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Semiclassical wave functions based on the Maslov–Fedoriuk approach
and satisfying the Dirichlet boundary conditions are constructed in the ra-
tional polygon billiards. They are defined on classical objects called skele-
tons which are the billiard generalization of Arnold’s tori. The skeletons,
which are considered, are built of periodic trajectories. In the phase space,
these skeletons are represented by Lagrange surfaces which have forms of
cylinder-like or Möbius-like bands. Semiclassical solutions constructed on
these surfaces are exact making the Lagrange surface billiard-like. Pro-
jected on the rational polygon billiards these exact solutions become again
semiclassical taking the forms of the superscars of Bogomolny and Schmit
[Phys. Rev. Lett. 92, 244102 (2004)]. This allows us to consider the exact
solutions on the Lagrange surfaces as the resonant states for the rational
billiards which manifest themselves in the form of superscars in the high
energy limit. It is shown that the superscar states can be found also in
the chaotic deformations of the polygon billiards such as the Bunimovich
or Sinai ones.
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1. Introduction

Billiards while a non-analytic motion area are, however, well known as
examples of the non-integrable two dimensional systems, except the known
cases of the integrable elliptical, rectangular and some triangle billiards.

(1725)
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They are widely considered as a simple field of experimental [1–3] as well
as theoretical [4–7] (and papers cited there) and computational investiga-
tions [8–10] allowing to apply many different methods (see Sarnak’s lec-
ture [11] and [3] of the same author for an extensive review of the respective
theoretical methods covering also billiard manifolds as well as the students
book of Tabachnikov [12]).

In this paper, we are going to apply to the two-dimensional rational
polygon billiards the semiclassical wave function (SWF) formalism devel-
oped in our earlier paper [13] and based on the well known Maslov–Fedoriuk
approach. The latter was tailored respectively to the specific form of the bil-
liard dynamics developed in the two-dimensional rational polygon billiards.
The dynamics of such billiards has been called by Richens and Berry [8]
(see also Tabachnikov [12]) pseudointegrable. It is interesting because of its
position between the integrable dynamics and the chaotic ones.

A huge number of papers and monographs have been devoted already to
studying both the classical and quantum dynamics of the rational polygon
billiards both by mathematicians (see [12, 14] for the classical treatment of
the problem from the mathematical point of view) and physicists including
theoretical, computing and experimental works of the latter. However, even
for these restricted kinds of the polygon billiards their dynamics seem to be
still not well understood, for both the cases — the classical and the quantum
billiards.

In the Maslov–Fedoriuk approach to the problem, however, it is not the
dynamics of single trajectories, periodic or aperiodic ones, which is as much
important but rather an existence and a corresponding dynamics of sets
of such trajectories forming some closed systems, which in this paper are
called skeletons. These are just the systems on which global semiclassical
wave functions are constructed in the Maslov–Fedoriuk approach.

Let us note, at the moment, that a description “semiclassical” does not
mean necessarily the limit ~ → 0, but also a limit of any quantity, such as
the energy parameter, some parameters of potentials etc., respective limit of
which can be treated from the mathematical point of view by the methods
developed by Maslov and Fedoriuk [15] and modified in our paper [13]. In
the case of the billiard dynamics, the corresponding semiclassical parameter
is, in the present paper, the energy the infinite limit of which corresponds,
of course, to the short wave one.

Let us note further that the Maslov–Fedoriuk approach is quite general
covering a very wide class of partial differential equations which includes
also the Schrödinger one. Considering the latter and following Maslov and
Fedoriuk, one concludes that all what is really needed to construct a global
semiclassical solution to the Schrödinger equation (SE) in the rational poly-
gon billiards (RPB) in the high energy limit is the following:



Skeletons, Periodic Orbits and Superscars in the Rational Polygon . . . 1727

• realize that the dynamics in the RPB are just reflections of the billiard
ball on the billiard boundary ruled by the geometrical optic laws, while
the ball itself moves along a straight line (ray) between any two of its
successive reflections (see below for a more precise description of this
dynamics);

• construct, in the phase space corresponding to such a mechanics, a set
of Lagrange surfaces (manifoldes) (LS) [8, 16, 17] with the properties:

— each LS is built of a finite set of congruences (Keller and Rubi-
nov [17]);

— each of the congruences of a LS contains a connected set of rays
which are parallel to each other and begins and ends at the billiard
boundary each;

— each LS is built of congruences by gluing them on those of their
boundaries which coincide with the billiard one [8, 17];

— by the above gluing construction, each LS is closed for any of its
rays, i.e. each ray of a LS can never leave it being reflected by
the billiard boundary;

— each Lagrange surface is maximal, i.e. it cannot be enlarged by
additional congruences if conditions of the problem considered
are to be satisfied;

• build on each of the constructed Lagrange surfaces two basic semiclas-
sical solutions to the Schrödinger equation satisfying necessary condi-
tions of continuity, uniqueness and boundary ones;

• project on the billiard area each particular Lagrange surface equipped
with the two basic semiclassical wave functions (BSWF) defined on
them. Note that a number of points of the Lagrange surface projected
onto a single point of the billiards is finite in the RPB case;

• form a proper linear combination of the projected BSWFs in each
point of the billiard area covered by the projected Lagrange surface.
The constructed combinations must satisfy necessary conditions on the
billiard boundary providing us in this way with a global SWF (GSWF)
defined on the chosen Lagrange surface;

• put to zeros values of the GSWF in each point of the billiards not
covered by the Lagrange surface projection to get in this way a semi-
classical solution to the self energy problem in the billiards.
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The result of the projection of a Lagrange surface on the billiard area
is a set of trajectories called a skeleton. Congruences of a LS are projected
into the billiards as bundles, so that each skeleton is built in a closed way of
bundles of rays reflected by the billiard boundary [13].

Since constructions of skeletons seem to be easier then the respective
Lagrange surfaces, the construction of the GSWF’s described above can
be substituted equivalently by their direct respective construction on skele-
tons. Namely, the BSWFs can be defined just first on the bundles while the
GSWF’s can be uniquely and continuously defined on the skeletons satis-
fying on them the boundary conditions of Dirichlet or Neumann becoming
proper linear combinations of the BSWFs.

Constructing skeletons the following elementary rules which govern the
rational polygon billiards (RPB) dynamics must be taken into account:

• each ray is reflected by the billiard boundaries according to the rules
of geometrical optics making a finite number of different angles with
the billiard edges;

• each ray runs along a straight line between its two successive reflections
of the boundary;

• vertices of the polygon billiards are singular points for the billiard
trajectory dynamics, i.e. at these points trajectories do not satisfy the
optical reflection rule;

• each rational polygon billiards can be “unfolded” by successive mirror-
like reflection operation in each pair of their two edges joined by the
common vertex so that by a finite number of such operations the RPB
comes back to its initial position;

• each ray runs along a straight line on the respectively unfolded bil-
liards;

• if a trajectory is aperiodic, a set of points by which it is reflected is:

— dense on the whole billiard boundary; or
— dense on a subset of the billiard boundary while on the remaining

parts of the boundary such points are absent at all depending on
the trajectory;

• if a trajectory is periodic, the corresponding set of its reflection points
is finite;

• a set of angles by which all periodic trajectories are reflected is dens
on the segment (0, π) [18];
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• a periodic trajectory emerging from some vertex of the billiards, called
by Bogomolny et al. [19, 20] a singular diagonal (SD) (while mathe-
maticians called it a generalized diagonal [18]), has to pass on its way
by the same or other vertices;

• the set of all SD’s is countable.

According to the above rules, skeletons in the Maslov–Fedoriuk approach
can take several different forms providing us with the corresponding different
forms of the GSWF’s and their energy spectra. While we describe skeletons
sufficiently fully in the next sections, let us note here that each bundle
of a skeleton in the RPB contains only parallel segments of trajectories
crossing the billiards between two successive reflections. Because of that, any
skeleton in the RPB can contain only periodic or only aperiodic trajectories.
Moreover, skeletons in the RPB differ from each other by the following
properties of their bundles:

• each bundle of a skeleton covers by its trajectories the whole area of
the billiards;

• none bundle of a skeleton has the property of the previous point.

In the first case, a skeleton is global but cannot contain periodic trajec-
tories.

