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In this article, the three-point QCD sum rules approach is used to
investigate the rare hb(1p)→ Bsνν decay. The form factors relevant to this
decay are calculated, considering the gluon condensate corrections to the
correlation function. The total decay width of this decay is also evaluated.
The predictions can be confirmed by the experimental data in future.
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1. Introduction

In particle physics, the flavorless mesons containing a heavy b or c quark
and its own antiquark are called quarkonia. Quarkonia, especially the bot-
tomonium bb states do not contain light quarks, so they are considered as
approximately non-relativistic systems. They are used for the investigation
of the hadronic dynamics and perturbative as well as non-perturbative char-
acteristics of the QCD. Previous studies investigated the nature of these
states by theoretical calculations, mainly based on potential models or their
extensions such as the Coulomb gauge model [1]. In 2010, Lucha et al. [2]
demonstrated that the potential models as well as QCD sum rules approach
can be used to obtain the ground state decay constants of the mesons con-
taining heavy b quark. It has been revealed that applying the QCD sum
rules method, and tuning the continuum threshold parameter, results in a
more accurate and reliable determination of the bound-state characteristics,
compared to the potential models.

In order to test the P -wave spin–spin (or hyperfine) interaction, the spin–
singlet P -wave bound states of bb including hb(1p) could be applied. Thus,
it would be beneficial to calculate the physical parameters of this meson
theoretically, and compare the results to the experimental data [3].
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Many attempts have been made to study the semileptonic decay of heavy
mesons in literature, such as semileptonic decay of the scalar, pseudoscalar
and the vector mesons, using three-point QCD sum rules [1, 4–12].

This research has concentrated on the investigation of the semileptonic
decay of the axial vector P -wave bottomonium hb(1p) meson with the quan-
tum numbers JPC = 1+− into the pseudoscalar Bs meson. We calculate
the two gluon condensates as the first non-perturbative contribution to the
correlation function, because the heavy quark condensates are suppressed
by the inverse powers of the heavy quark mass. In 2011, Belle Collabora-
tion have observed the hb(1p) spin–singlet bottomonium state produced in
e+e− → hb(1p)π

+π− reaction, with significances of 5.5σ. It was discovered
that mhb(1p) = 9898.3± 1.1+1.0

−1.1 MeV [13].
The outline of this paper is as follows. In Sec. 2, we calculate the sum

rules for the related form factors, considering the two gluon condensates
contributions to the correlation function. The light quark condensates con-
tributions are eliminated by applying double Borel transformations with
respect to the momentum of the initial and final states. Section 3 contains
numerical analysis of the form factors and the estimation of the decay width.
The last section discusses the conclusions.

2. hb(1p) → Bsνν form factors using QCD sum rules

In the Standard Model, hb(1p) → Bsνν decay is demonstrated by b →
sνν at quark level (Fig. 1). Considering Z penguin and box diagrams, the
effective Hamiltonian for b→ sνν decay can be written as

Heff =
GFα

2π
√
2
VtbV

∗
ts C10sγ

µ (1− γ5) bνγµ (1− γ5) ν , (1)

GF stands for the Fermi constant, α is the fine structure constant at the
Z mass scale, Vtb and Vts are elements of the CKM matrix, and C10 is the
Wilson coefficient. The amplitude of the hb(1p) → Bsυυ decay is obtained
by sandwiching Eq. (1) between the initial and final meson states

M =
GFα

2π
√
2
VtbV

∗
tsC10ν γ

µ(1− γ5)ν
〈
Bs
(
p′
)
|sγµ(1− γ5)b|hb(1p)(p, ε)

〉
.

(2)
We should calculate the matrix element 〈Bs(p′)|sγµ(1−γ5)b|hb(1p)(p, ε)〉 in
Eq. (2). This matrix element is parameterized in terms of the form factors
as follows:

〈
Bs
(
p′
)
|sγµ(1− γ5)b|hb(1p)(p, ε)

〉
= − εµναβε∗νpαp′

β 2V
(
q2
)

mBs +mhb(1p)
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+i
[
ε∗µ
(
mBs +mhb(1p)

)
A1

(
q2
)
− (ε∗q)Pµ

A2

(
q2
)

mBs +mhb(1p)

− (ε∗q)
2mBs

q2

[
A3

(
q2
)
−A0

(
q2
)]
qµ

]
(3)

in which Pµ = (p + p′)µ, qµ = (p− p′)µ, and ε is the polarization vector of
the axial vector meson. In order to have finite results at q2 = 0, we should
have A3(0) = A0(0). The form factor A3(q

