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This paper addresses the singular 1-soliton solution of the K(m,n)
equation that is being considered with generalized evolution. The ansatz
method will be used to extract the singular 1-soliton solution of this equa-
tion. A couple of constraint conditions will fall out in order for the singular
soliton solutions to exist. Subsequently, the special cases of this equation
will be studied. They are the KdV and the mKdV equations where the
extended (G′/G)-expansion method will be employed to extract a few non-
linear wave solutions.
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1. Introduction

The theory of nonlinear evolution equations (NLEEs) is very impor-
tant in areas of mathematical sciences and theoretical physics [1–20]. These
equations form the fabric of nonlinear science. The stupendous analytical
developments of these NLEEs have led to a plethora of results that are
constantly being applied to various areas of engineering sciences, biological
sciences, chemical and geological sciences. Therefore, it is imperative that
these NLEEs are dug deeper and so that furthermore new results can be ex-
tracted. Consequently, it is important to revise several of the NLEEs studied
already earlier to obtain further results carrying unprecedented novelty.

Equations discussed in this paper are all already well studied. However,
it is some of several new solutions that make this paper very unique and an
extension of various previous works. Initially, this paper apply the ansatz
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method in order to extract the singular 1-soliton solution to the K(m,n)
equation that is a generalized version of the KdV equation. In fact, this
paper will look into the K(m,n) equation with generalized evolution. The
constraint conditions will naturally come out of this equation. Subsequently,
the G′/G-expansion method will be applied to extract several solutions to
the subsidiaries of the K(m,n) equation. They are the KdV equation and
the modified KdV (mKdV) equation. These two special cases, namely the
KdV equation and the mKdV equation are studied in the context of shallow
water waves that appear in oceans and rivers.

2. Singular 1-soliton solution

The form of the K(m,n) equation with generalized evolution that will
be studied in this paper is given by(

ql
)
t
+ a (qm)x + b (qn)xxx = 0 . (2.1)

Equation (2.1) is the K(m,n) equation with generalized evolution. The
dependent variables is q(x, t) represent the wave profile, while x and t are
the spatial and temporal variables respectively. The first term in (2.1) is the
evolution term in its generalized format. If l = 1, it is the linear evolution.
Then, the coefficients of a and b, which are non-zero real-valued constants,
are the nonlinear and dispersion terms respectively and both of these terms
are in their generalized format. The special cases when l = n = 1 and
m = 2 lead to the KdV equation. Then, if l = n = 1 along with m = 3,
mKdV equation is recovered. This equation has been studied before in
several papers [1–4]. It must be stressed that singular soliton solutions of
this equation are being reported here for the very first time.

In order to obtain the singular 1-soliton solution to (2.1), the following
ansatz is taken into account

q(x, t) = Acschp[B(x− vt)] , (2.2)

where A and B are free parameters while v is the velocity of the soliton.
The unknown exponent is p whose value will fall out during the course
of derivation of the soliton solution. Subsequently, this ansatz into (2.1)
leads to

lvAlcschlpτ − amAmcschmpτ − bn3p2AnB2cschnpτ

−bn(np+ 1)(np+ 2)AnB2cschnp+2τ = 0 , (2.3)

where
τ = B(x− vt) . (2.4)
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Then, by the balancing principle, equating the exponents lp and np leads to

lp = np (2.5)

which implies
l = n . (2.6)

Again, equating the exponents mp and np+ 2 gives

mp = np+ 2 (2.7)

which yields

p =
2

m− n
. (2.8)

Now, setting the coefficients of the linearly independent functions cschnp+jτ
for τ = 0.2 to zero gives the velocity of the soliton and the relation between
the free parameters as

v =
4n2bB2

(m− n)2
(2.9)

and

A =

[
−2n(m+ n)bB2

a(m− n)2

] 1
m−n

. (2.10)

Therefore, equations (2.9) and (2.10) introduce the constraints

m 6= n (2.11)

for m− n even and
ab < 0 . (2.12)

This shows that the coefficient of dispersion term and the nonlinear term
must be of opposite sign in order for the singular 1-soliton solution to exist.
Hence, finally, the K(m,n) equation with generalized evolution that support
singular 1-soliton solution is given by