Singular skeletons of the second class can be built by periodic trajectories
as well as by aperiodic ones. The aperiodic skeletons seem, however, to be
strictly related with the periodic ones being their complements on the RPB
area.

In the phase space, the corresponding Lagrange surfaces have forms of
closed compact two-dimensional surfaces of some genus g in the case of the
global skeletons.

For the singular skeletons, the Lagrange surfaces can take the forms of
the cylinder-like or the Möbius-like bands, if they are built of periodic orbits
or forms of the surfaces of a genus g with holes in them, if trajectories
building them are aperiodic.

There is also another important difference between the skeletons of both
the kinds. Namely, the global skeletons can exist, as it seems, at most in the
pseudointegrable billiards, whereas the singular skeletons, which are strictly
related to the existing periodic orbits in billiards, can be found not only in
the rational polygon billiards but also in arbitrary billiards with respective
parts of flat boundaries including billiards with chaotic motions. An example
of the latter one is the Bunimovich stadium with its bouncing ball modes
generated by the periodic orbit skeleton built between its two flat parallel
parts of its boundaries.



1730 S. Giller, J. Janiak

Still another serious drawback related with the global skeletons which
differs them from the singular ones and which can give rise for criticizing
the Maslov–Fedoriuk approach at all, if it is applied to non-integrable sys-
tems such as the pseudointegrable ones, is that the global semiclassical wave
functions which can be built on the global skeletons in such systems can
provide us only with a part of the complete semiclassical solutions to the
SE, i.e. some essential part of possible solutions with accompanied energy
spectra can be unavailable by the method.

A reason for such a drawback lies, as it seems, in the semiclassical idea
itself which introduces to the respective physics natural units of lengths,
namely the wave lengths or their parts. As a result, linear dimensions of the
quantum problems investigated in the semiclassical limit should be expressed
naturally in the wave length units. If these dimensions are incommensurate
in the wave length units, then some necessary conditions for the semiclassical
wave functions, such as their continuity and boundary conditions, cannot be
satisfied simultaneously in many problems.

In particular, using simultaneously the Dirichlet and the Neumann bound-
ary conditions leads frequently to a conflict since if the first kind of the con-
ditions needs linear dimensions to be measured by the half wave units, then
the second needs the quarter wave ones. As a consequence, it is not possible,
for example, to construct an even set of the semiclassical wave function for
the rhombus built of the two equilateral triangles [8] or to demand both the
conditions on different parts of the same edges of the polygon billiards.

An importance of the above notes on the global skeletons is related
strictly with the common conviction that just these skeletons should be
considered as the ones on which the semiclassical wave functions approxi-
mating the quantum billiard problems can be built. From this point of view,
the existence of the singular skeletons and the corresponding semiclassical
solutions built on them seems to be a little bit mysterious.

Therefore, in this paper, having in mind the above limitations of the
M–F approach with constructing GSWF’s on the global skeletons, we de-
vote our main attention to the singular semiclassical solutions existing in
the RPB. Just these solutions seem to be the most interesting because of
the recent both theoretical [19, 20] and experimental results [1, 2, 20–22]
which, as it seems to us, provide us with a good opportunity for their phys-
ical interpretations by the singular semiclassical solutions built on periodic
skeletons.

Namely, Bogomolny et al. [19, 20] (see also Bogomolny et al. [23]) have
found, by a completely different way of analysis, that in the high energy limit
the periodic trajectories existing in the rational billiards have to express
themselves in the form of the superscars states. This conclusion has been
obtained by the authors as a high energy limit result of the scattering of
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the flat wave function on the infinite number of scattering centers regularly
distributed along a straight line when the wave vector was almost parallel
to the line [23]. This analysis was stimulated by considering the reflections
of the ray bundles by vertices of the rational polygon billiards as the result
of the scattering of the bundles on the vertices. It appears, however, that
these high energy superscars states coincide exactly with the semiclassical
wave functions built on the singular skeletons associated with the periodic
orbits considered by Bogomolny et al. [19, 20].

On the other hand, the authors of the papers [1, 2, 20–22] confirmed ex-
perimentally the existence of the singular semiclassical states in the resonant
cavities they investigated.

Since, as we have already mentioned, singular skeletons are typical not
only for the rational polygon billiards but can be met also in the chaotic
systems, then one can expect the existence of the superscar states also in
such systems. Again, a well known example is the Bunimovich stadium with
its bouncing ball modes [2, 4, 5]. However, one can easily give many other
examples of the chaotic billiards with any form of the superscars which can
be found in the broken rectangular billiards.

In this paper, we are going to show that the superscar states which can
be defined on the singular skeletons are common in the RPB’s but can be
found also in every billiard a boundary of which satisfies some conditions of
a geometrical nature. Namely, the boundary of such a billiard has to contain
some elements of the RPB boundary so that the considered billiard can be
substituted by a RPB preserving these elements.

However, our main result in explaining the mystery of the SWF’s built
on the periodic skeletons is establishing that they are perfectly regular and
exact solutions of the Schrödinger equation on the Lagrange manifolds cor-
responding to these periodic skeletons developed in the billiards. Therefore,
these exact states and their energy spectra can be considered as the vir-
tual part of the real energy spectra of the respective billiards giving rise
to the corresponding resonant effects [24] which manifest themselves as the
superscar states in billiards in the high energy limit.

In fact, because of their abundance, Bogomolny et al. [19] suggested to
use even the superscar solutions and their spectra as the approximations to
the real solutions and the real energy spectra. However, as it was noticed in
the recent paper by Marklof and Rudnick [25], the latter possibility cannot
be realized.

The paper is organized as follows.
We begin by reminding shortly the idea of skeletons to get tools for the

next sections.



1732 S. Giller, J. Janiak

In Sec. 3 the periodic skeletons of the simplest billiard, i.e. the rect-
angular one are considered to show the abundance of the singular periodic
skeletons in this case, and the corresponding abundance of the superscar
states. These states are shown to exist as the exact solutions to the SE on
the Lagrange surfaces corresponding to the skeletons considered.

In the next section, the periodic skeletons are considered in the simplest
case of the broken rectangular billiards. These billiards can be obtained by
gluing together a finite number of rectangles. They can be considered as
an archetype of the rational pseudointegrable polygon billiards since by a
standard way of gluing the rectangles one can obtain the pseudointegrable
billiards with any genus g of a Lagrange surface corresponding to it.

A variety of periodic skeletons, which can be easily found in the broken
billiards considered, are discussed in these section and it is shown again a
direct relation between the GSWF’s built on the skeletons and their exact
representations on the corresponding Lagrange surfaces whose shapes have
the cylinder-like bands.

Also in this section, it is noticed that the periodic skeletons in the broken
rectangular billiards are accompanied frequently by the complement skele-
tons the LS’s of which are much more complicated having forms of surfaces
with some genuses but with additional holes in them.

In Sec. 5 the triangle and the pentagon billiards are considered. In this
section, it is shown that shapes of the Lagrange surface can be also the
Möbius-like closed bands and the exact solutions of the SE which can be
found on the surfaces being projected on the respective billiards become the
semiclassical superscar states.

Next in Sec. 6, it is shown that the superscar SWF’s can be implemented
into chaotic deformations of the rectangle, the broken rectangle, the triangle
and the pentagon billiards. In Sec. 7 the results of the paper are summarized.

2. Skeletons and semiclassical wave functions
in the rational polygon billiards

In this section, we shall sketch a description of the notion of a skeleton.
The more complete and precise definition of it can be found in [13].

2.1. Rays, bundle of rays and skeletons — classical constructions
in billiards

Consider a rational polygon billiard BR shown in Fig. 1. It consists of
N edges (sides) with all its angles being a rational part of π.

A trajectory which is shown in the figure emerges from the side AkAk+1

making an angle αi with the side. The shadow area covers all the trajectories
emerging from the segment (ui, ui + li) of the length li and making all the
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same angles αi with the side Ak. These are rays of the bundle Bi. Each
bundle is an open set of rays. Each bundle is totally defined on a given side
of the RPB. Obviously, each bundle can contain parallel rays only.

Fig. 1. An arbitrary rational polygon billiard B with a bundle Bi.