2) can be written as a linear
combination of A1 and A2 as follows:

A3

(
q2
)
=
mhb(1p) +mBs

2mBs

A1

(
q2
)
−
mhb(1p) −mBs

2mBs

A2

(
q2
)
. (4)

Considering the three-point QCD sum rules, the form factors V,A1 and A2

can be evaluated from the following correlation function

Πµν = i2
∫
d4xd4ye−ipxeiṕy〈0|T

{
JBs(y)Jµ(0)J

†
hb(1p)(x)

}
|0〉 . (5)

In Eq. (5), Jhb(1p)(x) = bγνγ5b and JBs(y) = bγ5s are the interpolating
currents of the axial vector and pseudoscalar mesons. Jµ(0) = sγµ(1− γ5)b
is the transition current. We calculate the above correlation function in two
approaches: first, in hadron language which results in phenomenological
or physical part and then, the QCD or theoretical approach, obtained in
the quark gluon language. We find the sum rules expressions for the form
factors by equating the corresponding coefficients of the two sides. In order
to eliminate the contributions of higher states and continuum, we use double
Borel transformation with respect to p and p′. A complete set of intermediate
states with the same quantum numbers is inserted in Eq. (5) to get the
physical part. Therefore, we find the following result

Πµν

(
p2, p′

2
, q2
)

=
〈0|JBs |Bs(p′)〉〈Bs(p′)|Jµ(0)|hb(1p)〉〈hb(1p)|J

†
ν,hb(1p)|0〉(

p′2 −m2
Bs

) (
p2 −m2

hb(1p)

) + . . . (6)

In the above equation, . . . stand for the contributions of higher states and
continuum. We write the matrix elements in the above equation in terms of
the leptonic decay constants of Bs and hb (1p) mesons in the following way

〈0|JBs

∣∣Bs (p′)〉= i fBsm
2
Bs

mb +ms
, 〈0|Jν,hb(1p)|hb(1p)(p)〉=fhb(1p)mhb(1p) εν .

(7)
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Equations (3) and (7) are substituted into Eq. (6) and the summation is
performed over the polarization of hb (1p) meson, resulting in the following
relation for the physical part

Πµν

(
p2, p′

2
, q2
)

=
fBs fhb(1p)m

2
Bs

mhb(1p)

(mb +ms)
(
p′2 −m2

Bs

) (
p2 −m2

hb(1p)

)
×
{
i εµναβ p

αp′
β 2V

(
q2
)

mBs +mhb(1p)
−
(
mBs +mhb(1p)

)
×

(
−gµν+

(P + q)µ(P + q)ν
4m2

hb(1p)

)
A1

(
q2
)
+

1

mBs +mhb(1p)

×Pµ

(
−qν +

pq(P + q)ν
2m2

hb(1p)

)
A2

(
q2
)
+

2mBs

q2
qµ

×

(
−qν +

pq(P + q)ν
2m2

hb(1p)

)[
A3

(
q2
)
−A0

(
q2
)]}

. (8)

To extract the form factors V,A1 and A2, we need the coefficients of the
Lorentz structures iεµναβpαp′

β , gµν and Pµqν . Using the Lorentz structures,
the correlation function can be written as follows:

Πµν

(
p2, p′

2
, q2
)
= ΠV i εµναβ p

αp′
β
+ΠA1gµν +ΠA2Pµqν . (9)

The three-point correlator is evaluated by the help of the operator product
expansion method (OPE) in the deep Euclidean region p2 � 4m2

b , p
′2 �

(m2
b +m2

s), to calculate the QCD part of the correlation function. For this
purpose, each Πi function can be written in terms of the perturbative and
non-perturbative parts as follows:

Πi

(
p2, p′

2
, q2
)
= Πper

i

(
p2, p′

2
, q2
)
+Πnon−per

i

(
p2, p′

2
, q2
)
, (10)

where i stands for V , A1 and A2. We consider the bare loop diagram
(Fig. 1, (a)) for the perturbative part. Diagrams (b), (c), (d) in Fig. 1, which
shows the light quark condensates contributing to the correlation function,
are not considered because the double Borel transformations eliminate their
part, so only the gluon condensate diagrams are taken into account as the
first non-perturbative part (Fig. 2 (a)–(f)). The bare-loop contribution by
double dispersion representation is written as

Πper
i = − 1

(2π)2

∫
ds′
∫
ds

ρper
i

(
s, s′, q2

)
(s− p2)

(
s′ − p′2

) + subtraction terms . (11)
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Fig. 1. (a) Bare loop; (b) Light quark condensates; (c), (d) Light quark condensates
with one gluon emission for hb(1p)→ Bsνν decay.