(qn)t + a(qm)x + b(qn)xxx = 0 (2.13)

whose singular 1-soliton solution is

q(x, t) = Acsch
2

m−n [B(x− vt)] , (2.14)

where the velocity of the soliton is (2.9) and the relation between the free
parameters is related as in (2.10). This singular 1-soliton solution will exist
provided the constraint condition given by (2.11) and (2.12) remains valid.
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3. Extended (G′/G)-expansion method

This section will address this new version of the G′/G-expansion method
that is also known as the extended G′/G-expansion method. The study will
be split into two subsections. The first subsection will describe this method
in a succinct form. Subsequently, it will be applied to a couple of NLEEs.

3.1. Brief description of the method

Suppose that a nonlinear equation, say in two independent variables x
and t, is given by

P (u, ut, ux, utt, uxt, uxx, . . . ) = 0 , (3.1)

where u = u(x, t) is an unknown complex-valued function, P is a polynomial
in u = u(x, t) and its various partial derivatives, in which the highest order
derivatives and nonlinear terms and involved.

The main steps of the extended (G
′

G )-expansion method are the following:
Step 1: By taking u(x, t) = u(ξ), ξ = x−vt equation (3.1) can be converted
to on ODE

P
(
u,−vu′, u′, v2u′′,−vu′′, u′′, . . .

)
= 0 . (3.2)

Step 2: Suppose that the solution of ODE (3.2) can be expressed by a
polynomial in (G

′

G ) as follows

u(ξ) = a0 +
m∑
i=1

ai

(
G′

G

)i

+ bi

(
G′

G

)−i
, (3.3)

where G = G(ξ) satisfies the second order linear differential equation in the
form

G′′ + λG′ + µG = 0 , (3.4)

where a0, ai, bi, v, λ and µ are constants to be determined later. The pos-
itive integer m can be determined by considering the homogeneous bal-
ance between the highest order derivatives and nonlinear terms appearing
in ODE (3.2).
Step 3: Substituting (3.3) into (3.2) and using (3.4), collecting all terms
with the same power of (G

′

G ) together and then equating the coefficients
of each power of (G

′

G ) to zero gives a system of algebraic equations for
a0, ai, bi, v, λ and µ.
Step 4: These constants are written in their places in equation (3.3) and if
the solutions of second order linear ordinary differential equation (3.4) are
used, the soliton solutions of nonlinear partial differential equation (3.1) are
obtained.
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3.1.1. KdV equation

We begin with the KdV equation in the form

ut + αuux + uxxx = 0 , (3.5)

which arises in many physical problems such as surface water waves and
ion-acoustic waves in plasma. To look for the travelling wave solution of
Eq. (3.5), we make the transformation u(x, t) = u(ξ), ξ = x − vt, where v
is the wave speed to be determined later, Eq. (3.5) becomes on ODE for
u = u(ξ), −vu′+αuu′+ u′′′ = 0, integrating it will respect to ξ once yields

c− vu+
α

2
u2 + u′′ = 0 , (3.6)

where c is an integration constant that is to be determined later.
Balancing the terms u2 and u′′ in Eq. (3.6) yields the leading order

m = 2. Therefore, we can write the solution of Eq. (3.6) in the form

u(ξ) = a2

(
G′

G

)2

+ a1

(
G′

G

)
+ a0 + b1

(
G′

G

)−1
+ b2

(
G′

G

)−2
. (3.7)

Substituting (3.4) and (3.7) into (3.6), collecting all terms with the same
power of (G

′

G ) and setting each coefficient to zero, we obtain the following
system of algebraic equations (

