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We present an overall empirical formula that, after specification of its
free parameters, describes precisely the mass spectrum of charged leptons
and is suggested to reproduce correctly also the mass spectra of neutrinos,
and up and down quarks (together, twelve masses with twelve specified
free parameters are presented). Imposing a priori some constraints on
three parameters, we predict three of lepton and quark masses, especially
the taon mass as mτ = 1776.80 MeV. We also present a more theoretical
argumentation in favor of our mass formula. In Appendix, an option of com-
posite quarks is briefly outlined, where elementary color-triplet quark-like
fermions are bound with a color-triplet isoscalar scalar boson (3∗× 3∗→ 3
color coupling). This option plays here the role of a theoretical hint at
imposing a constraint a priori on a free parameter in our mass formula for
quarks. The possibility of leptons composed from the same preons as are
quarks is considered in brief (3∗× 3→ 1 color coupling).
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Any triplet of particle masses, as these for leptons and quarks, can be
phenomenologically parametrized in very different ways by making use of
three free parameters. When some parameters are constrained a priori, one
may get various mass predictions, correct or wrong.

In this note, we will consider the particular parametrization

mN = ρN µ

[
N2 +

ε− 1

N2
− η(N − 1)

]
(1)

in terms of three mass-dimensional parameters

µ , µε , µη , (2)

(1847)
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where
N = 1, 3, 5 (3)

is a quantum number numerating the masses

m1 , m3 , m5 , (4)

while
ρ1 =

1

29
, ρ3 =

4

29
, ρ5 =

24

29
(5)

stand for generation-weighting factors satisfying the normalization condition∑
N ρN = 1. Explicitly, the mass formula (1) reads

m1 =
µ

29
ε ,

m3 =
µ

29

4

9
(80 + ε− 18η) ,

m5 =
µ

29

24

25
(624 + ε− 100η) . (6)

It is a transformation of parameters µ, ε, η into masses m1,m3,m5. Its
inverse transformation gets the form

µ =
29

12928
[75m5 − 4(225m3 − 82m1)] ,

ε =
29

µ
m1 =

12928m1

75m5 − 4(225m3 − 82m1)
,

η =
8

3

125m5 − 6(351m3 − 136m1)

75m5 − 4(225m3 − 82m1)
, (7)

allowing to fit the free parameters µ, ε, η to experimental values of mases
m1,m3,m5. If this can be done with some of the parameters constrained
a priori, we may obtain some predictions for the mass spectrum.

The reason why we consider here the particular formula (1) is its won-
derful propriety of precisely reproducing the triplet of charged-lepton masses
me,mµ,mτ , when we impose a priori the constraint

η = 0 . (8)

In fact, for m1 = me , m3 = mµ , m5 = mτ , the third formula (7) with
η = η(e) = 0 gives the prediction [1, 2]

mτ =
6

125
(351mµ − 136me) = 1776.7964 MeV = 1776.80 MeV (9)
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versus the experimental value [3]

mτ = 1776.82± 0.16 MeV (10)

(the same in both Refs. [3]), when the experimental figures me =
0.5109989 MeV and mµ = 105.65837 MeV [3] are used as the only input.
The first two formulae (7) determine then the parameters

µ(e) =
29(9mµ − 4me)

320
= 85.9924 MeV , ε(e) =

320me

9mµ − 4me
= 0.17229 .

(11)
In three last paragraphs of this note before Appendix (cf., in particular,

Eq. (22)) we present a tentative justification of the mass formula (1) in terms
of the notion of “intrinsic interactions”.

Now, let us try to impose a priori on the formula (1) or (6) the constraint

ε→ 0 (12)

and conjecture that it is the case for neutrinos: m1 = mν1 , m3 = mν2 ,
m5 = mν3 with ε= ε(ν)→ 0. In this case, from the second formula (7), we
predict

mν1 → 0 (13)
and determine then that

mν2 =
√

∆m2
21 +m2

ν1 →
√

∆m2
21 = 8.8× 10−3 eV ,

mν3 =
√

∆m2
32 +m2

ν2 →
√

∆m2
32 + ∆m2

21 = 5.0× 10−2 eV , (14)

when we use the experimental estimates ∆m2
21 ≡ m2

ν2−m
2
ν1 = 7.7×10−5 eV2

and ∆m2
32 ≡ m2

ν3 −m
2
ν2 = 2.4 × 10−3 eV2 (assuming that ∆m2

32 > 0) [3].
From the formulae (7), we determine the parameters µ(ν) = −9.3 × 10−3

eV and η(ν) = 7.9 as responsible for mν2 = 8.8 × 10−3 eV and mν3 = 5.0 ×
10−2 eV (the minus sign at µ(ν) is consistent with the seesaw mechanism).