In the Gutkovsky rules, the quark propagators are replaced by the Dirac
function, i.e., 1

p2−m2 → −2πiδ(p2 −m2). This condition results in the in-
equality, such as

−1 ≤
2ss′ +

(
s+ s′ − q2

)
(−s) + 2s

(
m2
b −m2

s

)
λ1/2 (s, s′, q2)λ1/2

(
m2
b ,m

2
b , s
) ≤ 1 . (12)

Here, λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. The lower limit of s′ is
(mb +ms)

2, inserting this into Eq. (12), we obtain sL for the lower limit of s.
Performing calculations, the following expressions for the spectral densities
are found:

ρV
(
s, s′, q2

)
= 4Nc((ms −mb)B2 − 2mbB1 −mbI0) ,

ρA1

(
s, s′, q2

)
= 2Nc(4(−ms +mb)A1 + 2mb∆

′I0 + (−ms +mb) I0∆

+2m2
b (− 2mb +ms) I0 −mb(u− 2mbms)I0) ,

ρA2

(
s, s′, q2

)
= 2Nc ((−ms +mb) (−A5 +A2)−mbB2 −msB1) . (13)
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 Fig. 2. Gluon condensate contributions to hb(1p)→ Bsνν decay.

Here, u = s+ s′ − q2, ∆ = s, ∆′ = s′ +m2
b −m2

s, and Nc = 3 is the number
of colors. B1, B2, A1, A2, A5 and I0 are as follows:

I0

(
s, s′, q2

)
=

1

4λ1/2 (s, s′, q2)
,

λ
(
s, s′, q2

)
= s2 + s′

2
+ q4 − 2sq2 − 2s′q2 − 2ss′ ,

B1 =
1

4λ3/2

(
2s′∆−∆′u

)
,
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B2 =
1

4λ3/2

(
2s∆′ −∆u

)
,

A1 =
1

8λ3/2

(
∆′

2
s+∆2s′− 4m2

bss
′ −∆∆′u+m2

bu
2
)
,

A2 =
1

4λ5/2

(
2∆′

2
ss′+6∆2s′

2− 8m2
bss
′2−6∆∆′s′u+∆′

2
u2+2m2

bs
′u2
)
,

A5 =
1

4λ5/2

(
−6∆∆′s′u+6s2∆′

2− 8s2s′m2
b+2u2sm2

b+u
2∆2+2ss′∆2

)
.

(14)

In the evaluation of gluon condensate contributions as the first correction to
the non-perturbative part of the correlator, we encounter integrals which are
discussed next [4, 8, 10, 14]. We use the Fock–Schwinger fixed-point gauge,
xµGaµ = 0, where Gaµ is the gluon field [8, 15–17]. Integrals, such as given in
the following, are needed to calculate these diagrams:

I0[a, b, c] =

∫
d4k

(2π)4
1[

k2 −m2
b

]a [
(p+ k)2 −m2

b

]b
[(p′ + k)2 −m2

s]
c
, (15)

Iµ[a, b, c] =

∫
d4k

(2π)4
kµ[

k2 −m2
b

]a[
(p+ k)2 −m2

b

]b[
(p′ + k)2 −m2

s

]c , (16)
Iµν [a, b, c] =

∫
d4k

(2π)4
kµkν[

k2 −m2
b

]a[
(p+ k)2 −m2

b

]b[
(p′ + k)2 −m2

s

]c . (17)
The Schwinger representation is used for propagators as follows:

1

p2 +m2
=

1

Γ (α)

∞∫
0

dααn−1e−α(p
2+m2) . (18)

This representation proves to be very convenient for applying the Borel
transformation as

B̂p
(
M2
)
e−αp

2
= δ

(
1− αM2

)
. (19)

Solving integrals and applying double Borel transformations over p2 and p′2,
the transformed form of the integrals are as follows:

Î0(a, b, c) = i
(−1)a+b+c+1

16 π2Γ (a)Γ (b)Γ (c)

