
0

dx
x+ 2

(p2x2 + τ2(1− x))1/2
, (48)

K2

(
p2, τ2

)
=

1∫
0

dx
1

(p2x2 + τ2(1− x))1/2
. (49)

Equating identical divergent terms on both sides of the Dyson–Schwinger
equation (28), we obtain two relations for parameters δm and β

δm =
e20Z3

8π

(
S1(m, τ) +

1

λZ3

)
, (50)

1 =
e20Z3

8π

(
S2(m, τ) +

1

λZ3mβ

)
, (51)

where auxiliary quantities S1(m, τ) and S2(m, τ) are defined as

S1 = mK1

(
m2, τ2

)
+ 2τK2

(
m2, τ2

)
, (52)

S2 = K1

(
m2, τ2

)
+ 2m2∂K1

(
m2, τ2

)
∂m2

+ 4mτ
∂K2

(
m2, τ2

)
∂m2

, (53)

and found in Appendix B.

6. Results and conclusions

Below, we rewrite the whole set of equations using renormalized quan-
tities: fermion mass m, gauge coupling constant e = Z

1/2
3 e0 and gauge

parameter λR = Z3λ. We additionally introduce a dimensionless parameter
ζ = e2

4πm , obtaining

δm

m
=

ζ

2

[
1− τ

m
+

(
2 +

2τ

m
+

τ2

2m2

)
ln(2m/τ + 1) +

1

λR

]
, (54)

1 =
ζ

2

[
2 +

2τ

m
−
(

2τ

m
+
τ2

m2

)
ln(2m/τ + 1) +

1

λRβ

]
, (55)

Z3 = 1− ζ

3

Γ (β + 1/2)√
πΓ (β + 1)

2F1

(
2, β + 1/2; 5/2; τ2/4m2

)
, (56)

τ

m
= ζ

Γ (β + 1/2)√
πΓ (β + 1)

2F1

(
1, β + 1/2; 3/2; τ2/4m2

)
. (57)
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Now, the question arises whether this set of highly nonlinear equations
for unknown δm/m, β, Z3 and τ/m has a certain domain of solvability. The
answer is positive for a large range of values of gauge parameter λR and for
weak coupling. For exemplary value λR = 1, numerically found solutions of
all equations as functions of the parameter ζ are presented below.

In the first graph of Fig. 4, we show the dependence of the topological
photon mass τ (in units ofm) on the parameter ζ. One can see, that for small
values of parameter it approaches the value e2/4π [44]. In spite of initial
zero value of the photon mass, it reappears as an outcome of interactions
with fermions.

In the second graph, the dependence of power β on ζ is presented. As
we remember, our method is reliable only for 0 < β < 1. This corresponds
roughly to 0 < ζ < 1.

0.5 1 1.5 2

Ζ

0.5

1

1.5

2

Β

0.5 1 1.5 2

Ζ

0.5

1

1.5

Τ

Fig. 4. The dependence of photon mass τ in units of m (upper plot) and power β
(lower plot) on the parameter ζ. The dashed line corresponds to τ/m = ζ.

Figure 5 shows the fermion mass renormalization δm (again in units
of m) and coupling constant renormalization constant Z3 as functions of ζ.
Please note, that δm < m (for small ζ) and 0 < Z3 < 1 and it decreases
with increasing coupling.
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∆m

Fig. 5. The dependence of mass renormalization δm in units of m (upper plot) and
charge renormalization constant Z3 (lower plot) on the parameter ζ.

The comparison of all numerical results suggests that it might be possible
to find analytical solutions in the case of weak coupling (which corresponds
to heavy fermion), i.e. when ζ � 1. From Fig. 4, we conclude that in such
a case, we should assume τ/m� 1. We suppose also that β � 1. All these
assumptions will be justified a posteriori, when the whole set of parameters
is determined.

For small values of τ , the equation (55) may be given the approximate
form (considering gauges, where λR is of the order of unity)

1 =
ζ

2

1

λRβ
, (58)

since all other terms, particularly those containing a quotient τ/m, are small
compared to 1/β and have been neglected. Consequently, we have

β =
ζ

2λR
, (59)

which is in agreement with the assumption β � 1.
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For small values of τ and β, the equation (57) reduces to (recall that
Γ (1/2) =

√
π and 2F1(a, b; c; 0) = 1)

τ

m
= ζ , (60)

which is the Coleman’s and Hill’s result [44]. The first plot of Fig. 4 shows,
however, that for larger values of ζ it deviates form the straight line. This
is well understood since in the Coleman’s and Hill’s paper the value of the
photon mass was defined as τ2 = Π(0), where Π is a polarization scalar. In
our work, the position of the photon mass is determined by the equation τ2 =
Π(τ2). One should also keep in mind that our solution is only approximate.

