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1. Introduction

After a few years of operation, the experiments at the Large Hadron
Collider have gathered a large amount of data, the analysis of which has
already led to the achievement of one of its primary goals: the discovery of
a candidate for the Higgs boson. The main challenge in such analyses is the
separation of backgrounds from signals. The former is defined as “known”
physics, and in the case of searches for the Higgs boson refers to the part of
the physical processes that can be described by the Standard Model without
involvement of the Higgs boson. The latter is the contribution that does
involve the Higgs boson.

Separating signals from backgrounds often requires precise theoretical
predictions of the latter. For example, in processes when the Higgs boson is
produced together with a top and an anti-top quark, and the Higgs boson
decays into an bottom–anti-bottom quark pair, the experimental efficiency
of identifying the jets coming from the bottom quarks and the necessary
phase space cuts to reduce other multi-jet backgrounds lead to a substantial
smearing of what would be a sharp Higgs resonance peak in the distribution
of the invariant mass of the bottom quark jets. Theoretical knowledge of
the backgrounds then becomes crucial for a successful analysis.

The example above immediately illustrates one of the complications in
the calculation of such backgrounds: they often involve processes with many
jets and/or particles in the final state. Including the decay of the top and
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anti-top quarks in the example, this multiplicity is eight. Part of the neces-
sary calculations concern the so-called hard scattering process, and involve
the application of perturbative quantum field theory, and quantum chromo
dynamics (QCD) in particular. In such calculations, the number of final-
state particles and jets, or rather partons, has a dramatic effect on the com-
putational complexity. The need for high precision and, consequently, the
higher orders in perturbation theory further increase this complexity. These
circumstances have, over the course of the last one and a half decade, led to
an effort towards automation of such calculation, both with respect to the
design of suitable computation algorithms and explicit computer programs.

2. Factorization in hard scattering processes

The typical quantities to be calculated for hadron scattering processes
are cross sections and their differentiations with respect to kinematical vari-
ables, like transverse momentum components and rapidities of final-state
jets and/or particles. The calculations largely follow the structure of the
naïve factorization formula

dσ(Pa, Pb → {Pi}) =

∫ ∏
j=a,b,1,2,...

dxj fj(xj) dσ̂
(
xaPa, xbPb →

{
x−1i Pi

})
,

(1)
where Pa, Pb are the momenta of the scattering hadrons and {Pi} repre-
sents the set of momenta of the observed final-state jets. The integrand
is factorized into universal parton density functions (PDFs) describing the
low-energy physics of the initial-state hadrons, universal fragmentation func-
tions describing the low-energy physics of the final-state jets, and a process-
dependent partonic cross section σ̂. The latter is calculated within perturba-
tive QCD, which will be the subject of the following sections. Complications
arise because of infra-red singularities appearing in those calculations, but
in [1], Eq. (1) has been established rigorously, valid to all orders in QCD,
within the so-called collinear factorization. It requires the introduction of
a factorization scale, which can be interpreted as the threshold between the
aforementioned low and high-energy physics, on which both the universal
functions and the partonic cross section depend. The full cross section can-
not depend on this unphysical scale, and one of the reasons to include higher
perturbative orders in a calculation is to reduce this scale dependence. The
scale dependence of the PDFs and fragmentation functions can also be cal-
culated with perturbative QCD, via evolution equations. In practice, the
role of the fragmentation functions is mostly played by parton-shower pro-
grams including hadronization simulation. These are also used to describe
initial-state radiation, taking over part of the role of the PDFs.
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The following sections will deal with the leading-order (LO) and next-
to-leading order (NLO) calculation of partonic cross sections.