(
M2

1

)2−a−b(
M2

2

)2−a−c
×U0(a+ b+ c− 4, 1− c− b) ,
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Îµ(a, b, c) = 1
2

[
Î1(a, b, c) + Î2(a, b, c)

]
Pµ +

1
2

[
Î1(a, b, c)− Î2(a, b, c)

]
qµ ,

Îµν(a, b, c) = Î6(a, b, c)gµν +
1
4

(
2Î4+Î3 + Î5

)
PµPν +

1
4

(
−Î5+Î3

)
Pµqν

+1
4

(
−Î5 + Î3

)
Pνqµ +

1
4

(
−2Î4 + Î3 + Î5

)
qµqν , (20)

knowing that

Î1(a, b, c) = i
(−1)a+b+c+1

16 π2Γ (a)Γ (b)Γ (c)

(
M2

1

)2−a−b(
M2

2

)3−a−c
×U0(a+ b+ c−5, 1−c−b) ,

Î2(a, b, c) = i
(−1)a+b+c+1

16 π2Γ (a)Γ (b)Γ (c)

(
M2

1

)3−a−b(
M2

2

)2−a−c
×U0(a+ b+ c−5, 1−c−b) ,

Î3(a, b, c) = i
(−1)a+b+c

16 π2Γ (a)Γ (b)Γ (c)

(
M2

1

)2−a−b(
M2

2

)4−a−c
×U0(a+ b+ c−6, 1−c−b) ,

Î4(a, b, c) = i
(−1)a+b+c

16 π2Γ (a)Γ (b)Γ (c)

(
M2

1

)3−a−b(
M2

2

)3−a−c
×U0(a+ b+ c−6, 1−c−b) ,

Î5(a, b, c) = i
(−1)a+b+c

16 π2Γ (a)Γ (b)Γ (c)

(
M2

1

)4−a−b(
M2

2

)2−a−c
×U0(a+ b+ c−6, 1−c−b) ,

Î6(a, b, c) = i
(−1)a+b+c+1

32 π2Γ (a)Γ (b)Γ (c)

(
M2

1

)3−a−b(
M2

2

)3−a−c
×U0(a+ b+ c−6, 2−c−b) . (21)

In Eqs. (20) and (21), M2
1 and M2

2 are the Borel parameters in the s and s′
channels, respectively, and the function U0(α, β) is defined as follows:

U0(α, β) =

∞∫
0

dy
(
y +M2

1 +M2
2

)α
yβexp

[
−B−1

y
−B0 −B1y

]
, (22)

B−1 =
1

M2
1M

2
2

[
m2
sM

4
1 +m2

sM
4
2 +M2

1M
2
2

(
m2
b +m2

s − q2
)]
, (23)

B0 =
1

M2
1M

2
2

[(
m2
s +m2

b

)
M2

1 + 2m2
bM

2
2

]
, (24)

B1 =
m2
b

M2
1M

2
2

. (25)
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The following expressions are used for gluon condensate contributions

Π
〈G2〉
i = i

〈αs

π
G2
〉 Ci
24
. (26)

Expressions for Ci are shown in Appendix A. To find the form factors, we
apply double Borel transformations with respect to the p2(p2 → M2

1 ) and
p′2(p′2 → M2

2 ) on the physical side and QCD side of the correlation func-
tion. Then, we match the coefficient of the Lorentz structures of these two
representations of the correlator, and perform continuum subtraction to sup-
press the higher states and continuum. The following sum rules for the form
factors A1 and A2 are calculated as follows:

V =
(mb +ms)

(
mhb(1p) +mBs

)
2fBs fhb(1p)m

2
Bs
mhb(1p)

e

m2
Bs

M2
2 e

m2
hb(1p)

M2
1

×

− 1

4π2

s′0∫
(mb+ms)2

ds′
s0∫
sL

dsρV
(
s, s′, q2

)
e
− s′

M2
2 e
− s

M2
1 +iM2

1M
2
2

〈αs

π
G2
〉 CV

24

 ,

A1=
(mb +ms)

fBs fhb(1p)m
2
Bs
mhb(1p)

(
mhb(1p) +mBs

)em2
Bs

M2
2 e

m2
hb(1p)

M2
1

×

− 1

4π2

s′0∫
(mb+ms)2

ds′
s0∫
sL

dsρA1

(
s, s′, q2

)
e
− s′

M2
2 e
− s

M2
1 +iM2

1M
2
2

〈αs

π
G2
〉 CA1

24

 ,

A2=
4mhb(1p) (mb +ms)

(
mhb(1p) +mBs

)
fBs fhb(1p)m

2
Bs

(
3m2

hb(1p) +m2
Bs
− q2

)em2
Bs

M2
2 e

m2
hb(1p)

M2
1

×

− 1

4π2

s′0∫
(mb+ms)2

ds′
s0∫
sL

dsρA2

(
s, s′, q2

)
e
− s′

M2
2 e
− s

M2
1 +iM2

1M
2
2

〈αs

π
G2
〉 CA2

24

 .

