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exactly solvable quantum systems in any arbitrary dimensional space. Us-
ing the properties of orthogonal polynomials, the method transforms poly-
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1. Introduction

The Schrodinger equation plays a pivotal role in modern physics as its
solution gives complete information of any given non-relativistic quantum
system. Along the years, many authors have tried to obtain the exact so-
lution of the Schrodinger equation for potentials of physical interest [1–12].
This is because, despite the intrinsic interest of the exactly solvable systems,
these solutions can be used to get better approximated solutions for poten-
tials which are physically interesting. To enhance the set of exactly solvable
potentials, we follow a simple and compact transformation method [10, 13–
16] which comprises of a co-ordinate transformation supplemented by a func-
tional transformation. By applying this method, we transform the second
order ordinary differential equation satisfied by special functions to stan-
dard Schrodinger equation in arbitrary D-dimensional Euclidean space and
thus try to construct as many exactly solvable potentials as possible. The
method is efficient in generating both power and non-power law type spher-
ically symmetric potentials.
† nabaratna2008@gmail.com
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The article is organized as follows. In Sec. 2, the detailed formalism of
the theory is given. In Sec. 3, the application of the method using asso-
ciated Laguerre polynomial is discussed. The solvable potentials obtained
from hypergeometric, associated Legendre and Jacobi polynomials are also
tabulated. The conclusions are discussed in Sec. 4.

2. Formalism

We consider a second order differential equation satisfied by a special
function Q(r)

Q′′(r) +M(r)Q′(r) + J(r)Q(r) = 0 , (1)

where a prime denotes differentiation with respect to its argument. Q(r) will
later be identified as one of the orthogonal polynomials.

The transformation method comprises of the following two steps

r → g(r) , (2)
ψ(r) = f−1(r)Q(g(r)) . (3)

We implement the above prescription to equation (1) and obtain

ψ′′(r) +

(
d

dr
ln
f2(r) exp(

∫
M(g)dg)

g′(r)

)
ψ′(r)

+

(
f ′′(r)

f(r)
− g′′(r)

g′(r)

f ′(r)

f(r)
+ g′(r)M(g)

f ′(r)

f(r)
+ g′2J(g)

)
ψ(r) = 0 . (4)

The radial Schrodinger equation in D-dimensional Euclidean space is (~ =
1 = 2m)

ψ′′(r) +
(D − 1)

r
ψ′(r) +

(
En − V (r)− `(`+D − 2)

r2

)
ψ(r) = 0 . (5)

Consistency of equations (4) and (5) demands that

d

dr
ln
f2(r) exp(

∫
M(g)dg)

g′(r)
=

(D − 1)

r
(6)

which fixes the form of f(r) as

f(r) = Nr
(D−1)

2 g′
1
2

(
exp

(
−
∫
M(g)dg

)) 1
2

, (7)

where N is the integration constant and plays the role of the normalization
constant of the wavefunctions.
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Using (6) and (7) in equation (4) yields

ψ′′(r)

ψ(r)
+

(D − 1)

r

ψ′(r)

ψ(r)
= −1

2
{g, r}+ g′2(r)

4

×
[
M2(g) + 2M ′(g)− 4J(g)

]
− (D − 1)(D − 3)

4r2
, (8)

where the Schwartzian derivative symbol {g, r} [17] is defined as

{g, r} = g′′′(r)

g′(r)
− 3

2

g′′2(r)

g′2(r)
.