3. Numerical evaluation of amplitudes

The calculation of partonic cross sections involves the calculation of
phase space integrals. At leading order in perturbation theory, they have
the following form

σ̂a,b→n =

∫
dΦ(pa, pb → {p}n)

∣∣Ma,b→n
∣∣2O(pa, pb, {p}n) , (2)

where pa, pb are the momenta of the initial-state partons, and {p}n represents
the set of momenta of the final-state partons and/or particles. The integral
over the phase space of these final-state momenta is denoted as the inte-
gral over Φ(pa, pb → {p}n), and O(pa, pb, {p}n) represents an infra-red safe
observable, which at LO means that it must vanish whenever any parton be-
comes arbitrarily soft, or any pair of partons becomes arbitrarily collinear,
since for such phase space configurations the tree-level squared scattering
amplitude |Ma,b→n|2 becomes singular. In practice, the observable includes
phase space cuts, cutting out those singular regions. The number of neces-
sary phase space restrictions grows at least as the square of the number of
final-state partons, making it impossible to perform the integral analytically,
and essentially leaving the Monte Carlo method as the only option.

The essence of the Monte Carlo method is that one only needs to be able
to evaluate the integrand, in this case the squared amplitude, numerically
and that, in principle, no analytic knowledge, other than square integra-
bility, is required. In practice, some knowledge of the peak structure is
still preferred in order to perform importance sampling to increase the rate
of convergence of the Monte Carlo integration process. This is the effort
to reduce the number of integrand evaluations, necessary to reach a given
accuracy, as much as possible. The remaining task is then to perform the
evaluation of the integrand at each phase space point as efficiently as possi-
ble.

The squared amplitude itself is a sum over the helicities of the partons
and particles. Instead of performing this sum analytically, which in the case
of many final-state particles leads to huge expressions, it can be performed
explicitly, by evaluating the amplitude as function of both momenta and
helicities, for all configurations of helicities, and adding up the squares of
the absolute values of the obtained numbers. One can even perform this
sum within the Monte Carlo set up, by choosing random helicity configura-
tions. The task is then to numerically evaluate the amplitude as function of
momenta and helicity configurations as efficiently as possible.
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4. Numerical Dyson–Schwinger recursion

Telling from the Feynman rules in QCD, and the triple-gluon vertex
in particular, one might expect large expressions for scattering amplitudes
involving many gluons. It turns out, however, that helicity amplitudes can
be written in a compact and elegant form. For a tree-level n-gluon amplitude
as function of momenta, helicity, and color, we have

M({p, λ, a}n) = ign−2
∑
perm.

Tr
(
T a1T a2 · · ·T an

)
A
(
pλ11 , p

λ2
2 , . . . , p

λn
n

)
, (3)

where T a, a = 1, 2, . . . , 8 are the generators of the color symmetry group
SU(3), and the sum is over all permutations of the enumerated variables,
excluding cyclic permutations. The dual amplitudes A contain only planar
Feynman graphs, and depending on the helicity configuration, very compact
expressions exist [2], for example

A
(
p−1 , p

+
2 , . . . , p

+
j−1, p

−
j , p

+
j+1, . . . , p

+
n

)
=

〈p1 pj〉4

〈p1 p2〉〈p2 p3〉 · · · 〈pn−1 pn〉〈pn p1〉
.

Each bracket in the expression above represents the contraction of the Weyl
spinors associated with the momenta inside the bracket, and eventually rep-
resents just two complex multiplications.

The correctness of the expression above can be proven with the help of
the Berends–Giele recursive relations [3]

Aµi,j =
−i
p2i,j

[
j−1∑
k=i

V µ
νρ (pi,k, pk+1,j) A

ν
i,kA

ρ
k+1,j

+

j−2∑
k=i

j−1∑
l=k+1

Wµ
νρσ A

ν
i,kA

ρ
k+1,lA

σ
l+1,j

]
, (4)

where we denote pi,j = pi + pi+1 + · · ·+ pj , and

V µ
νρ(p, q) =

i√
2

[
(p− q)µgνρ + 2gµρ qν − 2gµν pρ

]
,

Wµ
νρσ =

i

2

[
2gµρ gνσ − gµν gρσ − gµσgρν

]
. (5)

The off-shell current Aµi,j is the sum of all planar tree-level sub-graphs with
external on-shell gluons i, i+ 1, . . . , j and one off-shell gluon the momentum
pi,j of which is the sum of the momenta of the on-shell gluons. The dual
amplitude for n gluons is then given by iεµ(pn)p2nA

µ
1,n−1, where εµ(pn) is
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the polarization vector of gluon number n, and p2n formally cancels the su-
perfluous propagator denominator in Aµ1,n−1. The starting points Aµi,i of the
recursion are the polarization vectors of the on-shell external gluons.