A bundle Bi can be totally reflected off by a single side only or by two
or more sides as it is shown in Fig. 1. In the latter case, it is said to be
scattered by the vertex Aj by which it is divided into two parts. Each of
these two parts can belong to another bundles defined on the sides AjAj+1

and Aj−1Aj .
Vertices of BR are singular points for bundles reflecting on them, i.e.

a reflection of a bundle ray passing by such a vertex can be undefined. Such
a reflection can be, however, always uniquely defined if a bundle is a member
of a skeleton.

A skeleton B is a set of bundles Bi, i = 1, . . . , n, which is closed un-
der reflections of its bundles on the BR-boundary. It means that by such
reflections each bundle of the skeleton is scattered into subsets of another
bundles belonging to the skeleton B. Therefore, a ray belonging to the
skeleton cannot leave it by its subsequent reflections.

We shall assume that each skeleton satisfies the mini–max principle in
the following meaning:

• it cannot be decomposed into another two or more disjoint subsets of
its bundles forming new skeletons each; and

• it cannot be obtained by such a decomposition.

A global skeleton is the one, each bundle of which or respective unions
of its bundles cover the billiard totally, excluding may be some sides of the
BR-boundary.
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Skeletons which are not global are singular.
Global skeletons in BR can be represented in the phase space by closed

surfaces of definite genuses g. Namely [8, 12, 14, 17],

g = 1 +
C

2

N∑
k=1

pk − 1

qk
, (1)

where N is a number of the polygon vertices, π pkqk with coprime integers
pk, qk is an angle enclosed kth vertex, k = 1, . . . , N , and C is the least
common multiple of qk.

Singular skeletons in BR generated by periodic trajectories are repre-
sented in the phase space by closed cylinder-like or Möbius-like bands, while
their complement skeletons (see Sec. 5.1) by surfaces of some genuses with
holes in them.

Trajectories which are not periodic and do not belong to any complement
skeleton will be called generic.

We shall further assume that reflection points of each generic trajectory
are densely distributed on the whole RPB boundary since such a property
of the generic trajectories seems to be not firmly established.

We shall also assume, for the same reasons, that global skeletons can be
built only by generic trajectories.

It is the RPB skeleton property that if it contains at least one periodic
trajectory then all trajectories of such a skeleton are also periodic. In such
a skeleton, there are always at most two periodic trajectories each of which
starts from some vertex of the polygon and ends on the same vertex or on
another.

These two periodic trajectories have been called singular diagonals (SD’s)
by Bogomolny and Schmit [19], while such a periodic skeleton itself has been
called the periodic orbit channel (POC).

Therefore, each periodic skeleton is defined at most by two SD’s.
A basic property of the periodic skeletons is that they are never scattered

by any vertex, i.e. each bundle of such skeletons is totally reflected into an-
other single bundle of the periodic skeletons. This is why in the phase space
the Lagrange surface of the periodic skeletons have forms of the cylinder-like
bands (in the case of two SD’s) or Möbius-like bands (in the case of a single
SD) depending on whether a number of vertices linked by the corresponding
SD to close the orbit is even or odd respectively [26].

A convenient way of representing motions in BR can be obtained by
unfolding the polygon by its repeating reflections by the sides on which the
trajectory reflections are performed. A frequently complicated pattern of
the real trajectories takes then a simple form of parallel straight lines on
such unfolded polygons.
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2.2. Basic semiclassical wave functions defined on a skeleton

Consider now the stationary Schrödinger equation in the rational polygon
billiard BR(

∂2

∂x2
+

∂2

∂y2

)
Ψ(x, y) +

2m

~2
EΨ(x, y) ≡

(
4+

2m

~2
E

)
Ψ(x, y) = 0 (2)

with a ball of a mass m. For convenience, we shall put further ~ = 1 and
m = 1.

Consider also a skeleton B =
⋃n
i=1Bi which can be defined in the bil-

liards, Fig. 1. Each of its bundles Bi, i = 1, . . . , n, contains a family of
trajectories which can be locally used as new coordinates defined by:

x = x0(si) + di cos(αi + βi) ,

y = y0(si) + di sin(αi + βi) , (3)

where according to Fig. 1, si is a distance of the vertex Ak from the point of
the billiard side which the trajectory emerges of and di is a distance traveled
by the billiard ball along the trajectory by the time t, i.e. di = pt, where p
is the classical momentum of the ball.

On a bundle Bi, we can define the following two basic semiclassical wave
functions (BSWF) to the Eq. (2)

Ψσi (di, si, p) = eσiS(di,si)χσi (di, si, p) , i = 1, . . . , n , (4)

where σ = ± is the signature of Ψσi (x, y) and S(di, si) =
(x,y)∫
Ai

pxdx+ pydy =

pdi+psi cosαi and the factor χσi (di, si, p) is given by the following semiclas-
sical series for p→ +∞

χσi (di, si, p) =
∑
m≥0

χσi,m(di, si)

pi
. (5)

We are looking for the energy spectrum problem of the rational polygon
billiards in the form of the respective semiclassical series

E = 1
2p

2 +
∑
i≥0

Ei
pi
. (6)

Substituting the asymptotic representations (4)–(6) to Eq. (2) (and drop-
ping the bundle index), we get

σ2ip
∂χσ(d, s, p)

∂d
+4χσ(d, s, p) +

(
E − 1

2p
2
)
χσ(t, s, p) = 0 , (7)
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or
∂χσ0 (d, s)

∂d
= 0 ,

∂χσk+1(d, s)

∂d
=

σi

2

(
4χσk(d, s) + 2

k∑
l=0

Ek−lχ
σ
l (d, s)

)
,

k = 0, 1, 2, . . . , (8)

with the obvious solutions

χσ0 (d, s) ≡ χσ0 (s)

χσk+1(d, s) = χσk+1(s) +
σi

2

d∫
0

(
4χσk(a, s) + 2

k∑
l=0

Ek−lχ
σ
l (a, s)

)
da ,

k = 0, 1, 2, . . . (9)

Each BSWF on a bundle on which it is defined has to satisfy the following
boundary conditions:

• if two neighbor bundles have as a piece of their boundary a common
ray then the BSWFs (of the same signature) defined on these bundles
have to coincide on this common ray; and

• BSWF should vanish on a boundary ray of the bundle if the ray is not
common with any other bundle; and

• BSWF should vanish outside the bundle on which it is defined.

All of the above conditions ensure the continuity of a global semiclassical
wave function built out of the corresponding BSWFs on the skeleton.

However, the last two demands are, in fact, the intrinsic demands of
the semiclassical method since it is asymptotic. Because of that it neglects
all these contributions from the exact wave functions to BSWFs which are
exponentially vanishing when p → ∞. Such a property has to have the
exact wave functions outside the skeleton areas and, therefore, they cannot
be represented there by BSWFs, i.e. the latter can exist only inside their
bundles.

2.3. Global semiclassical wave functions defined on a skeleton

Let B =
⋃n
i=1Bi be a skeleton in BR. We can define on the skeleton B

the following two continuous global semiclassical solutions (GSWF)

Ψσ,as(x, y) =
n∑
i=1

Ψσi (di(x, y), si(x, y), p) . (10)
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It follows from the previous discussion that each Ψσi (di(x, y), si(x, y), p),
i = 1, . . . , n, contributes effectively to Ψσ,as(x, y) in the corresponding bun-
dles only.

Demanding of vanishing of Ψσ,as(x, y) on the BR-boundary provides us
with the semiclassical solutions to the self energy problem in BR with the
help of the skeleton B.

It follows from (10) that if Ψ+,as(x, y) is a solution to the self energy
problem then its complex conjugation is also such a solution with the same
energy and Ψ−,as(x, y) = (Ψ+,as(x, y))∗, i.e. if Ψ+,as(x, y) is essentially com-
plex then the corresponding energy level is degenerated. In fact, as we will
see in the next sections, such a degeneracy is typical for the GSWF’s built
on periodic skeletons with some rare exceptions, however.

3. Periodic skeletons in the rectangular billiards

We shall start with the simplest billiard — the rectangular one with
the sides a and b. Unexpectedly, it is not as trivial as it can be thought.
Simultaneously, its consideration can serve us as an archetype of similar
constructions made for other billiards investigated further.