In the case of up and down quarks, the concept of mass loses its observ-
able status getting rather an effective character because of their confinement
in hadrons (i.e., their nonasymptotic behavior). In this note, we will accept
for our discussion the particular quark-mass experimental estimates given
in the second Ref. [3]

mu,d =

{
2.3+0.7

−0.5 MeV

4.8+0.7
−0.3 MeV

,

mc,s =

{
1.275± 0.025 GeV
95± 5 MeV

,

mt,b =

{
173.5± 0.6 ± 0, 8 GeV
4.18± 0.03 GeV

(15)
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(of course, our results will depend on efficiency of this estimate). Then, let us
try to fit to these effective masses (to their central values, for simplicity) the
free parameters µ(u,d) , ε(u,d) , η(u,d) through the inverse transformation (7),
obtaining

µ(u,d) =

{
26.6 GeV
0.515 GeV

, ε(u,d) =

{
0, 00251
0, 270

, η(u,d) =

{
4.27
3.78

.

(16)
We can see from Eqs. (16) that

µ(u)ε(u):µ(d)ε(d) = 2.3 : 4.8 = 1: 2.1 . (17)

If, under some structural suggestions leading to the option of composite
quarks (cf. Appendix), we tentatively conjecture that a priori Eq. (A.5)
holds

µ(u)ε(u):µ(d)ε(d) = 1 : 2.5 (18)
then, we can get from the first Eq. (6) the prediction

mu = 0.4md = 1.9 MeV , (19)

when the experimental input md = 4.8 MeV is applied. In this case, the
parameter µ(u)ε(u) (= 0.4µ(d)ε(d)) can be considered as constrained a priori,
while the remaining five independent quark parameters are free and can be
determined from Eq. (6) with the use of experimental input ofmd, mc,s, mt,b

(cf. Eq. (16)). The large errors in the experimental estimates (15) of mu

and md allow for the tentative conjecture (18). This accepts the theoretical
hint presented in Appendix.

Now, we would like to comment on the possible physical meaning of
the quantum number N = 1, 3, 5 appearing in our overall empirical for-
mula (1) for mass spectra of leptons and quarks. It is natural to presume
that the quantum field of any fundamental fermion (lepton or quark) should
carry an odd number of Dirac bispinor indices α1, α2, . . . , αN : ψα1α2...αN (x).
Among them, one bispinor index, say α1 , can be correlated with the Stan-
dard Model SU(3)× SUL(2)× U(1) label (suppressed here) identifying the
considered fermion with a particular lepton or quark. So, this index α1 is
distinguished from the remaining bispinor indices, α2, . . . , αN which are, in
a natural way, expected to be undistinguishable from each other. Therefore,
the bispinor indices α2, . . . , αN behave as physical objects obeying Fermi
statistics along with the Pauli exclusion principle requiring them to be fully
antisymmetrized. This implies that N can be equal to 1, 3, 5 only (since any
αi assumes four values 1, 2, 3, 4), and that the total spin of a fundamental
fermion is reduced to spin 1/2 connected with the distinguished bispinor
index α1. Hence, we can conclude that in Nature there are exactly three
generations of leptons and quarks [4].
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The fundamental fermions with N = 1, 3, 5 satisfy three Dirac equations
that can differ by their mass terms. The gamma matrices in these Dirac
equations with N = 1, 3, 5 (fulfilling the Dirac square-root condition

√
p2 →

ΓµNpµ) are [4]

ΓµN ≡
1√
N

(
γµ1 + γµ2 + . . .+ γµN

)
= γµ ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

N−1 times

, (20)

where {
γµi , γ

ν
j

}
= 2gµνδij (i, j = 1, 2, . . . , N) (21)

form a Clifford algebra, while{
ΓµN , Γ

ν
N

}
= 2gµν 1⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

N times

and {γµ, γν} = 2gµν

define Dirac algebras, the second of them being the familiar one (γµ and 1
are conventional 4× 4 Dirac matrices).