The correctness of the recursive relation can easily be derived from the
structure of planar tree-level multi-gluon amplitudes. The vertices of Eq. (5)
are the QCD 3- and 4-gluon vertices stripped from their color content, and
restricted to the application of planar graphs. As mentioned, the recursive
relation can be used algebraically, to prove compact expressions for multi-
gluon helicity amplitudes, but it can also be used to evaluate them directly.
Starting from explicit numerical values of the momenta, explicit numerical
values of the polarization vectors can be constructed, and the recursion can
be performed numerically, to end up with a numerical value of the ampli-
tude. This computation is very efficient, its complexity grows polynomially
with the number of gluons, and is not restricted to certain helicity configu-
rations, but can be applied for arbitrary polarization vectors. Considering
the fact that the only expressions that go into such a computation are those
for the vertices, one can understand that the recursive relation embodies a
computational algorithm for tree-level amplitudes prescribed directly by the
QCD Lagrangian.

One may ask whether this reasoning works for arbitrary Lagrangians,
and generalizes to not-necessarily planar graphs, and the answer is positive,
as was first pointed out in [4]. The generalization to not-necessarily planar
graphs reduces the factorial computational complexity, implicit in Eq. (3)
due to the sum over permutations, to exponential. Soon after, the calcula-
tions of tree-level amplitudes with essentially arbitrary numbers of external
gluons appeared [5, 6]. The purely numerical nature of the algorithms allows
for arbitrary representations of the external polarization vectors and inter-
nal color structure, allowing again for inventive Monte Carlo approaches to
perform the necessary helicity and color sums.

Since the algorithm is essentially prescribed by the Lagrangian itself
of the field theory under consideration, and can be recognized as a recur-
sive perturbative solution of the Dyson–Schwinger equations of motion, it is
reasonably easy to automate for arbitrary scattering processes, and several
automatic programs based on this approach were developed [7]. Besides the
use of the Dyson–Schwinger approach, also the conventional approach using
Feynman graphs was applied to construct automatic programs for amplitude
calculation, some of them employing sophisticated computational techniques
to deal with the factorial growth of complexity inherent in any approach
based on Feynman graphs [8].

It has to be stressed that many of these programs actually calculate cross
sections, and also automate the phase space integration.
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5. Merging with parton showers

LO calculations like described above need phase space cuts for the final-
state partons to avoid the singular behavior of the tree-level matrix element.
Summarizing such cuts into a single energy scale, as a minimum energy or
transversal momentum of the partons, or a minimum invariant mass for any
pair of partons, the calculated value of the cross section will depend dramat-
ically on this scale. The calculation is not valid for small values of the scale,
and in those regions of phase space all orders in the perturbative series need
to be included. Of course, this is not possible exactly, but other approxima-
tions can be applied, taking into account only leading contributions in the
logarithms of ratios of relevant energy scales. Parton shower programs do
exactly this, within a Monte Carlo environment [9]. These on their own, on
the other hand, cannot describe processes with several hard jets very well,
suggesting to combine parton showers with the LO calculations.

This technique is referred to as merging of LO programs with parton
shower programs. The idea is to let the LO program generate an event
with a number of final-state parton momenta, and to let the parton shower
program “dress up” the event further. The challenge is to avoid double-
counting, or double-populating certain regions of phase space.

Parton shower programs create multi-parton phase space points by con-
secutive branching of momenta such that the final phase space point is di-
rectly generated following the correct distribution, within the approxima-
tions inherent in the parton shower. This means that every event generated
by a parton shower has a well-defined tree structure. Events from a LO
program are weighted, or the result from an un-weighting procedure, and
do not have an inherent tree structure. An important part of the merging
procedure, therefore, involves the repeated application of jet algorithms on
LO-generated events to assign the necessary tree structure to the events.
Hence jet algorithms are another important ingredient in the merging pro-
cess. A more detailed description of various methods and approaches, and
comparisons of their applications to several combinations of LO programs
and parton shower programs can be found in [10].