Fig. 2. Three unfolded periodic skeletons defined by the corresponding pairs of
SD’s. Every skeleton is the cylinder-like Lagrange surface in the phase space.
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Periodic skeletons in the rectangular billiards are defined by singular
diagonals linking two different vertices. The partner diagonals link the re-
maining two vertices by a symmetric way. Five examples of such skeletons
are shown in Fig. 2 and Fig. 3 in their unfolded form (the left picture) and in
their real form in the billiards (the right pictures). Each pair of SD’s defining
each skeleton is visible in the unfolded form of the skeletons as two parallel
straight lines. Each skeleton is a stripe bounded by such two SD’s. A general
property of each such a stripe is that all the rectangle vertices related with
the stripe lie on its boundary, i.e. on its two SD’s. This means that none
bundle of the skeletons is scattered by any rectangular vertex being totally
reflected by the billiard sides into another bundle of the skeleton.

Fig. 3. Another two unfolded periodic skeletons defined by the corresponding pairs
of SD’s with the same cylinder-like Lagrange surfaces in the phase space.

Single periodic trajectories are shown also in each skeleton case in the
figure being parallel to the SD’s defining skeletons. In the billiards (the right
pictures) these periodic trajectories are, of course, closed. The skeletons on
the figure have forms which are typical, i.e. infinitely many others differ from
these on the figure by a number of reflections of SD’s on the rectangle sizes.

3.1. Bouncing ball skeleton and the corresponding global
semiclassical wave functions

Consider the simplest periodic skeleton in the rectangle billiards num-
bered as I in Fig. 2 and shown in Fig. 4. It is defined by two SD’s L1 and L2

linking the vertices A1 with A4 and A2 with A3, respectively, and construct
on this skeleton global semiclassical solutions with the rules mentioned in
Sec. 2 and in [13]. This bouncing ball skeleton contains only two bundles B1
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and B2 — the first one with its rays directed up and starting from the side
A1 and the second B2 with rays directed down starting from the side A3.
The skeleton B is singular since the sides A2 and A4 are not covered by the
bundles of the skeleton.

Fig. 4. The two bouncing mode bundles B1 and B2 of the vertical skeleton in the
rectangular billiards.

The bundle rays for both the bundles B1 and B2 can be positioned by
the same parameter s measuring a distance of a ray from the y-axis along
the corresponding sides A1 and A3. Therefore, for the corresponding basic
semiclassical wave functions (BSWF), we have

Ψ1(d, s, p) = eipdχ1(d, s, p) ,

Ψ2(b− d, s, p) = eip(b−d)χ2(b− d, s, p) ,

0 ≤ d ≤ b , 0 < s < a . (11)

For the coefficients χk(d, s, p), k = 1, 2, it is assumed that they propagate
along the rays of the bundles continuously and this their property is not
influenced by reflections of the rays on the boundaries. Therefore, we have
to accept also that they are periodic with respect to the d-variable with the
period equal to 2b.

For the GSWF Ψas(x, y, p), we have therefore

Ψas(x, y, p) = Ψ1(y, x, p) + Ψ3(b− y, x, p) (12)
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together with the following Dirichlet boundary conditions on the sides A1

and A3 respectively

χ1(0, x, p) + eipbχ2(b, x, p) = 0 ,

eipbχ1(b, x, p) + χ2(0, x, p) = 0 , (13)

so that in the zeroth order, we have to have

χ1,0(x) = e2ipbχ1,0(x) . (14)

Therefore, we conclude that

pb = nπ , n = 1, 2, 3, . . . (15)

Now, the corresponding boundary conditions for Ψk(y, x, p), k = 1, 2 on
the sides A2 and A4 give

χk(y, 0, p) = χk(y, a, p) ≡ 0 , k = 1, 3 . (16)

Therefore, in the zeroth order, we have

χ1,0(0) = χ1,0(a) = 0 . (17)

Now, the corresponding boundary conditions for Ψk(y, x, p), k = 1, 3 on
the sides A2 and A4 give

χk(y, 0, p) = χk(y, a, p) ≡ 0 , k = 1, 3 . (18)

Therefore, in the zeroth order, we have

χ1,0(0) = χ1,0(a) = 0 . (19)

Next, let us invoke the second of the equations (9) and the periodicity
of χ1(y, x, p) to get in the considered case for the second order term

χ1,1(2b, x) = χ1,1(0, x) = χ1,1(0, x) +
ib

2

(
d2χ1,0(x)

dx2
+ 2E0χ1,0(x)

)
, (20)

so that

d2χ1,0(x)

dx2
+ 2E0χ1,0(x) = 0 . (21)

The obvious solution of the last equation satisfying the boundary condi-
tions (16) is

χ1,0(x) = A0 sin
(√

2E0x
)
,√

2E0a = mπ , m = 1, 2, . . . (22)
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Coming back to the second of the equations (9), we can conclude that
χ1,1(y, x) is again independent of y.

Passing next to the third of the equations (9) and repeating arguments
similar to those which led us to (20), we get the following equation for χ1,1(x)

d2χ1,1(x)

dx2
+ 2E0χ1,1(x) + 2E1χ1,0(x) = 0 (23)

with the solution

χ1,1(x)=A1 sin
(√

2E0x
)

+B1 cos
(√

2E0x
)

+
E1A0x√

2E0
cos
(√

2E0x
)
.(24)

The boundary conditions χ1,1(0) = χ1,1(a) = 0 enforce, however, B1 =
E1 = 0.

Using again (9) and the inductive arguments, we come to the conclusion
that χ1(y, x, p) is y-independent and the coefficients of its semiclassical series
have the form

χ1,k(x) = Ak sin
(√

2E0x
)
, k = 0, 1, . . . (25)

so is the form of χ1(x, p) itself, i.e.

χ1(x, p) = A(p) sin
(√

2E0

)
= A(p) sin

(
mπ

x

a

)
,

A(p) =
∑
k≥0

Akp
−k . (26)

Clearly, similar conclusion can be obtained for χ2(y, x, p) which by (13)
and for the mnth energy level is equal to

χ2,mn(y, x, p) = −(−1)nχ1,m(x, p) = −(−1)nA(p) sin
(
mπ

x

a

)
. (27)

Therefore, coming back to (12), we get

Ψasmn(x, y, p) = 2iA(p) sin
(
nπ

y

b

)
sin
(
mπ

x

a

)
, (28)

which appears to coincide up to an unessential constant with the known
exact results for the rectangular well.

The energy E is given, however, by the finite semiclassical series

E = 1
2p

2 + E0 = 1
2

((
nπ
b

)2
+
(
mπ
a

)2)
, m, n = 1, 2, . . . (29)

Of course, the above energy levels are all non-degenerate.
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Let us note, however, that since we are working in the semiclassical limit
p→∞, the real value of the approximation should be considered under the
condition 1

2p
2 � E0, so that the numbers m,n in (29) should satisfy

m� a

b
n . (30)

The above condition is essentially the one of Bogomolny et al. [19] for
validity of their asymptotic results on the existence of the superscar states.

However, in the particular case of the skeleton considered the superscar
states it generates appear to coincide with the exact ones. A reason for
that is that its two bundles if closed cover each completely the rectangular
billiards. It is not the case for other periodic skeletons which exist in this
billiards and which will be considered next below.

3.2. Exact solutions of the Schrödinger equation on the Lagrange surfaces
and their relations with GSWF’s in periodic skeletons

Let us now note that the skeleton considered is just the projection of the
Lagrange surface corresponding to it and having the form of the cylinder-like
band with the radius b

π and the side a so that if unfolded on the plane this
surface is again a rectangle with the sides a and 2b.

Let us treat this cylinder-like Lagrange surface as a billiard table and
consider the Schrödinger equation (2) on it and its corresponding energy
spectrum problem. Let us call the billiards the Lagrange surface billiards
(LSB) corresponding to the bouncing ball skeleton. Let x, y, 0 ≤ x ≤ a, 0 ≤
y ≤ 2b, be the coordinates on the unfolded cylinder and consider solutions
to the energy spectrum problem of the forms Ψ±(x, y, p) = e±ipyχ(x) sat-
isfying the conditions to be periodic on the cylinder and vanishing on its
boundaries. The obvious two independent exact solutions to the problem
are the following:

Ψ±mn(x, y, pn) = e±ipny sin
(
mπ

x

a

)
,

pn =
nπ

b
,

Emn = 1
2p

2
n + m2π2

a2
,

m, n = 1, 2, . . . (31)

i.e. the above energy spectrum coincides exactly with (29).
It is not difficult to see that the GSWF (28) can be now obtained in the

following way

Ψasmn(x, y, pn) = A(pn)
(
Ψ+
mn(x, y, pn)− Ψ+

mn(x, 2b− y, pn)
)

(32)
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i.e. as an appropriate linear combinations of the exact solutions (31) taken
at the points of the cylinder which are projected on the point (x, y) of the
rectangular billiards. Coefficients of the respective linear combination have
to be taken in such a way to ensure the vanishing of the combination on the
respective parts of the billiard boundary.