From (60), we find again that the assumption τ/m� 1 is justified. In a
similar manner, we get the following result for Z3

0 < Z3 = 1− ζ

3
< 1 , (61)

and for δm
δm

m
=
ζ

2

[
1− 2 ln

(
ζ

2

)
+

1

λR

]
. (62)

The unpleasant feature is the gauge dependence of the mass renormalization,
which might indicate the similar gauge dependence of the physical fermion
mass. It is, however, a common feature of perturbative and nonperturbative
results in QED3 [46, 47].

In the weak coupling regime, one can obtain also the analytical results
for the Landau gauge, which corresponds to taking the limit λR → ∞. As
it is known, in this case the infrared singularities disappear [26, 46], so we
expect β → 0, since the fermion propagator should have an ordinary pole at
physical mass and not a branch point. Therefore, before taking the limit,
we put β = β0/λR with constant β0 to be determined. With all other
assumptions identical as above, we get similar results as before: τ/m = ζ,
Z3 = 1− ζ/3 and

1 =
ζ

2

(
2 +

1

β0

)
=⇒ β0 =

ζ

2(1− ζ)
, (63)

and hence for ζ � 1,

β =
ζ

2λR(1− ζ)
≈ ζ

2λR
−→
λR→∞

0 . (64)

The result for the mass renormalization in this case is

δm

m
=
ζ

2

[
1− 2 ln

(
ζ

2

)]
. (65)
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The nonanalyticity in ζ observed in the last formula and in (62), which
manifests itself through the presence of a logarithmic function of the coupling
constant, is similar in nature to the one found by us in QED4 [43], where
it constituted a reflection of the possible ill behavior of the perturbation
series [48].

The solutions of the set of nonlinear equations (54)–(57) involving gauge
parameter λR can, in general, be gauge dependent. To clarify this point, we
performed a couple of plots of the model parameters for different gauges,
i.e. for λR = 1, 3, 10,∞, the last case corresponding to the Landau gauge.
In Fig. 6, the dependence of τ and β on λR is demonstrated. Figure 7 shows
the same dependence of δm and Z3.

0.5 1

Ζ

0.2

0.5

Β

0.5 1

Ζ

0.5

1

Τ

Fig. 6. The comparison of the behavior of photon mass τ (upper plot) and param-
eter β (lower plot) for different gauges: solid line — λR = 1, dotted line — λR = 3,
dashed line — λR = 10, mixed line — λR =∞ (Landau gauge). The latter is not
visible on the upper plot, since it is overlapping with the solid line.
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Fig. 7. The comparison of the behavior of fermion mass renormalization δm (upper
plot) and charge renormalization constant Z3 (lower plot) for different gauges:
solid line — λR = 1, dotted line — λR = 3, dashed line — λR = 10, mixed line —
λR =∞ (Landau gauge). On the upper plot, the lines for λR = 3 and for Landau
gauge follow close curves.

It may be easily seen that, apart from the parameter β, which is and may
be obviously gauge dependent, all other values become practically gauge in-
dependent for weak coupling. To get the reliable results for strong coupling,
we need to go beyond the first approximation consisting of the simple as-
sumptions (8), (12) and (16). The same refers to other nonperturbative (but
not exact) calculations.

At the end, we would like to note, that from the dependence of δm (Fig. 5
and Fig. 7) one sees, that for certain values of parameter ζ, we have δm = m
(i.e. m0 = 0). Assuming value δm/m = 1 as fixed, equations (54)–(57) may
be in turn solved for ζ, τ , β and Z3. In the case of the Landau gauge, the
following values are obtained

τ

m
≈ ζ ≈ 0.34 , (66)
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from which we get the generated masses (the Lagrangian in this case does
not contain any masses) to be

m ≈ 2.94× e2

4π
, τ =

e2

4π
, (67)

and the parity becomes broken. For two other parameters, we find

β0 ≈ 0.21 (naturally β = 0) , Z3 ≈ 0.89 . (68)

A comment should be made here. The obtained effect of parity breaking
(to some extent noted also in [49]) is not at variant with the Vafa–Witten the-
orem [50, 51] stating that there is no spontaneous parity breaking in theories
with vectorlike fermions. The three-dimensional QED with two-component
fermions is a very special theory, also in that aspect, that it evades the proof
of this theorem. The crucial point in Vafa’s and Witten’s argument is the
positivity of the boson measure (after integrating out the fermion degrees
of freedom) which demands the positivity of the determinant of the Dirac
operator. This positivity may be easily proved in four component version
of the theory, because by the application of the matrix γ5, one sees that
eigenvalues are always paired in such a way that the unwanted signs cancel.
However, in spinor version of QED no such γ5 matrix exists (there is no
matrix anticommuting with matrices γ0, γ1 and γ2), so the above argument
fails.

The results of [52], which support the Vafa–Witten conclusion, are not in
conflict with the present work either. They were obtained with the assump-
tions m� α or m� α, which correspond to ζ � 1 or ζ � 1, respectively,
while in our case, we have ζ ≈ 0.34. One has also to stress that the con-
clusions of [52] are got in the limit of infinitely many flavors, while we have
one flavor theory. The number of flavors, particularly if it is even, may be
essential for the positivity of the determinant spoken above.