6. NLO calculations

The result of LO calculations also dramatically depends on the value
of the renormalization/factorization scale entering via the strong coupling
constant and the factorization procedure. This dependence can be reduced
by including higher orders in the perturbative series. It turns out that this
also influences the shape of several differntial distributions, i.e. that these
cannot be completely accurately calculated at LO. The NLO contribution
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to the partonic cross section can formally be written as

σ̂NLO
a,b→n=

∫
dΦn 2Re

{
M(0)

a,b→nM
(1)
a,b→n

}
OLO
n +

∫
dΦn+1

∣∣∣M(0)
a,b→n+1

∣∣∣2ONLO
n+1 .

(6)
The notation for the phase space integration elements has been condensed a
bit compared to Eq. (2). Notice that it involves one more final-state parton
in the second term. This term represents the real-radiation contribution,
and involves a tree-level amplitude with one more final-state parton. The
super-script explicitly indicates the number or loops in the amplitude, which
is zero. This number is non-zero in the first term, representing the virtual
contribution, and involves the one-loop amplitude.

6.1. Real-radiation contribution

The notation for the observables has been changed too. The one in the
real-radiation term takes one more parton as argument. The super-script
indicates that, contrary to the one in the virtual contribution, this observable
does allow for one parton to become arbitrarily soft, or one pair of partons
to become arbitrarily collinear. This clearly makes the integral divergent,
which embodies a first complication in NLO calculations. The divergencies
formally cancel partly against IR divergencies coming from the one-loop
amplitude and are partly removed within the factorization prescription. But
somehow, the divergencies must be extracted before the numerical integral
can be performed. The divergencies in the one-loop amplitude also come
from an extra integration, the one-loop integral, but this is an integral over
a full, unrestricted four-dimensional space and can be performed analytically
within dimensional regularization.

The problem can be solved with the introduction of subtraction terms,
which have the same divergent behavior as the real-radiation matrix ele-
ment, but are constructed such that the extra parton can be integrated out
analytically. The real-radiation term is replaced with∫

dΦn+1

[∣∣∣M(0)
a,b→n+1

∣∣∣2ONLO
n+1 −

∑
i

D(i)
n+1θ

(i)
n+1O

LO
n ◦ T (i)

n←n+1

]
. (7)

D(i)
n+1 is a function matching the divergent behavior for a few singular phase

space regions, and θ(i)n+1 may be restricting phase space to those regions. The
mapping T (i)

n←n+1 projects the (n + 1) particle phase space to an n-particle
phase space, and is necessary because the observable takes only n momenta
as arguments. The subtraction terms must be constructed including this
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observable, because the divergencies of the integrated terms∫
dΦ1

(
D(i)
n+1θ

(i)
n+1

)
◦ T (i)

n→n+1O
LO
n (8)

must cancel against those in the virtual contribution. Notice that the map-
ping appearing in these terms is the inverse of the ones in the real-radiation
term, in the sense that they construct an (n+ 1)-particle phase space point
from an n-particle phase space point and the three integration variables
represented by Φ1.

Explicitly elaborated approaches to this method that are most used are
Catani–Seymour dipole subtraction [11] and FKS subtraction [12]. In the
former, the functions θ(i)n+1 are, in the original approach, identical to 1. The
method is quite universal, but has the disadvantage that the singularities are
spread over many subtraction terms, and their number grows as the cube of
the number of partons.

In the FKS method, the functions θ(i)n+1 are a partition of 1. One can,
therefore, take the summation over subtraction terms outside the phase
space integral, and end up with a well-defined integral for each subtrac-
tion term separately. For each of these, the phase space integration can be
factorized into an n-particle integration, and the three-dimensional integral
in which the cancellation happens. As a consequence, the mappings T (i)

n←n+1
are not needed. The number of terms grows only as the square of the number
of partons.