We will convince ourselves below that this is the universal property of
the superscar states suggested, in fact, as the way of their constructions by
Bogomolny et al. [19, 20].

In the next section, we will show also that LSB’s which correspond to
each periodic orbit skeleton in the RPB’s have shapes of the cylinder-like
or the Möbius-like bands on which the exact solutions to the Schrödinger
equation exist.

We will also convince ourselves that the rectangular billiards and more
generally the RPB’s create opportunity for the stationary states of the cor-
responding LSB’s to manifest themselves in the form of the semiclassical
wave functions defined on the periodic skeletons. We shall discuss wider
this relation later.

3.3. Other periodic skeletons in the rectangular billiards

Consider now other periodic skeletons in the rectangle. The simplest
such a case is the fifth one in Fig. 2 and shown in Fig. 5. It is defined
by two SD’s which are the two rectangle diagonals. In this case, there are
four bundles Bk, k = 1, . . . , 4, in the corresponding skeleton in the forms of
triangles: B1 = 4A1A2A3, B2 = 4A2A3A4, . . . There are always two rays
(of the four of them) belonging to two different bundles which can meet at
each point of the rectangle if this point does not lie on SD’s.

We have to note also that the skeleton associated with this in Fig. 5
differs from it by the opposite directions of rays, i.e. possible energy levels
we get for these skeletons must be degenerated.

The GSWF corresponding to the case looks as follows in different do-
mains of the rectangles:

Ψ+,as(x, y) =


eipd1+ips1 cosαχ1(d1, s1, p) + eipd

′
4+ips

′
4 sinαχ4(d′4, s

′
4, p) (x, y) ∈ D1

eipd
′
1+ips

′
1 cosαχ1(d′1, s

′
1, p) + eipd2+ips2 sinαχ2(d2, s2, p) (x, y) ∈ D2

eipd3+ips3 cosαχ3(d3, s3, p) + eipd
′
2+ips

′
2 sinαχ2(d′2, s

′
2, p) (x, y) ∈ D3

eipd
′
3+ips

′
3 cosαχ3(d′3, s

′
3, p) + eipd4+ips4 sinαχ4(d4, s4, p) (x, y) ∈ D4

tanα = b
a

,

(33)
where the variables sk, s′k are measured from the left ends of the correspond-
ing sides Ak, k = 1, . . . , 4.
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The Dirichlet boundary conditions on the respective sides of the rectangle
are therefore:

χ1(0, s, p) + eipb sinαχ4

( s

cosα
, b− s tanα, p

)
= 0 ,

eipa cosαχ1

(
a− s
cosα

, s, p

)
+ χ2(0, (a− s) tanα, p) = 0 ,

χ3(0, s, p) + eipb sinαχ2

( s

cosα
, (a− s) tanα, p

)
= 0 ,

eipa cosαχ3

(
a− s
cosα

, s, p

)
+ χ4(0, b− s tanα, p) = 0 ,

0 < s < a . (34)

Fig. 5. The periodic skeleton defined by the corresponding pair L1 and L2 of SD’s
and its unfolded Lagrange surface.

One can easily find from (34) that

χ1(0, s, p) = e2ip(b sinα+a cosα)χ1

(
2a

cosα
, s, p

)
(35)

or

e2ip(b sinα+a cosα) = 1 (36)

because χ1(d, s, p) is periodic with the period 2a
cosα =2(b sinα+a cosα)=2D,

where D is the length of the rectangle diagonal.
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Therefore, we get the following quantization condition for the momen-
tum p

pD = nπ , n = 1, 2, . . . (37)

Now, we have to note that none of the four boundary rays coinciding with
one of the diagonals is common for any pair of the bundles considered since
the rays seemingly pretending to have this property are, in fact, opposite.
Therefore, BSWFs defined in the bundles have to vanish on the respective
diagonals of the rectangle, so that we have to have

χk(d, 0, p) = 0 , k = 1, . . . , 4 ,

0 ≤ d ≤ D . (38)

But then from (34), we get also

χ1(0, a, p) = χ2(0, b, p) = χ3(0, a, p) = χ4(0, b, p) = 0 . (39)

Further, using the propagation formula (9) for χ1,1(2D, s) = χ1,1(0, s),
we get

χ′′1,0(s) + 2E0 sin2 αχ1,0(s) = 0 (40)

which, with the conditions (38)–(39) for χ1(d, s, p), gives

χ1,0(s) = A0 sin
(√

2E0 sinαs
)
, (41)

where E0 defines the second term of the semiclassical energy expansion with
the condition

E0 = 1
2

m2π2

a2 sin2 α
, m = 1, 2, 3, . . . (42)

Next, repeating the procedure for the bouncing mode skeleton to the
remaining terms χ1,k(2D, s) = χ1,k(0, s), k = 1, 2, 3, . . . , we get for them

χ1,k(s) = Ak sin
(√

2E0 sinαs
)
, (43)

so that

χ1(d, s, p) = A(p) sin
(√

2E0 sinαs
)
,

A(p) =
∑
k≥0

Akp
−k . (44)
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Therefore, using (34), the final form of the GSWF Ψas(x, y) can be writ-
ten as follows:

Ψ+,as
mn (x, y) =



eipn(x cosα+y sinα) sin
(
mπ 1

a
(x− y cotα)

)
−eipn(x cosα−y sinα) sin

(
mπ 1

a
(x+ y cotα)

)
(x, y) ∈ D1

eipn(x cosα+y sinα) sin
(
mπ 1

a
(x− y cotα)

)
+eipn(−x cosα+y sinα+2a cosα) sin

(
mπ 1

a
(x+ y cotα)

)
(x, y) ∈ D2

−eipn(−x cosα−y sinα) sin
(
mπ 1

a
(x− y cotα)

)
+eipn(−x cosα+y sinα+2a cosα) sin

(
mπ 1

a
(x+ y cotα)

)
(x, y) ∈ D3

−eipn(−x cosα−y sinα) sin
(
mπ 1

a
(x− y cotα)

)
−eipn(x cosα−y sinα) sin

(
mπ 1

a
(x+ y cotα)

)
(x, y) ∈ D4

,

(45)
while the energy spectrum is

E = 1
2p

2 + E0 = π2

2

(
n2

D2 + m2D2

a2b2

)
, m, n = 1, 2, 3, . . . (46)

By their construction, the solutions (45) are all singular in the rectangle
— their derivatives are discontinuous on the rectangle diagonals.

Moreover, the corresponding energy spectrum differs this time from the
exact one of the bouncing ball skeleton.

However, a property common with the bouncing ball skeleton is the form
of the Lagrange surface corresponding to the skeleton of Fig. 5 which, again,
is a cylinder-like band with the radius equal to D

π and with the height equal to
a sinα = b cosα. Unfolding this Lagrange surface into rectangle D × a sinα
(see Fig. 5) and considering it as a billiard table, we get directly from (31)
the following exact results for the quantized ball energy in the billiard and
its wave functions:

Ψ±mn(x′, y′, pn) = e±ipny
′
sin

(
mπ

x′

a sinα

)
,

pn =
nπ

D
,

Emn = 1
2p

2
n + m2π2

a2 sin2 α
,

m, n = 1, 2, . . . , (47)

where x′ is a coordinate along the side a sinα and y′ — along the side 2D,
see Fig. 5.