(27)

In the above relations, s0 and s′0 are the continuum thresholds in hb(1p) and
Bs channels, respectively, and sL is as follows:

sL =
m2
b

(
q2 − s′

)2(
q2 −m2

b

) (
m2
b − s′

) . (28)
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To subtract the contributions of the higher states and continuum in Eq. (27),
the quark–hadron duality assumption is considered as follows:

ρhigher states
(
s, s′

)
= ρOPE

(
s, s′

)
Θ(s− s0)Θ

(
s− s′0

)
. (29)

We also used the following form of Borel transformation

B̂p
(
M2
){ 1

p2 −m2

}
=

1

M2
e−m

2/M2
. (30)

In the following, we obtain the differential decay width dΓ/dq2 for the pro-
cess hb(1p)→ Bsνν in terms of the form factors:

dΓ

dq2dcos θ
=

√
λ

256 π3 m3
hb(1p)

|M |2 , (31)

M =
GFα

2π
√
2
VtbV

∗
ts C10 L

µHµ , (32)

|M |2 =
GF

2α2

8 π2
|VtbVts∗|2C2

10 L
µνHµH

†
ν , (33)

LµνHµ H
†
ν=

1

3

{(
12m2

hb(1p)q
2 + λ sin2 θ

) (
mhb(1p) +mBs

)2
m2
hb(1p)

A2
1 −

2

m2
hb(1p)

×
(
−m2

Bs
+m2

hb(1p) + q2
)
λ sin2 θA1A2 +

1

m2
hb(1p)

(
mBs +mhb(1p)

)2
×λ2 sin2 θA2

2 + 16
√
λ q2 cos θA1V

}
, (34)

where λ = m4
hb(1p) +m4

Bs
+ q4 − 2m2

hb(1p)m
2
Bs
− 2m2

hb(1p) q
2 − 2m2

Bs
q2. The

total decay width is obtained from the integration of Eq. (31) on q2 in the
interval 0 < q2 < (mhb(1p) −mBs)

2.

3. Numerical calculations and results

This section contains our numerical results of the form factors. The input
parameters entering our calculations namely, gluon condensate, Wilson co-
efficient C10, elements of the CKM matrix Vtb, Vts, leptonic decay constants,
fhb(1p) and fBs , quark and meson masses, continuum thresholds s0 and s′0,
as well as the Borel parameters M2

1 and M2
2 are chosen to be:

〈
αs
π G

2
〉
=

0.012 GeV4 [18], C10 = −4.669 [19, 20], |Vtb| = 0.77+0.18
−0.24, |Vts| = (40.6 ±
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2.7)× 10−3 [21], fBs = 232.5± 18.6(OPE)± 2.4syst MeV [22], fhb(1p) = 0.86±
0.01± 0.11± 0.26 GeV [23], mb = 4.6 GeV [4], ms(1 GeV) ' 142 MeV [24],
mBs = (5366.3±0.6) MeV [25], mhb(1p) = (9898.3±1.1+1.0

−1.1) MeV, mhb(2p) =

(10259.8 ± 0.6+1.4
−1.0) MeV [13]. Form factors contain four auxiliary parame-

ters: Borel mass squares M2
1 and M2

2 and continuum thresholds, s0 and s′0.
These are mathematical objects, so the physical quantities, form factors,
should not depend upon them. The parameters s0 and s′0, the continuum
thresholds of hb(1p) and Bs mesons are determined from the conditions
that guarantee the sum rules to have the best stability in the allowed M2

1
and M2

2 region. The value of the continuum thresholds s′0 calculated from
the two-point QCD sum rules is taken to be s′0 = (34.2 ± 2) GeV2 [26]
and the interval of s0 must be between the mass square of hb(1p) and
hb(2p) i.e., m2[hb(1p)] < s0 < m2[hb(2p)] [3]. We choose the interval
98 GeV2 ≤ s0 ≤ 105 GeV2 for s0. We should choose the regions for M2

1
and M2

2 , considering that contributions of the higher states and continuum
are effectively suppressed and the gluon condensate contributions are small,
assuring that the contributions of the higher dimensional operators are small.
Both conditions are satisfied in the regions 5 GeV2 ≤ M2

1 ≤ 15 GeV2 and
4 GeV2 ≤ M2

2 ≤ 10 GeV2. The values of the form factors at q2 = 0 are
shown in Table I.