6.2. Virtual contribution

Another complication in NLO calculations is the one-loop amplitude.
It was the final bottleneck, and its resolution is regularly referred to as the
“NLO revolution”. One-loop amplitudes are more complicated than tree-level
amplitudes because they contain, for a given number of external legs, many
more graphs, and because the one-loop integral has to be performed. It was
known already how to perform calculations formally, but the combination of
the two issues can lead to huge expressions that will essentially be impossible
to handle if not treated carefully.

In general, a one-loop amplitude can be written as a sum of terms, each
of which has the form

I =

∫
dωq

N(q)

D1(q)D2(q) · · ·Dl(q)
, Dj(q) = (q + pj)

2 −m2
j + i0 , (9)

where each pi is some combination of the external momenta, and N(q) is a
polynomial in q. The integral is defined within dimensional regularization.
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Its calculation implies finding the coefficients in the Laurent expansion

I =
I−2

(ω − 4)2
+

I−1
ω − 4

+ I0 +O(ω − 4) . (10)

One approach is to perform the loop integration numerically. This re-
quires the introduction of subtraction terms which cancel both the infra-red
and ultra-violet behavior of the integrand, and whose integrals are easier
to perform analytically than the original loop integral. Furthermore, the
integration has to be deformed into complex space to avoid the poles in
the denominators of Eq. (9), and this has to happen such that also all sub-
traction terms stay valid. This approach has been successfully applied to
multi-jet production in e+e− collisions [13].

The alternative is to expand the one-loop amplitude in terms of universal
integrated one-loop functions

I =
∑
j

cjfj . (11)

The functions fj should be universal in the sense that they only depend
on values of external momenta and possible parameters like particle masses,
and no other ingredients coming with the particular scattering process under
consideration. Having a method to evaluate these, the problem of calculating
the one-loop amplitude is reduced to that of obtaining the coefficients cj .

It can be shown that the minimal set of functions needed are the scalar
integrals, given by Eq. (9) with N(q) = 1, and up to l = 4. One has to
be careful in dimensional regularization, and depending on the particular
approach, the functions for l = 5 are also needed. One may, however, choose
to increase the universal set of one-loop functions, and traditionally the set
of tensor integrals was used, given by Eq. (9) with N(q) as a product of
components of q, and l reaching up to the number of external momenta.
The tensor integrals can be calculated recursively, with the scalar integrals
as starting point of the recursion [14, 15]. The traditional approach aimed
at finding expressions for the coefficients cj in terms of external momenta
and polarization vectors. This was done graph-by-graph, and would lead to
huge expressions, becoming impossible to handle for more than 6 external
particles. The solution to this problem was proposed in [16], and worked out
further in [17, 18], and comes down to calculating the coefficients numerically
via recursive relations.

In the alternative approach, the coefficients of the scalar functions are de-
termined directly. Whereas tree-level amplitudes are only polynomial func-
tions of the external momenta, one-loop amplitudes also contain logarithms
of ratios of invariants of the external momenta, which eventually appear in
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the scalar functions. The branch cuts of these logarithms can be related to
cuts in Feynman graphs. This led to the idea to extract the coefficients for
the scalar functions via the cuts in Feynman graphs. Originally restricted
to two-particle cuts [19], the approach became more powerful with the ap-
plications of multi-particle cuts [20].

Inspired by the integrand-level tensor reduction of [15], the integrand-
level equivalent of Eq. (11) was used to extract the coefficients in [21]. It can
be written as an inversion problem, with the numerator N(q) on the l.h.s. of
the equation, and sums of products of the denominator factors on the r.h.s,
which can be approached completely numerically. Any value of q leads to a
valid equation, but choosing q such that a number of denominator factors
vanish triangularizes the equation partly, and facilitates convenient solu-
tions. This also establishes the connection with the previously mentioned
method, since putting denominator factors to zero corresponds to cutting
internal lines in Feynman graphs.