Again, we can rewrite the GSWF’s (45) by the linear combinations of the
exact solutions (47) using Fig. 5, where the points A, B, C, D are mapped
into the following pairs of the Lagrange surface points (A′, A′′), (B′, B′′),
(C ′, C ′′), (D′, D′′), respectively. Namely, according to Fig. 5, we get:
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Ψ+,as
mn (x, y, pn) =


Ψ+
mn(x

′
A′ , y′A′ , pn)− Ψ+

mn(x
′
A′′ , y′A′′ , pn) (xA, yA) ∈ D1

Ψ+
mn(x

′
B′ , y′B′ , pn)− Ψ+

mn(x
′
B′′ , y′B′′ , pn) (xB , yB) ∈ D2

−Ψ+
mn(x

′
C′ , y′C′ , pn) + Ψ+

mn(x
′
C′′ , y′C′′ , pn) (xC , yC) ∈ D3

−Ψ+
mn(x

′
D′ , y′D′ , pn) + Ψ+

mn(x
′
D′′ , y′D′′ , pn) (xD, yD) ∈ D4

,

(48)
where (x′, y′) are related with (x, y) by the rotation by the angle α− 1

2π.
Therefore, we get again a picture of the GSWF (45) as the semiclassical

realization of the exact solutions existing on the Lagrange surface corre-
sponding to the skeleton of Fig. 5 and playing, in this way, a role of resonant
modes in the rectangular billiards in the high energy limit.

Since the solutions (45)–(46) are allowed semiclassical solutions to the
rectangle billiards eigenvalue problem it is of great importance whether one
can detect in these limits such resonant modes in the respective rectangular
cavity. In fact, such modes have been detected experimentally by Bogomolny
et al. [20] for the rectangle cavity with a barrier inside. This case of the
billiards will be discussed in the next sections.

If, however, such modes can be detected in the rectangle cavity then one
can expect the corresponding GSWF’s to have the forms of standing waves
rather than of the running ones as in (45) or (48). We can get such forms
of GSWF’s noticing that the spectrum (46) is obviously degenerate since in
the case considered the solutions (48) are complex. Therefore, their complex
conjugations form the solutions Ψ−,asmn (x, y, pn) with the same spectrum. We
can use them, therefore, to construct by superpositions the standing GSWF’s
corresponding to the energy spectrum (46).

Due to its asymptotic sense, the GSWF’s (45) should be tested in the
high energy limit when 1

2p
2 � 2E0, i.e. according to (47) when

m� ab

D2
n . (49)

The above results can be generalized to arbitrary periodic skeletons in
the rectangular billiards some of which are shown in Fig. 2 and Fig. 3. We
only sketch such a generalization.

This can be done by noticing that an arbitrary periodic SD is defined
by arbitrary two coprime numbers {r, q}, so that an SD in a rectangle with
the sides a and b shown in Fig. 5 starting from the vertex (0, 0) and being
inclined by an angle α to the x-axis, it is defined by such two numbers as
follows

tanα =
rb

qa
. (50)
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The above fact is a direct cosequence of the unfolded forms of periodic
trajectories shown in Fig. 2 and Fig. 3 if one realizes that each of them has
to finish on another vertex of the rectangle. It follows also that the set of
all SD is countable but dense among all trajectories in the rectangle.

Pairs {r, q} can appear in the following combinations {e, o}, {o, o} and
{o, e}, where e stands for “even” and o — for “odd”. The respective SD’s
defined by these combinations finish their runs in the vertices (a, 0), (a, b)
and (0, b), correspondingly.

An SD defined by a pair {r, q} bounces r− 1-times from each horizontal
side of the rectangle and q− 1-times — from each of the vertical ones. If D
denotes its global length measured from its starting vertex (0, 0) to one of its
final ones just enumerated, then D = rb sinα+ qa cosα =

√
(qa)2 + (rb)2.

If an SD is chosen, i.e. {r, q} are fixed, and it ends at one of the vertices
just enumerated then the second SD which has to accompany the chosen one
to build the skeleton starts and ends at the remaining two of these vertices.
Note that a number of bundles in such a skeleton is then equal to 2r + 2q,
while their widths are equal to w = a

r sinα = b
q cosα. Each bundle is crossed

by another bundle only once but it is crossed by such bundles along its whole
length, so that each point of the billiards lies in a crossing area of some two
bundles excluding points which lie on the boundaries of the bundles.

Therefore, in the phase space, the corresponding Lagrange surface is
again a cylinder-like band with the radius D

π and with the width w. The
quantization of the unfolded LSB in the form of the rectangular billiards
D × w leads us immediately to the following obvious result:

Ψ±mn(x′, y′, pn) = e±ipny
′
sin

(
mπ

x′

w

)
,

pn =
nπ

D
,

Emn = 1
2p

2
n + m2π2

w2 ,

m, n = 1, 2, . . . , (51)

where x′ is the coordinate along the side w and y′ — along the side 2D of
the unfolded Lagrange surface.

The GSWF’s can be constructed similarly to the previous cases with the
help of the solutions (47) as their proper linear combinations in the respective
crossing areas of the bundles of the skeleton using the fact that each point
of the billiard is always mapped into two points of the Lagrange surface.
Again, the GSWF’s can be considered as the resonant manifestation in the
rectangular billiards of the exact solutions (51) on the Lagrange surface in
the high energy limit for which

m� w

D
n . (52)
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The GSWF’s constructed in this way are all singular having discontinu-
ous derivatives on the lines separating two neighboring bundles. The lines
are just the bundles boundaries on which the BSWFs defined in these bun-
dles have to vanish.

4. Periodic skeletons in pseudointegrable billiards
and their quantization — broken rectangles

By a broken rectangle we mean the one which can be decomposed into
a finite set of disjoint rectangles, see Fig. 6. If reintegrated, it shows some
number of rectangular bays and peninsulas.

Fig. 6. An “arbitrary” broken rectangular billiard.

In fact, the broken rectangles can serve as archetypes of pseudointe-
grable systems with an arbitrary genus. Since, however, we are interested in
considering some special SWF’s configurations related to classical periodic
trajectories, we shall limit ourselves to rather simple forms of the broken
rectangles. The simplest one with a single peninsula (the L-shaped pseu-

Fig. 7. A single bay rectangular billiard with a “generic” global singular skele-
ton composed of six bundles. Its reduced form contains four global but singular
compound bundles which form in the phase space the closed Lagrange surface of
genus 2.
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dointegrable billiards in terms of Kudrolli and Sridhar [21]) is shown in Fig. 7
and also in Fig. 8 and Fig. 9 with several skeleton configurations related to
some SD.

The skeleton in Fig. 7 is shown only as an example the corresponding
Lagrange surface of which is two dimensional with genus equal to 2.

Fig. 8. A single bay rectangular billiard with periodic skeletons — the singular
bouncing ball cases. Every skeleton forms the cylinder-like Lagrange surface in the
phase space.

However, we are rather interested in the periodic skeletons in the consid-
ered broken rectangular billiards. Examples of them correspond to all the
skeletons shown in Fig. 8 and Fig. 9.

The skeletons of Fig. 8 define GSWF’s which are identical with the ones
of the formulae (28) and (29) with respective substitutions. These modes
were observed experimentally by Kudrolli and Sridhar [21].

Even more spectacular are skeletons built by periodic orbits different
than the bouncing ball ones shown in Fig. 9. These are just the skeletons
which provide us with the singular SWF’s with properties described by Bo-
gomolny and Schmit [19] as superscars and was observed also experimentally
by Kudrolli and Sridhar [21].
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Fig. 9. A single bay rectangular billiard with singular skeletons built on the shortest
periodic trajectories (black continuous rays) different than the bouncing ball ones
with the energy spectra of the respective GSWF’s ((A)–(G)). Note that n,m =

1, 2, . . ., for every spectrum. Arrows on these figures show the second periodic
orbits being the second SD of Bogomolny and Schmit [19] for the corresponding
skeletons. The skeletons form the cylinder-like Lagrange surfaces in the phase space
each. All the spectra shown are exact on the respective Lagrange surfaces. In (H)
the skeleton complementing the one of (A) is shown. It contains ten bundles. It
occupies the area bounded by black dashed contour. Its Lagrange surface is a torus
with three holes in its surface (see Fig. 11).
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The GSWF’s corresponding to the broken rectangle billiards shown in
Fig. 10 (upper figures) were observed by Bogomolny et al. [20]. In fact,
the authors mentioned the limit of the billiards considered when d− c→ 0
(lower figures). They studied experimentally the high frequency modes in
a microwave cavity [20] confirming the existence of the superscar modes
predicted earlier by Bogomolny and Schmit [19].