TABLE I

The values of the form factors at q2 = 0, for M2
1 = 10 GeV2, M2

2 = 7 GeV2.

hb(1p)→ Bsυυ

V (0) 0.015
A1(0) −0.010
A2(0) 0.145

Since the sum rules for the form factors are truncated at some points, in
order to extend our calculations to the full physical range, i.e., the region
0 ≤ q2 ≤ 20.54 GeV2, we should use proper parametrization for the form
factors. Our numerical calculations show that the best parametrization of
the form factors with respect to q2 is as follows:

fi
(
q2
)
=

a(
1− q2

m2
fit

) +
b(

1− q2

m2
fit

)2 . (35)

The values of the parameters, a and b are given in Table II.
Performing the integration over q2 in Eq. (31) in the interval 0 < q2 <

(mhb(1p) − mBs)
2, we obtain the expression for the total decay width. The

numerical value of the decay width is presented in Table III.
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TABLE II

Parameters in the fit function of the form factors, for M2
1 = 10 GeV2, M2

2 = 7 GeV2.

a b mfit

V −0.506 0.478 7.5
A1 −0.137 0.125 7.5
A2 −30.8 31.33 4.6

TABLE III

Total decay width of hb(1p)→ Bsνν.

Γ [GeV]

hb(1p)→ Bsνν 2.82× 10−15

4. Conclusion

In this work, we investigated the rare hb(1p) → Bsνν decay within the
framework of the three-point QCD sum rules. We considered the gluon
corrections to the correlation function as a first non-perturbative contribu-
tion and derived the form factors. Considering the calculated values, we
used proper parametrization for the form factors to calculate the total de-
cay width. The present predictions can be confirmed by the experimental
data in the future.

Appendix A

CV = 16mbÎ0(1, 2, 2)− 96m3
b Î0(1, 4, 1) + 64m3

b Î0(2, 3, 1) + 16mbÎ0(3, 1, 1)

−16m3
b Î0(3, 1, 2)− 16mbÎ

[0,1]
0 (3, 1, 2)− 16mbÎ

[1,0]
0 (3, 2, 1)

−32m3
b Î

[0,1]
0 (3, 2, 2)− 16m3

b Î
[1,0]
0 (3, 2, 2) + 16mbÎ

[1,1]
0 (3, 2, 2)

+32mbÎ1(1, 2, 2)−96mbÎ1(1, 3, 1)−192m3
b Î1(1, 4, 1)−32mbÎ1(2, 2, 1)

+32mbÎ
[1,0]
1 (2, 3, 1) + 16mbÎ1(3, 1, 1)− 48m3

b Î1 (3, 1, 2)

−16mbÎ
[0,1]
1 (3, 1, 2)− 32mbÎ

[1,0]
1 (3, 2, 1)− 64m3

b Î
[0,1]
1 (3, 2, 2)

−32m3
b Î

[1,0]
1 (3, 2, 2) + 32mbÎ

[1,1]
1 (3, 2, 2) + 16mbÎ2(1, 2, 2)

−96m3
b Î2(1, 4, 1) + 64mbÎ

[0,1]
2 (2, 3, 1)− 16m3

b Î2(3, 1, 2)

−16mbÎ
[0,1]
2 (3, 1, 2)− 64m3

b Î2(3, 2, 1)− 32m3
b Î

[0,1]
2 (3, 2, 2)

−16m3
b Î

[1,0]
2 (3, 2, 2) + 16mbÎ

[1,1]
2 (3, 2, 2) ,
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CA1 = −8mbÎ0(1, 1, 2)− 16mbÎ0(1, 2, 1)− 16m3
b Î0(1, 2, 2)

+8mbÎ
[0,1]
0 (1, 2, 2) + 96m3

b Î0(1, 3, 1)− 48mbÎ
[0,1]
0 (1, 3, 1)