6.3. Calculations and automation

Using the techniques described above, in various combinations, an im-
pressive list of NLO calculations for processes with four or more particles in
the final state have been performed last years [22]. It constitutes the so-called
(enlarged) Les Houches wishlist of background and signal processes [23].
Such calculations require a high level of automation, and some of the devel-
oped tools were made public. A complete and public tool for such calcula-
tions is Helac-NLO [24]. It goes beyond the possibilities in the number of final
state particles of old tools like MCFM [25], NLOjet [26] and VBFNLO [27].
Many of the calculations cited before have been performed with BlackHat [28]
in combination with Sherpa [29]. Also the MadGraph-framework has been
completed to perform full NLO calculations [30–32]. Besides, independent
tools have been developed to perform the real-radiation integral [33, 34], and
to calculate one-loop amplitudes [35, 36]

7. Matching NLO calculations with parton showers

Earlier, we described the technique of merging LO calculations with par-
ton showers, combining the exclusiveness of parton showers with a more
accurate treatment of processes with many hard jets. Improving the over-
all normalization to NLO precision in a consistent manner is called NLO
matching . Following the formalism of [37], we can write
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σ̂LO+NLO
n =

∫
dΦnB̄nOLO

n +

∫
dΦn+1

∑
j

A
(j)
n+1

[
ONLO
n+1 −OLO

n ◦ T (j)
n←n+1

]
+

∫
dΦn+1

[∣∣∣M(0)
n+1

∣∣∣2 −∑
j

A
(j)
n+1

]
ONLO
n+1 , (12)

where

B̄n =
∣∣∣M(0)

n

∣∣∣2 + 2Re
{
M(0)

a,b→nM
(1)
a,b→n

}
+
∑
j

∫
dΦ1D(j)

n+1 ◦ T
(j)
n→n+1

+
∑
j

∫
dΦ1

[
A

(j)
n+1 ◦ T

(j)
n→n+1 −D

(j)
n+1 ◦ T

(j)
n→n+1

]
. (13)

One can easily see that most terms formally cancel in Eq. (12), leaving only
the sum of the r.h.s. of Eq. (2) and Eq. (6). Additional subtraction terms
A

(j)
n+1 have been introduced, with, in principle, the only restriction that all

integrals should be convergent. B̄n contains everything that lives in the
Born phase space, including integrated subtraction terms. NLO matching
procedures are based on the observation that the first line of Eq. (12) can,
up to higher orders in the coupling constant, be written as∫

dΦnB̄n

[
∆(A)(t0)OLO

n

+
∑
j

∫
t0

dΦ1
A

(j)
n+1 ◦ T

(j)
n→n+1∣∣M(0)

n

∣∣2 ∆(A)(t) θ
(
t(Φ1)− t0

)
ONLO
n+1 ◦ T

(j)
n→n+1

]
, (14)

where

∆(A)(t) = exp

−∑
j

∫
dΦ1 θ

(
t(Φ1)− t

) A(j)
n+1 ◦ T

(j)
n→n+1∣∣M(0)

n

∣∣2
 (15)

is the Sudakov form factor associated with the subtraction terms A(j)
n+1.

Matching is performed by generating an event either according to the first or
the second line of Eq. (12) (excluding the second term on the first line). If the
second line is chosen, the event is kept as it is, and if the first term is chosen,
the event is processed through a one-step Sudakov branching algorithm. This
procedure gives the correct starting condition for the parton shower avoiding
possible double-counting.
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In [37] it is explained how different choices of the auxiliary subtraction
terms A(j)

n+1 correspond to the two main procedures worked out in literature,
Mc@NLO [38] and Powheg [39, 40]. They have been applied to several explicit
calculations recently [41]. Also, automation is under development [42].

8. Summary

We presented an overview of developments in fixed-order calculations
for hard scattering cross sections. Starting from the automation of LO cal-
culations, we proceeded to merging multi-leg matrix elements with parton
showers. We presented the complications that had to be dealt with to move
to NLO, and discussed matching NLO calculations with parton showers.
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