From equations (3) and (7), the expression for normalizable wavefunction is

ψ(r) = Nr−
(D−1)

2 g′−
1
2

(
exp

(∫
M(g)dg

)) 1
2

Q(g(r)) . (9)

The radial wavefunction ψ(r) = u(r)
r has to satisfy the boundary condition

u(r) = 0, in order to rule out singular solutions [18].
Expression (8) can be cast in the standard Schrodinger equation form

(equation (5)) if we can write

−(En − V (r)) = −1

2
{g, r}+ g′2(r)

4

×
[
M2(g) + 2M ′(g)− 4J(g)

]
− (D − 1)(D − 3)

4r2
. (10)

Once we choose a particular orthogonal polynomial, Q(g), to construct an
exact solution of the Schrodinger equation, the characteristic functions of
the polynomial M(g), J(g) get specified. We have to choose one or more
than one terms containing the function g(r) in expression (10) and put it
equal to a constant to get the energy eigenvalues En. The procedure is
worked out in detail for Laguerre and hypergeometric polynomials in the
next section.

It is interesting to note that when the generated potential is purely non-
power law, the potential given by expression (10) has a term (D−1)(D−3)

4r2

which behaves as constant background attractive inverse square potential in
any arbitrary dimension except for dimensions 1 and 3. For power law cases,
this background potential and the potential coming from the Schwartzian
derivative unite to give the correct centrifugal barrier potential in arbitrary
dimensions.
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3. Application of the transformation method

3.1. Construction of exactly solvable potentials
from associated Laguerre polynomial

Identifying
Q(g(r)) = Lαn(g) (11)

as the associated Laguerre polynomial, its characteristic functionsM(g) and
J(g) give

M(g) =
α+ 1− g

g
, (12)

J(g) =
n

g
. (13)

Using equations (11), (12) and (13) in equation (8) yields

ψ′′(r)

ψ(r)
+

(D − 1)

r

ψ′(r)

ψ(r)
=

1

4
(α2 − 1)

g′2

g2
− 1

2
(2n+ α+ 1)

×g
′2

g
+
g′2

4
− 1

2

g′′′

g′
+

3

4

g′′2

g′2
− (D − 1)(D − 3)

4r2
, (14)

and equation (9) yields

ψ(r) = Nr−
(D−1)

2 g′−
1
2 g

α+1
2 exp

(
−g
2

)
Lαn(g) . (15)

To convert equation (14) into a standard stationary state Schrodinger equa-
tion, we make one or more terms of the right-hand side of equation (14) a
constant quantity. This enables us to get the energy eigenvalues En, the
functional form of g(r) and subsequently potential V (r) and wavefunction
ψ(r).

(i) As a first case, let us choose

g′2

g2
= c21 , (16)

where c21 is a real positive constant independent of r. Equation (16) gives
the functional form of g(r) as

g(r) = A1 exp(−c1r) , (17)

where A1 is an integration constant and for normalizability condition we
consider here only the negative sign in the exponential. Using the value of
g(r) in equation (14) yields

En = −c
2
1α

2

4
, (18)
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V (r) = A1c
2
1 exp(−c1r)

(
A1

4
exp(−c1r)−

2n+ α+ 1

2

)
−(D − 1)(D − 3)

4r2
, (19)

and from equation (15), we obtain

ψ(r) = Nr−
(D−1)

2 exp
(
−c1αr

2

)
exp

(
−A1 exp(−c1r)

2

)
Lα−1n (exp(−c1r)) .

(20)
To express energy eigenvalues in terms of the quantum number n, we choose

2n+ α+ 1

2
= β

a constant independent of n, which gives α = 2β−2n−1 and β ≥ n+ 1
2 . This

yields energy eigenvalues, potential and energy eigenfunction as (A1 = 1)

En = −c
2
1

4
(2β − 2n− 1)2 , (21)

V (r) = c21 exp(−c1r)
(
1
4 exp(−c1r)− β

)
− (D − 1)(D − 3)

4r2
, (22)

and

ψ(r) = Nr−
(D−1)

2 exp
(
−(2β − 2n− 1)

c1r

2

)
exp

(
−exp(−c1r)

2

)
×L2β−2n−2

n (exp(−c1r)) . (23)

The potential given by expression (22) is non-power law and as our formal-
ism suggests, it has an inverse square potential term in spaces where the
dimensionality is other than 1 and 3.