Note in addition that, in this model, the form (5) of fermion generation-
weighting factors turns out to be justified [4]. This is due to the fact
that only one component ψα1 of the field ψα1α2...αN (x) for N = 1, and
its four components ψα112 = −ψα121 = ψα134 = −ψα143 for N = 3 and also
twenty four components being permutations of ψα11234 (equal to each other
up to the sign) for N = 5 can be different from zero, when our “intrinsic
Pauli principle” as well as special relativity and probabilistic interpretation
of quantum theory [4] are invoked (then, for N = 3 twelve components
ψα114 = −ψα141, ψα132 = −ψα123, ψα113 = −ψα131, ψα124 = −ψα142 and
ψα111, ψα133, ψα122, ψα144 are zero). Here, the chiral representation is used,
where 1 = (↑,+1), 2 = (↓,+1), 3 = (↑,−1), 4 = (↓,−1) with ↑↓ being
spin-1/2 projections and ±1 eigenvalues of chirality γ5.

In this way, we can construct an “intrinsically composite model” of lep-
tons and quarks of three generations [4], where Dirac bispinor indices play
the role of “intrinsic partons” of which all but one are undistinguishable
and obey the “intrinsic Pauli principle”, in contrast to one of them which is
distinguished by “carrying” the Standard Model label of a lepton or quark.
In the present note, we propose in this context a possible overall empirical
formula for the mass spectra of leptons and quarks, where N = 1, 3, 5 is a
quantum number.

Our intrinsically composite formalism outlined above might either have
a fundamental character or be a dynamical S-wave approximation to a more
conventional composite model for an odd number of spin-1/2 orbital partons
bound mainly in S-states, where one of these partons is distinguished from
the rest. In the first option, the conventional orbital partons appearing in the
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second option are replaced through an act of algebraic abstraction by new
algebraic partons described by means of Dirac bispinor indices. Somewhat
similarly, the fundamental notion of Dirac spin 1/2 has been arised from
the notion of orbital angular momentum through an act of algebraic (group-
theoretical) abstraction.

Thus, in our intrinsically composite model of leptons and quarks, there
are involved one distinguished intrinsic parton corresponding to the Dirac
bispinor index α1 (correlated with the suppressed Standard Model label)
and N − 1 undistinguishable intrinsic partons related to the Dirac bispinor
indices α2, . . . , αN (N = 1, 3, 5). All these partons “interact intrinsically”,
producing three mass terms in the formula (1). Of course, such “intrinsic
interactions” are completely unknown, nevertheless we may try to make
them out from the mass formula (1) in terms of the quantum number N and
the generation-weighting factor ρN (determined in our model by Eq. (5)).
In this way, we get an interpretation of the mass formula (1) and so — if it
is accepted — a kind of theoretical justification of our spectral formula.

To this end, let us reasonably imagine that in the mass formula (1) we
have

mN = (intrinsic masses and two−body interactions of all partons α1, . . . , αN )

+ (correction to intrinsic mass of distinguished parton α1)

+ (correction to intrinsic masses of undistinguishable partons α2, . . . , αN )

= ρN

 N∑
i,j=1

a+ bP 2
N +

N∑
i=2

c

 = ρN

[
aN2 + b

1

N2
+ c(N − 1)

]
, (22)

where all intrinsic partons α1, α2, . . . , αN are treated on an equal footing
(i.e., a and c are independent of i, j = 1, 2, . . . , N and i = 2, . . . , N , respec-
tively), while

PN =

[
N !

(N − 1)!

]−1

(23)

is the probability of finding the distinguished parton α1 among all N partons
α1, α2, . . . , αN of which N − 1, α2, . . . , αN , are undistinguishable (and P 2

N
labels a selfinteraction of α1). Then, we can see that Eq. (22) gives us really
the mass formula (1), if we use the notation

a = µ , b = µ(ε− 1) , c = −µη , (24)

where η ≥ 0 (when it is fitted to experimental masses). Note that charged
leptons get here specific states corresponding to the limit η → 0 (when η
is fitted to their experimental masses). In fact, the input of experimental
me and mµ to the mass formula (1) is sufficient to predict precisely mτ ,
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if and only if η → 0 (cf. Eqs. (8) and (9)). It means, in spirit of our
interpretation (22), that the initial mass values of undistinguishable intrinsic
partons “within” charged leptons require no significant correction, in contrast
to those “within” neutrinos as well as “within” up and down quarks (of three
generations).

Finally, a remark on the third term in the mass formula (22) is due.
Here, we reject the option, where this third term should be

ρN

N∑
i=2

c (1− PN )2 = ρN c
(N − 1)3

N2
(25)

with 1−PN = (N−1)/N denoting the possibility of finding one of the N−1
undistinguishable partons α2, . . . , αN among all N partons α1, α2, . . . , αN .
The reason for it is that the three-body coupling (25),

ρN c
(N − 1)3

N2
= ρN

N∑
i,j,k=2

c

N2
, (26)

is not so simple as the actual third term in Eq. (22) given by the one-body
coupling ρN c (N − 1) = ρN

∑N
i=2 c correcting the component 2ρN a(N − 1)

in the first term of Eq. (22)

ρN aN
2 = ρN a

[
1 + 2(N − 1) + (N − 1)2

]
. (27)

Note that its component ρN a (N − 1)2 = ρN
∑N

k,l=2 a is a two-body cou-
pling.