Fig. 10. Broken rectangular billiards with barriers and with possible superscar
skeletons and with the energy spectra corresponding to the respective GSWF’s. In
all the above formulae, n,m = 1, 2, . . . The corresponding Lagrange surfaces in the
phase space are cylinder-like.

For a completeness, we shall give below the two linearly independent
GSWF’s for the skeleton A of Fig. 9 together with their degenerate energy
spectrum.
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Ψas1,2;mn(x, y) =

sin
(

mπ
c−d cotα

(x− y cotα)
)
×
{

sin(nπ
D
(x cosα+ y sinα))

± cos(nπ
D
(x cosα+ y sinα))

− sin
(

(mπ
c−d cotα

(x+ y cotα)
)
×
{

sin(nπ
D
(x cosα− y sinα))

cos(nπ
D
(x cosα− y sinα))

for (x, y) ∈ D1, D6

sin
(

mπ
c−d cotα

(x− y cotα)
)
×
{

sin(nπ
D
(x cosα+ y sinα))

± cos(nπ
D
(x cosα+ y sinα))

for (x, y) ∈ D2, D5 ,

,

Ψas1,2;mn(x, y) =
sin
(

mπ
c−d cotα

(x−y cotα)
)
×
{

sin(nπ
D
(x cosα+ y sinα))

± cos(nπ
D
(x cosα+ y sinα))

− sin
(

mπ
c−d cotα

(x+y cotα)
)
×
{

sin(nπ
D
(x cosα− y sinα− 2c cosα))

− cos(nπ
D
(x cosα− y sinα− 2c cosα))

,

for (x, y) ∈ D3, D4 ,

tanα =
b

c
,

pD = nπ ,

E0 =
m2π2

2(c sinα− d cosα)2 ,

Emn = 1
2
p2+E0 = π2

2

(
n2

D2 +
m2

(c sinα−d cosα)2

)
, m, n=1, 2, 3, . . . ,

(53)

where D =
√
b2 + c2 is the length of the diagonal shown in Fig. 9 (A).

4.1. Skeletons complementing the periodic ones
in the broken rectangular billiards

It is easy to note that in the broken rectangle billiards for any periodic
skeleton which is not global, there is always a closed set of trajectories ac-
companied it but which do not belong to it. Namely, these are trajectories
which are parallel to the trajectories of the skeleton. By its closeness, these
trajectories can be also collected into a set of skeletons. These skeletons
will be called complementing the skeleton considered. In Fig. 9 (H), it is
shown the skeleton complementing the one of Fig. 13 (A). However, since it
is defined completely by the skeleton of Fig. 9 (A), it cannot have a chance
to satisfy exactly all conditions demanded for GSWF which we could try to
define on it. Nevertheless, it could be possible if, by a chance, the billiards
considered would have the form suggested in the Fig. 9 (H) (by the dashed
grey contour). Its Lagrange surface is a torus with three holes in its surface
(see Fig. 11).
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Fig. 11. The unfolded skeleton of Fig. 9 (H) complementing the one of Fig. 9 (A).
Its corresponding Lagrange surface is a torus with three holes in it on which the
skeleton develops a closed band leaving empty the surface area D1, D2 between
the holes.

Fig. 12. The unfolded periodic skeleton in the equilateral triangle A1A2A3 defined
by the periodic orbit A1A2A3A1 and forming the Möbius-like band in the phase
space. The skeleton contains three bundles B1, B2, B3 with their rays parallel to
the sides A1A2, A3A1, A3A2, respectively.

In the next section, the complementing skeletons will be detected in other
billiards accompanying other periodic skeletons.

5. Periodic skeletons in the triangle and the pentagon billiards

In this and in the next section, we will made a short review of the bil-
liards systems which have been widely considered [8, 10, 20, 27, 28] both
theoretically and experimentally having mainly in mind their periodic skele-
ton description.
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Fig. 13. Skeletons in the equilateral triangles: (a) defined by periodic orbits with
a cylinder-like Langrange surface, (b) with longer periodic orbits, (c) in the ampu-
tated corner triangle. The latter can be neither integrable nor pseudointegrable.

5.1. The equilateral triangle billiards

These billiards whose dynamics is integrable have been considered in
past very often [8, 17]. The simplest periodic orbits and the corresponding
skeletons are shown in Fig. 12 and Fig. 13.

The periodic skeleton of Fig. 12 is defined by the SD composed of the
three sides of the triangle so that the period of the orbit is equal to three.
The skeleton contains only three bundles covering the whole triangle each.
Therefore, to get GSWF it is enough to superpose in each point of the
triangle only three BSWF defined on the bundles.

It is obvious also that on the skeleton shown in Fig. 12, one can build
two linear independent GSWF’s with the opposite signatures and having the
same energy spectrum, i.e. the corresponding energy spectrum is degenerate.

Taking, therefore, two independent superpositions of these GSWF’s, we
get the following semiclassical solutions for the case

Ψ (1)
mn(x, y) = sin

(
2

3
mπx

)
sin

(
2√
3
nπy

)
− sin

[
1

3
mπ(x+

√
3y)

]
sin

[
nπ

(
x− y√

3

)]
+ sin

[
1

3
mπ(x−

√
3y)

]
sin

[
nπ

(
x+

y√
3

)]
(54)

and

Ψ (2)
mn(x, y) = cos

(
2

3
mπx

)
sin

(
2√
3
nπy

)
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+ cos

[
1

3
mπ(x+

√
3y)

]
sin

[
nπ

(
x− y√

3

)]
− cos

[
1

3
mπ(x−

√
3y)

]
sin

[
nπ

(
x+

y√
3

)]
(55)

with the energy spectrum

Emn =
2π2

9

(
m2 + 3n2

)
m,n = 1, 2, . . . (56)

for both the solutions, where m,n are even or odd simultaneously.
By their asymptotic origins, the superscar solutions (54)–(56) should be

considered for n� m√
3
.

However, similarly to the bouncing ball skeleton in the rectangular bil-
liards, the above solutions and their common energy spectra are exact since
the bundles of the skeleton cover the billiards totally.

In the considered case of the skeleton, the LSB corresponding to it is
Möbius-like band shown in Fig. 12 with the following two linear independent
exact solutions in such a billiard

Ψ±mn(x, y) = e±ipmx sin

(
nπ

2y√
3

)
3pm = 2mπ , m = 1, 2, . . . (57)

and with the energy spectrum identical with (56).
Note that the x-variable in (57) is local, i.e. it should be continued along

the dashed arrows when achieving the sides A1A3 of the unfolded skeleton
of Fig. 12. Having this in mind, the two independent semiclassical solutions
in the equilateral triangle corresponding to the skeleton of Fig. 12 can be
written as

Ψ±,asmn (xA, yA) = Ψ±mn(xA, yA)− Ψ±mn(xB, yB) + Ψ±mn(xC , yC) , (58)

where the coordinates (xB, yB) and (xC , yC) should be taken according to
Fig. 12.

Once again, we see that the superscar solutions are the resonant reflec-
tions of the exact states existing in the corresponding LSB’s.

In the case of the periodic skeleton of Fig. 13 (a) defined by the peri-
odic orbit of the length

√
3 (the double height of the triangle), there are four

bundles of the skeletons. Therefore, the two linearly independent GSWF are
defined locally in the domains Dk, k = 1, 2, 3, of Fig. 13 (a) being, however,
continuous in D1 ∪D2 ∪D3. They are the following:
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Ψas
1,2;mn(x, y) =

sin(2nπx)×

 sin
(

2mπ x√
3

)
cos
(

2mπ x√
3

) (x, y) ∈ D1

sin(2nπx)×

 sin
(

2mπ x√
3

)
cos
(

2mπ x√
3

) −
sin
[
nπ
(
x+
√

3y
)]
×

 sin
[
mπ

(
x+ y√

3

)]
cos
[
mπ

(
x+ y√

3

)] (x, y) ∈ D2

− sin
[
nπ
(
x+
√

3y
)]
×

 sin
[
mπ

(
x+ y√

3

)]
cos
[
mπ

(
x+ y√

3

)] (x, y) ∈ D3

(59)

with the energy spectrum

Emn =
2π2

3

(
m2 + 3n2

)
,

n � m√
3
, m, n = 1, 2, . . . (60)

Of course, Ψas1,2;mn(x, y) ≡ 0 if (x, y) /∈ D1 ∪D2 ∪D3.
While the above Ψasmn(x, y) satisfies the Schrödinger equation, its deriva-

tives are not continuous on the boundaries separating the domains Dk, k =
1, 2, 3. This is why it is only semiclassical approximation to the exact solu-
tions given earlier.