(ii) Continuing the procedure to construct exactly solvable quantum sys-
tem, we consider second term g′2

g of expression (14) to be constant indepen-
dent of r, i.e.,

g′2

g
= c22 , (24)

we get the functional form of g(r) as

g(r) =
c22
4
r2 . (25)
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Equations (14) and (25) yield

En =
1

2
(2nr + α+ 1)c22 , (26)

V (r) =
c42
16
r2 +

(
α2 − 1

4
− (D − 1)(D − 3)

4

)
1

r2
, (27)

and

ψ(r) = Nrα+1−D
2 exp

(
−c

2
2

8
r2
)
Lαnr

(
c22
4
r2
)
. (28)

To get the correct centrifugal barrier term inD-dimensional Euclidean space,
we have to identify the coefficient of 1

r2
in expression (27) to be `(`+D−2),

which fixes the value of α as

α = `+
D − 2

2
. (29)

Identifying

c22
2

= ω , (30)

expressions (26), (29) and (30) yield energy eigenvalues as

En = ω

(
n+

D

2

)
, (31)

where the principal quantum number n is (2nr + `).
From equations (26) and (27), we get the potential and eigenfunction

as

V (r) = 1
4ω

2r2 + `(`+D−2)
r2

(32)

and

ψ(r) = Nr` exp

(
−ωr

2

4

)
L
`+D−2

2
1
2
(n−`)

(
ωr2

2

)
(33)

respectively.
(iii) Proceeding in a similar way, let

g′2(r) = c23 . (34)
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This gives

g(r) = c3r . (35)

As required for the normalizability of the wavefunction, we have taken the
positive sign. Equations (14) and (35) yield

En = −c
2
3

4
, (36)

V (r) = −c3
2
(2nr + α+ 1)

1

r
+

1

4r2
(
α2 − 1− (D − 1)(D − 3)

)
, (37)

and

ψ(r) = Nr
1
2
(α−D+2) exp

(
−c3

2
r
)
Lα+1
n (c3r) . (38)

To get the correct form of centrifugal barrier term in D-dimensional Eu-
clidean space, we have to identify the coefficient of 1

r2
in expression (37) to

be `(`+D − 2), which fixes the value of α as

α+ 1 = 2`+D − 1 . (39)

Further, to get the energy eigenvalues in terms of the quantum number n,
we identify the coefficient of 1

r in equation (37) to be e2, which in atomic
unit is 2, i.e.,

c3 =
4

2nr + α+ 1
. (40)

Equations (36), (39) and (40) yield the energy eigenvalues

En = − 1

n2
, (41)

where the principal quantum number, n for the D-dimensional case is n =
nr + `+ D−1

2 , and reduces to the usual, n = nr + `+ 1 when D = 3. Now,
the potential becomes

V (r) = −2

r
+
`(`+D − 2)

r2
, (42)

and the wavefunction

ψ(r) = Nr` exp
(
− r
n

)
L2`+D−1
n

(
2r

n

)
. (43)
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α n
(g
).

g
(r
)

E
n

V
(r
)

ψ
(r
)

ex
p
(−
c 1
r)

−
c
2 1 4
(2
β
−

2n
−
1
)2

c2 1
ex
p
(−
c 1
r)
( 1 4

ex
p
(−
c 1
r)
−
β
) N

r−
(
D
−

1
)

2
ex
p
( −(2

β
−

2n
−

1
)
c
1
r

2

)
−

(D
−
1
)(
D
−
3
)

4
r
2

,
ex
p
( −ex

p
(−
c
1
r
)

2

) L
2
β
−
2
n
−
2

n
(e
x
p
(−
c 1
r)
)

w
he
re

2
n
+
α
+
1

2
=
β

c
2 2 4
r2

ω
(n

+
D 2
),

1 4
ω
2
r2

+
`(
`+
D
−
2
)

r
2

N
r`

ex
p
( −ω

r
2

4

) L
`+

D
−

2
2

1 2
(n

−
`)