Appendix A

Option of orbitally composite quarks and leptons1

1 The resulting fundamental fermions (leptons and quarks) of three generations N =
1, 3, 5, carrying the distinguished Dirac bispinor index α1 and the (suppressed) Stan-
dard Model label, may be either elementary (as usually expected, even if intrinsically
composite) or, perhaps, orbitally composed from, say, two kinds of elementary color-
triplet preons: Dirac preons and a scalar preon (cf. Appendix). In the second option,
our construction, involving also undistinguishable Dirac bispinor indices α2, . . . , αN ,
defines these Dirac preons in three generations N = 1, 3, 5, that become then intrinsi-
cally composite. Again, they may be either elementary or may describe a dynamical
S-wave approximation to orbitally composite states of N spin-1/2 fermions carry-
ing Dirac bispinor indices α1, α2, . . . , αN (N = 1, 3, 5) and (suppressed) Standard
Model label correlated with α1. We vote for their intrinsic version not involving
orbital compositness. Due to the binding color reduction 3∗ × 3∗ = 3 + 6∗ → 3
or 3∗ × 3 = 1 + 8 → 1, the color-triplet Dirac preons and the color-triplet scalar
preon may compose the phenomenological quarks or leptons of three generations,
respectively.
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All leptons and quarks are usually expected to be elementary (even if
they are intrinsically composite). Consider, however, a preliminary model,
where all leptons, νN = ν1, ν2, ν3 (the mass combinations of flavor νe, νµ, ντ )
and eN = e−, µ−, τ− (N = 1, 3, 5) are to be discussed later, while all quarks,
uN = u, c, t and dN = d, s, t (N = 1, 3, 5) can be treated as orbitally com-
posed from elementary color-triplet constituents, say, quark-like fermions
UN and DN (N = 1, 3, 5) with charges QUN

= 2
3 and QDN

= −1
3 , and a

color-triplet isoscalar scalar boson S with charge QS = −1
3

uN = (Dc
N S

c) , dN = (−U cN Sc) . (A.1)

They are orbitally composite color-triplet fermions due to the binding color
reduction 3∗ × 3∗ = 3 + 6∗ → 3. In Eqs. (A.1), c denotes the charge-
conjugation. Of course, the bound states uN and dN get the conventional
charges

QuN = 1
3 + 1

3 = 2
3 , QdN = −2

3 + 1
3 = −1

3 (A.2)

and conventional baryon-minus-lepton numbers

(B − L)uN = −1
3 + 2

3 = 1
3 , (B − L)dN = −1

3 + 2
3 = 1

3 (A.3)

identified in this case with the baryon numbers BuN = 1
3 and BdN = 1

3

(then LuN = 0 and LdN = 0). Here, Q = I3 + B−L
2 , giving with the use of

weak isospins I3UN
= 1

2 , I
3
DN

=−1
2 , I

3
S = 0 the baryon-minus-lepton numbers

(B − L)UN
= 1

3 , (B−L)DN
= 1

3 , (B−L)S = −2
3 as are applied in Eqs. (A.3).

When assuming that the parameters µ(u)ε(u) = 29mu and µ(d)ε(d) =
29md in the mass formula (1) or (6) are proportional to the electromagnetic
selfenergies of bound states (A.1), and so proportional to

Q2
DN

+Q2
S =

(
1
3

)2
+
(
1
3

)2
= 2

9 , Q2
UN

+Q2
S =

(
2
3

)2
+
(
1
3

)2
= 5

9 , (A.4)

we infer that

mu:md = µ(u)ε(u):µ(d)ε(d) = 2
9 :

5
9 = 1 : 2.5 (A.5)

(here, electric radii of the involved constituents are presumed to be reason-
ably equal). Thus, from our preliminary model, the ratio md/mu = 2.5
follows, turning out to be not far away from the experimental value 2.1
given in Eq. (17). The ratio 2.5 predicts mu = 1.9 MeV, when the input
md = 4.8 MeV is used.