+96m5
b Î0(1, 4, 1)− 48m3

b Î
[0,1]
0 (1, 4, 1) + 16m3

b Î0(2, 2, 1)

+16mbÎ
[0,1]
0 (2, 2, 1) + 32m3

b Î
[0,1]
0 (2, 3, 1) + 16m3

b Î
[1,0]
0 (2, 3, 1)

−16mbÎ
[1,1]
0 (2, 3, 1) + 8mbÎ

[0,1]
0 (3, 1, 1)− 8mbÎ

[1,0]
0 (3, 1, 1)

+24m5
b Î0(3, 1, 2) + 8m3

b Î
[0,1]
0 (3, 1, 2) + 8m3

b Î
[1,0]
0 (3, 1, 2)

−8mbÎ
[1,1]
0 (3, 1, 2) + 32m3

b Î
[0,1]
0 (3, 2, 1)− 24mbÎ

[1,1]
0 (3, 2, 1)

+8mbÎ
[2,0]
0 (3, 2, 1) + 32m5

b Î
[0,1]
0 (3, 2, 2)−16m3

b Î
[0,2]
0 (3, 2, 2)

+16m5
b Î

[1,0]
0 (3, 2, 2)− 24m3

b Î
[1,1]
0 (3, 2, 2) + 8mbÎ

[1,2]
0 (3, 2, 2)

+32mbÎ6(1, 2, 2)− 192m3
b Î6(1, 4, 1)− 64mbÎ

[0,1]
6 (2, 3, 1)

−64mbÎ
[1,0]
6 (2, 3, 1)− 64m3

b Î
[0,1]
6 (3, 2, 2)− 32m3

b Î
[1,0]
6 (3, 2, 2)

+32mbÎ
[1,1]
6 (3, 2, 2) ,

CA2 = −16m3
b Î0(3, 1, 2) + 16m3

b Î0(3, 2, 1)− 4mbÎ1(1, 2, 2)

+24mbÎ1(1, 3, 1) + 24m3
b Î1(1, 4, 1)− 8mbÎ1(2, 2, 1)

−16m3
b Î1(2, 3, 1) + 8mbÎ

[1,0]
1 (2, 3, 1)− 4mbÎ1(3, 1, 1)

−8m3
b Î1(3, 1, 2) + 16m3

b Î1(3, 2, 1) + 8mbÎ
[1,0]
1 (3, 2, 1)

+8m3
b Î

[0,1]
1 (3, 2, 2) + 4m3

b Î
[1,0]
1 (3, 2, 2)− 4mbÎ

[1,1]
1 (3, 2, 2)

−4mbÎ2(1, 2, 2) + 24mbÎ2(1, 3, 1)+24m3
b Î2(1, 4, 1)− 8mbÎ2(2, 2, 1)

−16m3
b Î2(2, 3, 1)+8mbÎ

[1,0]
2 (2, 3, 1)−4mbÎ2(3, 1, 1)−8m3

b Î2(3, 1, 2)

+16m3
b Î2(3, 2, 1) + 8mbÎ

[1,0]
2 (3, 2, 1) + 8m3

b Î
[0,1]
2 (3, 2, 2)

+4m3
b Î

[1,0]
2 (3, 2, 2)− 4mbÎ

[1,1]
2 (3, 2, 2) + 8mbÎ3(1, 2, 2)

−48m3
b Î3(1, 4, 1)− 16mbÎ

[0,1]
3 (2, 3, 1)− 16mbÎ

[1,0]
3 (2, 3, 1)

−16m3
b Î

[0,1]
3 (3, 2, 2)− 8m3

b Î
[1,0]
3 (3, 2, 2) + 8mbÎ

[1,1]
3 (3, 2, 2)

−8mbÎ5(1, 2, 2) + 48m3
b Î5(1, 4, 1) + 16mbÎ

[0,1]
5 (2, 3, 1)

+16mbÎ
[1,0]
5 (2, 3, 1) + 16m3

b Î
[0,1]
5 (3, 2, 2) + 8m3

b Î
[1,0]
5 (3, 2, 2)

−8mbÎ
[1,1]
5 (3, 2, 2) ,

where

Î [i,j]
n (a, b, c) =

(
M2

1

)i(
M2

2

)j di

d
(
M2

1

)i dj

d
(
M2

2

)j [(M2
1

)i(
M2

2

)j
În(a, b, c)

]
.
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