Appendix A

Spectral integrals

Below, we collect the set of integrals involving spectral density (14), that
we used in Secs. 4 and 5. First, one can find that for a2 < m2, one has∫
dMρ(M)

(
1

(m2 − a2)1/2
− 1

(M2 − a2)1/2

)
=

m2βΓ (β+1/2)
√
πΓ (β+1)(m2−a2)β+1/2

,

(A.1)
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and similarly,∫
dMρ(M)

(
1

(m2 − a2)3/2
− 1

(M2 − a2)3/2

)
=

2m2βΓ (β+3/2)
√
πΓ (β+1)(m2−a2)β+3/2

,

(A.2)

where Γ is the Euler function. From the former result by the appropriate
substitution, we obtain∫

dMρ(M)

(
1

(m2 − k2x(1− x))1/2
− (m→M)

)
=

Γ (β + 1/2)√
πΓ (β + 1)

m2β

(m2 − k2x(1− x))β+1/2
, (A.3)

∫
dMρ(M)

(
m

(m2 − k2x(1− x))1/2
− (m→M)

)
=
Γ (β + 1/2)√
πΓ (β + 1)

m2β+1

(m2 − k2 x(1− x))β+1/2
, (A.4)

where we additionally used the relation∫
dMρ(M)Mf

(
M2
)

= m

∫
dMρ(M)f

(
M2
)
. (A.5)

With a slight modification of (A.3) and (A.4), one can easily get the
other set of integrals∫

dMρ(M)

(
1

(m2x− k2x(1− x))1/2
− (m→M)

)
=

Γ (β + 1/2)√
πΓ (β + 1)

m2βxβ

(m2x− k2 x(1− x))β+1/2
, (A.6)

∫
dMρ(M)

(
m

(m2x− k2x(1− x))1/2
− (m→M)

)
=

Γ (β + 1/2)√
πΓ (β + 1)

m2β+1xβ

(m2x− k2 x(1− x))β+1/2
. (A.7)
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From (A.2), one finds∫
dMρ(M)

(
1

(m2x− k2x(1− x))3/2
− (m→M)

)
=

2Γ (β + 3/2)√
πΓ (β + 1)

m2βxβ

(m2x− k2 x(1− x))β+3/2
, (A.8)

∫
dMρ(M)

(
m

(m2x− k2x(1− x))3/2
− (m→M)

)
=

2Γ (β + 3/2)√
πΓ (β + 1)

m2β+1xβ

(m2x− k2 x(1− x))β+3/2
, (A.9)

and also∫
dMρ(M)

(
1

(m2x− k2x(1− x) + τ2(1− x))1/2
− (m→M)

)
=

Γ (β + 1/2)√
πΓ (β + 1)

m2βxβ

(m2x− k2 x(1− x) + τ2(1− x))β+1/2
. (A.10)

The last integral we will need is lengthy and, therefore, we will not give it
in its full complexity. Happily, in Sec. 5 only singular terms when p2 → m2

are necesssary∫
dMρ(M)

(
1

m2 − p2
1

(m2x− p2x(1− x) + τ2(1− x))1/2
− (m→M)

)
≈ m2β

(p2x2 + τ2(1− x))1/2
1

(m2 − p2)β+1
. (A.11)

Appendix B

Parametric integrals

The parametric integrals needed for the vacuum polarization tensor in
Sec. 4 are

1∫
0

dx
x(1− x)

(1− x(1− x)k2/m2)β+1/2
= 1

6 2F1

(
2, β + 1/2; 5/2; k2/4m2

)
,(B.1)

1∫
0

dx
1

(1− x(1− x)k2/m2)β+1/2
= 2F1

(
1, β + 1/2; 3/2; k2/4m2

)
. (B.2)
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In Sec. 5, there appear two other parametric integrals, we denoted by S1
and S2 (formulae (52) and (53)), which may, after elementary calculation,
be expressed by simple functions

S1 = mK1

(
m2, τ2

)
+ 2τK2

(
m2, τ2

)
=

1∫
0

dx
m(x+ 2) + 2τ

(m2x2 + τ2(1− x))1/2

= 1− τ

m
+

(
2 +

2τ

m
+

τ2

2m2

)
ln(2m/τ + 1) , (B.3)

S2 = K1

(
m2, τ2

)
+ 2m2∂K1

(
m2, τ2

)
∂m2

+ 4mτ
∂K2

(
m2, τ2

)
∂m2

= −τ
1∫

0

dx
(2m+τ)x2+τ(x−2)

(m2x2+τ2(1−x))1/2
=

1

m

[
2+

2τ

m
−
(

2τ

m
+
τ2

m2

)
ln(2m/τ+1)

]
,

(B.4)
where K1 and K2 were defined in equations (48) and (49).
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