Now, it is interesting to observe that with the use of the same ele-
mentary color-triplet constituents, the quark-like fermions UN and DN and
the isoscalar scalar boson S, we can form orbitally composite color-singlet
fermions due to the binding color reduction 3∗ × 3 = 1 + 8→ 1
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(Dc
N S) , (−U cN S) , (A.6)

alternative to the previous 3∗ × 3∗ = 3 + 6∗ → 3. These bound states gain
the lepton-like charges Q

1
3 −

1
3 = 0 , −2

3 −
1
3 = −1 , (A.7)

respectively, and the lepton-number-like baryon-minus-lepton number B−L

−1
3 −

2
3 = −1 , −1

3 −
2
3 = −1 , (A.8)

respectively. Thus, the construction (A.6) may be tried as a tentative model
of composite leptons νN = ν1, ν2, ν3 and eN = e−, µ−, τ− (N = 1, 3, 5). In
this case, (B − L)νN = −1 and (B − L)eN = −1 are to be identified with
minus the conventional lepton numbers LνN = 1 and LeN = 1 (then BνN = 0
and BeN = 0).

However, for the construction (A.6), the values 2
9 and 5

9 obtained in
Eqs. (A.4) for the bound states (A.1) do not change, so our proportionality
argumentation cannot explain the experimental smallness of mν1 � me, not
consistent with the proportion

mν1:me = µ(ν)ε(ν):µ(e)ε(e) = 2
9 :

5
9 = 1 : 2.5 (A.9)

(cf. mν1 → 0 in Eq. (13)). Thus, the better understanding of the role of
charges in the close binding of charged preons is needed to solve the problem
of mν1 → 0 for our orbitally composite leptons.

To this end, in order to fulfill formally the experimental requirement
of mν1 � me (and not to spoil our explanation of the experimental value
md/mu = 2.1), we may try — at the purely phenomenological level — to
replace in our argumentation the values (A.4) by(

1

3

)2

+

(
1

3

)2

+ λ

(
1

3

)(
±1

3

)
=

2± λ
9

{
for quarks uN
for leptons νN

,(
2

3

)2

+

(
1

3

)2

+ λ

(
−2

3

)(
±1

3

)
=

5∓ 2λ

9

{
for quarks dN
for leptons eN

(A.10)

with
λ→

{
0 for quarks
2 for leptons

. (A.11)

Explicitly, the values (A.10) are{
2
9 , 5

9 for quarks
0 , 1 for leptons

, (A.12)
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respectively, being consistent both with md/mu = 2.1 and mν1/me → 0.
The new term on the l.h.s. of Eqs. (A.10), proportional to λ, corresponds
formally to a phenomenological electromagnetic interaction between differ-
ently located charges 1

3 and ±1
3 within bound states uN and νN , and between

−2
3 and ±1

3 within dN and eN (it vanishes for uN and dN ).
The plausible interpretation of ansatz (A.10) with (A.11) is that the

role of interaction of differently located charges increases, when the inner
radius of the bound states (involving these charges) decreases, leading to
the coherent interaction of the sum of all involved charges with itself. This
happens in the limit of λ→ 2 that is realized in the case of leptons (they are
here much closer bound states than are quarks because of their color-singlet
binding). In the sense of this limit, leptons can be considered as the closest
bound states of the charged preons involved.

In our discussion, the electromagnetic interaction dominates in deter-
mining the composite masses for N = 1, mu = mu1 , md = md1 and mν1 ,
me = me1 . The Higgs mechanism may be responsible for the preon masses
mUN

, mDN
and mS (mU1 , mD1 and mS are expected to be tiny).

REFERENCES

[1] W. Królikowski, arXiv:1201.1251v2 [physics.gen-ph].
[2] W. Królikowski, Acta Phys. Pol. B 33, 2559 (2002); Acta Phys. Pol. B 41,

649 (2010); arXiv:1009.2388 [hep–ph]; arXiv:1011.1120
[physics.gen-ph] and references therein.

[3] N. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010);
J. Beringer et al. [Particle Data Group], Phys. Rev. D86, 010001 (2012).

[4] W. Królikowski, Acta Phys. Pol. B 23, 933 (1992); Phys. Rev. D45, 3222
(1992); Acta Phys. Pol. B 33, 2559 (2002).

http://www.actaphys.uj.edu.pl/vol33/abs/v33p2559
http://www.actaphys.uj.edu.pl/vol41/abs/v41p0649
http://www.actaphys.uj.edu.pl/vol41/abs/v41p0649
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://www.actaphys.uj.edu.pl/vol23/abs/v23p0933
http://dx.doi.org/10.1103/PhysRevD.45.3222
http://dx.doi.org/10.1103/PhysRevD.45.3222
http://www.actaphys.uj.edu.pl/vol33/abs/v33p2559

	A 