One could, of course, repeat the previous arguments and rewrite the
GSWF’s by the exact solutions on the corresponding LSB on which the
energy spectrum is always degenerate.

However, there is another natural degeneracy of this spectrum caused by
the symmetry of the equilateral triangle. Namely, the same spectrum (60)
has solutions which are constructing on the two skeletons complementing the
considered one. The latter skeletons are just the mirror reflections in the
two heights of the triangle coinciding with the two SD’s defining the skeleton
considered.

All these new solutions can, of course, interfere with the solution (59)
and with themselves so when trying to stimulate the corresponding state in
a cavity certainly such superposed states will be generated rather than the
“pure” states (59).

To isolate, however, the states (59) it is enough to remove one of the
three corners of the triangle as it is shown in Fig. 13 (c).
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The periodic skeleton corresponding to the periodic orbit shown in
Fig. 13 (b) contains eighteen bundles. The length of the orbit is equal

to D = 3
√

7, while the wideness of each bundle is equal to w = 1
2

√
3
7 .

Therefore, the GSWF’s for this case are linear combinations of the eighteen
BSWFs. These are also the projections of one of the two exact solutions
which can be obtained on the corresponding LSB.

The LSB is just the cylinder-like band with the radius Dπ and the length w,
so using this correspondence, we get for the energy spectra of the superscar
states built on the skeleton considered

Emn = 1
2
4m2π2

D2 + n2π2

2w2 = π2
(
2m2

D2 + n2

2w2

)
= 7

3π
2
(
2
3m

2 + n2
)

(61)

with n�
√

2
3m as the condition of their validity in the equilateral billiards.

5.2. The pentagon billiards

The pentagon billiards were also the subject of intensive studies of both
theoretical and experimental [27, 28]. In the latter case, the corresponding
pentagon cavities were made of some dielectric media. In the very high
frequency region, the corresponding electromagnetic waves form different
modes among which the whispering gallery one of Fig. 14 was the most
prominent. The other pentagon modes shown in the paper of Lebental et al.
[28] are more difficult for an identification in terms of the corresponding
skeletons also because of different boundary conditions considered by the
authors.

Nevertheless, below we will discuss also other pentagon modes of SWF’s.
Consider first the simplest one which is defined by the whispering gallery

skeleton just mentioned and shown in Fig. 14. It would be quite easy to write
the corresponding GSWF’s. However, we will limit ourselves by quoting
merely the corresponding result for the energy spectrum using the one of
the corresponding Möbius-like LSB projected into the pentagon billiards.
Namely, we have

Emn =
π2

2

(
m2

25 cos2 π5
+

n2

sin2 π
5

)
,

n � 0, 029m, m, n = 1, 2, . . . (62)

This spectrum is, of course, degenerate. Note also that in the pentagon
(white) center the corresponding GSWF’s vanish identically.
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Fig. 14. The pentagon billiard and its simplest whispering gallery superscar skele-
ton with five bundles. A typical periodic orbit is shown (the straight line PT in the
unfolded pentagon) the limiting form of which is the five-pointed star orbit (the
straight lines SD). It degenerates into the inscribed pentagon orbit (the straight
line PD) with the half of the typical period equal to 10 cos π5 ' 8.090. Gluing the
end segments indicated by AB in the unfolded pentagon, we get the Möbius band
in the phase space.

Another case of the singular skeleton is shown in Fig. 15. The energy
spectrum corresponding to the GSWF’s built on it is

Emn =
π2

2

(
m2(

3 cos π
10 + 2 sin π

5

)2 +
n2

sin2 π
10

)
,

n � 0, 076m, m, n = 1, 2, . . . (63)

Despite it degeneracy coming from the closed-band form of each periodic
skeletons, the spectrum (63) is additionally degenerate by the pentagon ro-
tational symmetry, i.e. there are five independent solutions with the same
spectrum. In the pentagon cavity, all these solutions can be stimulated si-
multaneously. To isolate at least one of them it is enough to desymmetrize
the pentagon into its forms shown for example in Fig. 16. While by this
operation the remaining four modes are not removed, their energy spectra,
however, will differ from the modes of Fig. 16.



1760 S. Giller, J. Janiak

Fig. 15. Another simple singular periodic skeleton in the pentagon billiards with
the half of the period equal to 3 cos π

10 + 2 sin π
5 ' 4.029. Its Lagrange surface is

cylinder-like.

Fig. 16. The deformed pentagon billiards with the singular periodic skeletons
having the half periods equal to 2 cot π

10 + cos π
10 ' 7.106 — the case (a) and

2 tan π
10 + 3 cos π

10 ' 3.503 — the case (b).

To get the energy spectra for both the cases of the skeletons of Fig. 16,
one can consider the LSB’s corresponding to the cases to get

Emn =
π2

2

(
m2(

2 cot π
10 + cos π

10

)2 +
n2

sin2 π
10

)
,

n � 0, 043m, m, n = 1, 2, . . . (64)
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for Fig. 16 (a), and

Emn =
π2

2

(
m2

(2 tan π
10 + 3 cos π

10)2
+

n2

sin2 π
10

)

n � 0, 088m, m, n = 1, 2, . . . (65)

for Fig. 16 (b).

6. Periodic orbits and superscars in the chaotic
polygon based billiards

It follows from the previous section that the idea of the skeletons seems
to be effective in solving some simple situations of quantum phenomena
related semiclassically with billiards which shapes stimulate rather chaotic
than regular (integrable or pseudointegrable) motions. An example of such
cases is shown in Fig. 13 (c). Still more spectacular situations exist in
billiards which can be obtained from the rectangular and the pentagonal
ones by their deformations.

Examples of such deformations and the superscar modes possible to be
detected in such chaotic billiards are shown in Fig. 17. To describe analyti-
cally the superscar states shown in these figures, the methods of the previous
sections can be applied directly.

Note that the superscar mode corresponding to the Sinai billiards of
Fig. 17 was observed experimentally by Kudrolli and Sridhar [21] and by
Sridhar and Heller [22] who studied the Sinai billiards also numerically (see
also [5]).

Fig. 17. The deformed rectangular, the Sinai and the pentagon billiards giving rise
to chaotic motions with some possible superscar skeletons.
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7. Summary and conclusions

In this paper, we have used the Maslov–Fedoriuk approach [15] formu-
lated in terms of the skeletons [13] to construct in the rational polygon
billiards singular semiclassical solutions which have forms of the superscar
states. The latter have been suggested theoretically by Bogomolny et al.
[19, 20] and confirmed experimentally by other authors [1, 2, 20–22].

We have shown, in particular, that:

• there is a huge variety of periodic skeletons in the RPB;

• these periodic skeletons continue their existence also in the chaotic
deformations of the RPB;

• in the phase space, the Lagrange surface which corresponds to the pe-
riodic skeletons in the RPB’s have forms of the cylinder-like or Möbius-
like bands depending on whether a number of vertices linked by the
corresponding SD to close the orbit is even or odd respectively [26];

• the existence of these periodic skeletons gives rise to the appearing of
superscar solutions in the RPB’s;

• the superscar solutions exist as the exact solutions of the Schrödinger
equation on the Lagrange surfaces considered as billiards;

• these exact solutions on the Lagrange surfaces can be considered as the
virtual energy levels of the corresponding quantum dynamics of both
the RPB and the chaotically deformed RPB manifesting themselves in
the high energy limit of this dynamics.

A final conclusion of a more general nature, which can be drawn from
our results, is that the periodic orbits seem to play an exceptional role not
only in the Feynman paths approach to the quantum mechanics saturating
the path integrals [29] but also in the Schrödinger formulation of the quan-
tum mechanics being responsible for the existence of the virtual states in the
energy spectra of the billiard dynamics. The well known scar phenomenon
of Heller [30], although of a different origin, also suggests such an excep-
tional role of the periodic orbits in the chaotic dynamics for their quantum
description in the language of wave functions.

One of us (S. Giller) would like to express his thanks to prof. P. Kosiński
for the suggestion of the meaning of the superscar solutions as the virtual
states of the quantum billiard dynamics.
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