( ωr2 2

) ,

w
he
re

c
2 2 2
=
ω

w
he
re
α
=
`
+

D
−
2

2

c 3
r

−
1 n
2
,

−
2 r
+

`(
`+
D
−
2
)

r
2

,
N
r`

ex
p
(−

r n
)L

2
`+
D
−
1

n
(
2
r n
),

w
he
re
n
=
n
r
+
`
+

D
−
1

2
w
he
re
c 3

=
4

2
n
r
+
α
+
1

w
he
re
α
+
1
=

2`
+
D
−

1
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(iv) As a fourth choice, let

g′′2

g′2
= c24 . (44)

We get the functional form of g(r) similar to that of the first choice which
gives us a similar type of quantum system as obtained in that case.

The summary of the constructed exactly solvable systems is given in
Table I.

3.2. Construction of exactly solvable potentials
from hypergeometric function

Identifying

Q(g(r)) = 2F1(α, β, γ; g) (45)

as the hypergeometric function, its characteristic functions M(g) and J(g)
give

M(g) =
γ − (α+ β + 1)g

g(1− g)
, (46)

J(g) = − αβ

g(1− g)
. (47)

Using equations (45),(46) and (47) in equation (8) yield

ψ′′(r)

ψ(r)
+

(D − 1)

r

ψ′(r)

ψ(r)
=

(
γ(γ − α− β − 1)

2
+ αβ

)
g′2

g
+
γ(γ − 2)

4

g′2

g2

+

(
γ(γ − α− β − 1)

2
+ αβ

)
g′2

(1− g)
+

(
(α+ β − γ)2 − 1

4

)
× g′2

(1− g)2
− 1

2

g′′′

g′
+

3

4

g′′2

g′2
− (D − 1)(D − 3)

4r2
, (48)

and equation (9) yield

ψ(r) = Nr−
(D−1)

2 g′−
1
2 g

γ
2 (1− g)

α+β−γ+1
2 2F1(α, β, γ; g) . (49)

To put equation (48) into the standard stationary state Schrodinger equa-
tion and to generate exactly solvable quantum systems, we follow the same
procedure of equating different terms of the right-hand side of equation (48)
to a constant. We summarize the different quantum systems thus obtained
in Table II.

In a similar way, by identifying Q(g) as another orthogonal polynomial
and applying the above mentioned procedure, different exactly solvable po-
tentials can be obtained. We have listed a few of them in Table III.
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2
( −

2
n
(β

+
1
)
+
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+
D 2
)
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2

(1
−
r
2
)
(−

4
n
(β

+
1
)+
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`
(1
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−
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+
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+
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=
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4. Conclusions

In this article, we have presented a simple transformation method of
construction of exactly solvable potentials using the properties of orthogo-
nal polynomials in the regime of non-relativistic quantum mechanics. The
method is applied to construct spherically symmetric exactly solvable poten-
tials in arbitrary D-dimensional Euclidean space. The number of possible
exactly solvable potentials that can be constructed using a particular or-
thogonal polynomial depends on the number of g(r) dependent terms on the
right-hand side of equation (8), the mode of extraction of energy eigenvalues
as discussed in the formalism and the normalizability of the eigenfunctions.
We have listed exactly solvable potentials constructed from associated La-
guerre, hypergeometric, associated Legendre and Jacobi polynomials. The
method can, however, be applied to other orthogonal polynomials too. The
constructed potentials are mostly non-power law with an inverse square po-
tential (D − 1)(D − 3)r−2 which vanishes for D = 1 and D = 3. For
power law potential, this term along with the Schwartzian derivative give
the correct form of centrifugal barrier term in D-dimensions (e.g., equations
(29), (32)). It is notable that we have explicitly kept the various constants
such as integration constants, scale factors and characteristic constants in
our expressions, which allows flexibility to the constructed exactly solvable
potentials at the time of possible applications.
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