G′

G

)−4
:
1

2
b22α+ 6b2µ

2 = 0 ,(
G′

G

)−3
: b1b2α+ 10b2λµ+ 2b1µ

2 = 0 ,(
G′

G

)−2
: −b2v +

1

2
b21α+ a0b2α+ 4b2λ

2 + 8b2µ+ 3b2µ+ 3b1λµ = 0 ,(
G′

G

)−1
: −b1v + a0b1α+ 6b2λ+ b1λ

2 + 2 + a1λ = 0 ,(
G′

G

)0

: 2b2+c−a0v+
1

2
a20α+a1b1α+a2b2α+b1λ+a1λµ+2a2µ

2 = 0 ,(
G′

G

)1

: −a1v + a0a1α+ a2b1α+ a1λ
2 + 2a1µ+ 6a2λµ = 0 ,(

G′

G

)2

: −a2v +
1

2
a21α+ a0a2α+ 3a1λ+ 4a2λ

2 + 8a2µ = 0 ,
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(
G′

G

)3

: 2a1 + a1a2α+ 10a2λ = 0 ,(
G′

G

)4

: 6a2 +
1

2
a22α = 0 .

From the solutions system, we obtain the following with the aid of Math-
ematica.

Case 1:

α 6= 0 , a1=−
12λ

α
, a2=−

12

α
, b1=0 , b2=0 , v=α0α+ λ2 + 8µ ,

c =
1

2

(
a20α+ 2a0λ

2 + 16a0µ− 2a1λµ− 4a2µ
2
)
.

Case 2:

a1 = 0 , a2 = 0 , αµ 6= 0 , b1 = −
12λµ

α
, b2 = −

12µ2

α
, b1 6= 0 ,

v=
1

b1

(
α0b1α+ 6b2λ+ b1λ

2 + 2b1µ
)
, c=

1

2

(
−4b2 + 2a0v − a20α− 2b1λ

)
.

For Case 1:
(i): When λ2 − 4µ > 0, we obtain the hyperbolic function travelling

wave solution

u1(ξ)=

(
−
(
A2−B2

) (
a0α+ 6

(
λ2−2µ

))
+
(
A2+B2

)
(a0α+12µ)

cosh
[
(x−vt)

√
λ2−4µ

]
+ 2AB(a0α+12µ) sinh

[
(x−vt)

√
λ2 − 4µ

] )
2α
(
B cosh

[
1
2(x− vt)

√
λ2 − 4µ

]
+A sinh

[
1
2(x− vt)

√
λ2 − 4µ

])2 ,
(3.8)

where ξ = x− (α0α+ λ2 + 8µ)t, A and B are arbitrary constants.
(ii): When λ2− 4µ < 0, we obtain the trigonometric function travelling

wave solution

u2(ξ) =

( (
A2+B2

) (
a0α+ 6

(
λ2 − 2µ

))
+
(
A2 −B2

)
(a0α+ 12µ)

cosh
[
(x−vt)

√
4µ−λ2

]
+ 2AB(a0α+12µ) sinh

[
(x−vt)

√
4µ−λ2

] )
2α
(
A cos

[
1
2(x− vt)

√
4µ− λ2

]
+B sin

[
1
2(x− vt)

√
4µ− λ2

])2 ,

(3.9)
where ξ = x− (α0α+ λ2 + 8µ)t, A and B are arbitrary constants.
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In particular, if we take A = 0, B 6= 0, then the solutions (3.8) and (3.9)
become

u1(ξ) =
a0α+ 3λ2 − 3

(
λ2 − 4µ

)
tanh

[
1
2

√
λ2 − 4µ(x− vt)

]2
α

, (3.10)

u2(ξ) =
1

α

(
a0α+ 3λ2+3

(
λ2−4µ

))
cot

[
1

2

√
4µ−λ2(x−vt)

]2
. (3.11)

On the other hand, if we take A 6= 0, B
.
= 0, then the solutions (3.8) and

(3.9) become

u1(ξ) =
a0α+ 3λ2 − 3

(
λ2 − 4µ

)
coth

[
1
2

√
λ2 − 4µ(x− vt)

]2
α

, (3.12)

u2(ξ) =
1

α

(
a0α+ 3λ2 + 3(λ2−4µ)

)
tan

[
1

2

√
4µ− λ2(x− vt)

]2
. (3.13)

For Case 2:
(i): When λ2 − 4µ > 0, we obtain the hyperbolic function travelling

wave solution

u3(ξ) = a0 +
24
(
λ2 − pλ

√
λ2 − 4µ− 2µ

)
µ

α
(
λ− p

√
λ2 − 4µ

)2 , (3.14)

where

p =
A cosh

[
1
2

√
λ2 − 4µ(x− vt)

]
+B sinh

[
1
2

√
λ2 − 4µ(x− vt)

]
A sinh

[
1
2

√
λ2 − 4µ(x− vt)

]
+B cosh

[
1
2

√
λ2 − 4µ(x− vt)

] ,
ξ = x− ( 1

b1
α0b1α+ 6b2λ+ b1λ

2 + 2b1µ)t, A and B are arbitrary constants.
(ii): When λ2− 4µ < 0, we obtain the trigonometric function travelling

wave solution

u4(ξ) = a0 +
24µ

(
λ2 − 2µ− qλ

√
4µ− λ2

)
α
(
λ− q

√
4µ− λ2

)2 , (3.15)

where

q =
−A sin

[
1
2

√
4µ− λ2(x− vt)

]
+B cos

[
1
2

√
4µ− λ2(x− vt)

]
A cos

[
1
2

√
4µ− λ2(x− vt)

]
+B sin

[
1
2

√
4µ− λ2(x− vt)

] ,

ξ = x− ( 1
b1
α0b1α+ 6b2λ+ b1λ

2 + 2b1µ)t, A and B are arbitrary constants.
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In particular, if we take A = 0, B 6= 0, then the solutions (3.14) and (3.15)
become

u3(ξ) = a0+
24µ

(
λ2−2µ−λ

√
λ2−4µ tanh

[
1
2

√
λ2−4µ(x−vt)

])
α

(
λ−

√
λ2 − 4µ tanh

[
1
2

√
λ2 − 4µ(x− vt)

])2 , (3.16)

u4(ξ) = a0+
24µ

(
λ2−2µ−λ

√
4µ−λ2 cot

[
1
2

√
4µ−λ2(x−vt)

])
α
(
λ−

√
4µ− λ2 cot

[
1
2

√
4µ− λ2(x− vt)

])2 . (3.17)

On the other hand, if we take A 6= 0, B = 0, then the solutions (3.14) and
(3.15) become

u3(ξ) = a0+
24µ

(
λ2−2µ−λ

√
λ2−4µ coth

[
1
2

√
λ2−4µ(x−vt)

])
α

(
λ−

√
λ2 − 4µ coth

[
1
2

√
λ2 − 4µ(x− vt)

])2 , (3.18)

u4(ξ) = a0+
24µ

(
λ2−2µ−λ

√
4µ−λ2 tan

[
1
2

√
4µ−λ2(x−vt)

])
α
(
λ−
√
4µ−λ2 tan

[
1
2

√
4µ−λ2(x−vt)

])2 . (3.19)

Remark 1: Solutions (3.10)–(3.13) and (3.16)–(3.19) are similar with
Wazwaz’s [6] solutions obtained by using sine–cosine, tanh–coth methods.
However, we observe that solutions (3.8), (3.9), (3.14) and (3.15) are pre-
sented here for the first time.

3.1.2. mKdV equation

We consider the mKdV equation in the form

ut + αu2ux + uxxx = 0 . (3.20)

To look for the travelling wave solution of Eq. (3.20), we make the transfor-
mation u(x, t) = u(ξ), ξ = x−vt, where v is the wave speed to be determined
later, and integrating it with respect to ξ once yields

c− vu+
α

3
u3 + u′′ = 0 , (3.21)

where c is an integration constant that is to be determined later. Balancing
the terms u3 and u′′ in Eq. (3.21) yields the leading order m = 1. Therefore,
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we can write the solution of Eq. (3.21) in the form

u(ξ) = a0 + a1

(
G′

G

)
+ b1

(
G′

G

)−1
. (3.22)

Substituting (2.4) and (3.22) into (3.21), collecting all terms with the same
power of (G

′

G ) and setting each coefficient to zero, we obtain the following
system of algebraic equations: (

G′

G

)−3
:
1

3
b13α+ 2b1µ

2 = 0 ,(
G′

G

)−2
: a0b

2
1α+ 3b1λµ = 0 ,(

G′

G

)−1
: −b1v + a20b1α+ a1b

2
1α+ b1λ

2 + 2b1µ = 0 ,(
G′

G

)0

: c− a0v +
1

3
a30α+ 2a0a1b1α+ b1λ+ a1λµ = 0 ,(

G′

G

)1

: −a1v + a20a1α+ a21b1α+ a1λ
2 + 2a1µ = 0 ,(

G′

G

)2

: a0a
2
1α+ 3a1λ = 0 ,(

G′

G

)3

: 2a1 +
1

3
a31α = 0 .

From the solutions system, we obtain the following with the aid of Mathe-
matica

α 6= 0 ,

(
a0 = −

1√
α
i

√
3

2
λ , a0 =

1√
α
i

√
3

2
λ

)
, a0 6= 0 , a1=−

3λ

a0α
,

λ 6= 0 , b1 =
2a0µ

λ
, v =

1

2

(
2a1b1α− λ2 + 4µ

)
, c = 4a0µ .

(i): When λ2 − 4µ > 0, we obtain the hyperbolic function travelling
wave solution

u1(ξ) = a0 +
3λ
(
λ− p

√
λ2 − 4µ

)
2a0α

− 4a0µ

λ2 − pλ
√
λ2 − 4µ

, (3.23)
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where

p =
A cosh

[
1
2

√
λ2 − 4µ(x− vt)

]
+B sinh

[
1
2

√
λ2 − 4µ(x− vt)

]
A sinh

[
1
2

√
λ2 − 4µ(x− vt)

]
+B cosh

[
1
2

√
λ2 − 4µ(x− vt)

] ,
ξ = x− 1

2(2a1b1α− λ
2 + 4µ)t, A and B are arbitrary constants.

(ii): When λ2− 4µ < 0, we obtain the trigonometric function travelling
wave solution

u2(ξ) = a0 +
3λ
(
λ− q

√
4µ− λ2

)
2a0α

− 4a0µ

λ2 − qλ
√
4µ− λ2

, (3.24)

where

q =
−A sin

[
1
2

√
4µ− λ2(x− vt)

]
+B cos

[
1
2

√
4µ− λ2(x− vt)

]
A cos

[
1
2

√
4µ− λ2(x− vt)

]
+B sin

[
1
2

√
4µ− λ2(x− vt)

] ,

ξ = x− 1
2(2a1b1α− λ

2 + 4µ)t, A and B are arbitrary constants.
In particular, if we take A = 0, B 6= 0, then the solutions (3.23) and (3.24)
become

u1(ξ) = a0 −
4a0µ

λ
(
λ−

√
λ2 − 4µ tanh

[
1
2

√
λ2 − 4µ(x− vt)

])
+
3λ
(
λ−

√
λ2 − 4µ tanh

[
1
2

√
λ2 − 4µ(x− vt)

])
2a0α

, (3.25)

u2(ξ) = a0 −
4a0µ

λ
(
λ−

√
4µ− λ2 cot

[
1
2

√
4µ− λ2(x− vt)

])
+
3λ
(
λ−

√
4µ− λ2 cot

[
1
2

√
4µ− λ2(x− vt)

])
3λ

. (3.26)

On the other hand, if we take A 6= 0, B = 0, then the solutions (3.23) and
(3.24) become
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u1(ξ) = a0 −
4a0µ

λ
(
λ−

√
λ2 − 4µ coth

[
1
2

√
λ2 − 4µ(x− vt)

])
+
3λ
(
λ−

√
λ2 − 4µ coth

[
1
2

√
λ2 − 4µ(x− vt)

])
2a0α

, (3.27)

u2(ξ) = a0 −
4a0µ

λ
(
λ−

√
4µ− λ2 tan

[
1
2

√
4µ− λ2(x− vt)

])
+
3λ
(
λ−

√
4µ− λ2 tan

[
1
2

√
4µ− λ2(x− vt)

])
2a0α

. (3.28)

Remark 2: We observed that our results, when given special values in
equations (3.25)–(3.28), include Wazwaz’s [6] results obtained by using sine–
cosine, tanh–coth methods. However, solutions (3.23) and (3.24) are pre-
sented here for the first time.

4. Conclusion

This paper obtained the singular 1-soliton solution to the K(m,n) equa-
tion with generalized evolution. Furthermore, the two natural subsidiaries of
this equation were studied and these are the KdV equation and the mKdV
equation. Here, the G′/G-expension method was applied which yielded a
range of nonlinear wave solutions that are listed. These solutions are going
to be extremely useful in future studies where these results will be expanded,
generalized further and reported elsewhere. For example, these equations
with time-dependent coefficients will be considered. The perturbation terms
will be added and the adiabatic parameter dynamics of the soliton parame-
ters will be determined. Then the stochastic perturbation terms will also be
added and the corresponding Langevin equation will be analyzed in order
to obtain the mean free velocity of the soliton. These just form the tip of
the iceberg.

REFERENCES

[1] A. Biswas, Phys. Lett. A372, 4601 (2008).
[2] A. Biswas, Comput. Math. Appl. 59, 2536 (2010).
[3] G. Ebadi, A. Biswas, Commun. Nonlinear Sci. Numer. Simul. 16, 2377

(2011).
[4] Y. Xie, S. Tang, D. Feng, Pramana 78, 499 (2012).

http://dx.doi.org/10.1016/j.physleta.2008.05.002
http://dx.doi.org/10.1016/j.camwa.2010.01.013
http://dx.doi.org/10.1016/j.cnsns.2010.09.009
http://dx.doi.org/10.1016/j.cnsns.2010.09.009
http://dx.doi.org/10.1007/s12043-012-0262-0


1836 M. Inc et al.

[5] L. Debtnath, Nonlinear Partial Differential Equations for Scientist and
Engineers, Balkema, Rotterdam 2002.

[6] A.M. Wazwaz, Partial Differential Equations: Methods and Applications,
Balkema, Rotterdam 2002.

[7] M.L. Wang, Phys. Lett. A199, 169 (1995).
[8] M.L. Wang, Phys. Lett. A213, 279 (1996).
[9] R. Hirota, J. Math. Phys. 14, 810 (1973).

[10] C.T. Yan, Phys. Lett. A224, 77 (1996).
[11] J.B. Liu, K.Q. Yang, Chaos, Solitons Fractals 22, 111 (2004).
[12] S. Zhang, Phys. Lett. A358, 414 (2006).
[13] S. Zhang, Chaos, Solitons Fractals 32, 1375 (2007).
[14] S. Zhang, Appl. Math. Comput. 189, 836 (2007).
[15] S. Zhang, Phys. Lett. A368, 470 (2007).
[16] S. Zhang, Phys. Lett. A363, 356 (2007).
[17] A.R. Shehata, Appl. Math. Comput. 217, 1 (2010).
[18] İ. Aslan, Appl. Math. Comput. 216, 2778 (2010).
[19] J.M. Zuo, Appl. Math. Comput. 217, 376 (2010).
[20] M.L. Wang, Phys. Lett. A372, 417 (2008).

http://dx.doi.org/10.1016/0375-9601(95)00092-H
http://dx.doi.org/10.1016/0375-9601(96)00103-X
http://dx.doi.org/10.1063/1.1666400
http://dx.doi.org/10.1016/S0375-9601(96)00770-0
http://dx.doi.org/10.1016/j.chaos.2003.12.069
http://dx.doi.org/10.1016/j.physleta.2006.05.071
http://dx.doi.org/10.1016/j.chaos.2005.11.070
http://dx.doi.org/10.1016/j.amc.2006.11.143
http://dx.doi.org/10.1016/j.physleta.2007.04.038
http://dx.doi.org/10.1016/j.physleta.2006.11.035
http://dx.doi.org/10.1016/j.amc.2010.03.047
http://dx.doi.org/10.1016/j.amc.2010.03.124
http://dx.doi.org/10.1016/j.amc.2010.05.072
http://dx.doi.org/10.1016/j.physleta.2007.07.051

	1 Introduction
	2 Singular 1-soliton solution
	3 Extended (G'/G)-expansion method
	3.1 Brief description of the method
	3.1.1 KdV equation
	3.1.2 mKdV equation


	4 Conclusion

