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Quantum electrodynamics in three dimensions in the bispinor formu-
lation is considered. It is shown that the Dyson–Schwinger equations for
fermion and boson propagators may be self-consistently solved in the in-
frared domain if on uses Salam’s vertex function. The parameters defining
the behavior of the propagators are found numerically for different val-
ues of coupling constant and gauge parameter. For weak coupling, the
approximated analytical solutions are obtained. The renormalized gauge
boson propagator (transverse part) is shown in the infrared domain to be
practically gauge independent.
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1. Introduction

QED in three space-time dimensions has become a testing laboratory
for certain nonperturbative aspects of QFT like chiral symmetry breaking
[1–10], bound states [11–13] or confinement [8, 14–18] and for various ap-
proximation schemes. Due to the dimensionality of the coupling constant
(as
√

mass), it is a superrenormalizable theory so it is free of infinite renor-
malization ambiguities typical for four-dimensional theory.

It can be formulated in two inequivalent versions: with two- and four-
component fermions [19, 20]. The properties of the theory are different in
these two cases. To the investigation of both versions much attention has
been payed over the last twenty years. The work has been especially con-
centrated on nonperturbative solutions of Dyson–Schwinger (DS) equations
with different approximations incorporated in the theory as quenched ap-
proximation, rainbow approximation, 1/N expansion and various models of
vertex function [1–4, 6, 10]. Particularly often, the multi-flavor theory with
the limit N → ∞ has been used, since it avoids infrared problems, which
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usually become troublesome in lower number of dimensions. The other im-
portant point in this analysis has been the unpleasant gauge dependence
of the nonperturbative results which constitute the common problem of the
approximated studies based on DS equations [6, 9, 10, 16, 21, 22].

As it is well known, DS equations constitute an infinite set of relations
involving Green’s functions which form the ‘inverted ladder’ type structure:
the n-point functions depend on n + 1-point ones and so on up to infinity.
This set cannot be solved without the truncation of such a hierarchy. But
even such truncation, which turns the infinite set of equations into only
a couple of them, leads to the system which is far from being trivial and
requires further simplifications. Usually, this truncation is accomplished by
performing certain assumption for the vertex function, which is chosen most
often in the form satisfying the Ward–Takahashi identity. Naturally, this
identity fixes only longitudinal part of the vertex leaving the transverse part
a subject of further discussion and improvements [15, 23–27].

In our previous paper [28], we applied a method elaborated earlier in
QED4 [29] to QED3 with two-component fermions. It consists in the follow-
ing five steps:

1. a certain infrared form of two basic propagators, S(p) andDµν(k) (sug-
gested by perturbative calculations or other methods) as dependent on
a couple of unknown parameters is assumed,

2. the fermion propagator is represented in the spectral form with one
known spectral density ρ(M), which is, in general, possible in the
infrared domain,

3. Salam’s form of the vertex function [30], together with S(p) andDµν(k),
is substituted into the first two of the set of DS equations,

4. from these two equations, the set of self-consistent equations for pa-
rameters is derived,

5. the obtained equations are solved numerically or analytically.

This method proved to be relatively effective both in QED4, where all param-
eters were correctly found without the necessity of infinite renormalization,
and in spinor version of QED3, where obtained results stay in general agree-
ment with other works. In the present paper, we would like to extend its
application to four-component QED3, without the Chern–Simons term, i.e.
when gauge bosons (‘photons’) remain massless in spite of interaction.

The common effect of various simplifications of DS equations is the gauge
dependence of the results (even of the physical observables). The sources of
this undesirable behavior are the approximations made to the propagators



Infrared Self-consistent Solutions of Bispinor QED3 1889

and to the vertex. It seems, therefore, valuable to test various possible
approaches with regard to that particular feature and much work has already
been done in this direction (see the references above). This point lies in the
scope of interest of the present work too.

This paper is organized as follows. In the next section, we define the
model itself and give the resulting set of DS equations. In Sec. 3 the infrared
Green’s function in question are formulated up to several unknown parame-
ters. In Sec. 4 we substitute these Green’s functions into DS equations and
obtain the set of relations for the introduced parameters. In the last section,
we present analytical and numerical results and some conclusions.

2. Formulation of the model

The model is defined through the following Lagrangian density

L(x) = Ψ(x) (iγµ∂µ −m0 − e0γµAµ(x))Ψ(x) (1)

−1

4
Fµν(x)Fµν(x)− λ

2
(∂µA

µ(x))2 ,

where λ is the gauge parameter. The quantities m0 and e0 denote here the
bare fermion mass and the bare coupling constant respectively. As mentioned
in Introduction, the latter for D = 2 + 1 is a quantity with the dimension-
ality of

√
mass. That means that in the quantum theory, higher terms of

perturbation expansions have better ultraviolet momentum dependence in
loop integrations and the model is superrenormalizable.

As already told, in the present paper, we deal with four-component
fermion field, choosing the following representation for gamma matrices used
also in four-dimensional QED

γ0 =

(
σ3 0
0 −σ3

)
, γ1 =

(
iσ1 0
0 −iσ1

)
,

γ2 =

(
iσ2 0
0 −iσ2

)
. (2)

There are two other gamma matrices, which anticommute with all above,
and which can serve for defining chiral transformations

γ3 =

(
0 1

1 0

)
, γ5 =

(
0 i1
−i1 0

)
. (3)

The fermion mass term thatwas chosen in (1) in the form ofm0ΨΨ , breaks
the chiral symmetry defined by any of the matrices (3). There is, however,
the possibility of the other choice for the mass term [3]: m′0ΨτΨ , where

τ =
i

2

[
γ3, γ5

]
=

(
1 0
0 −1

)
. (4)
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This term does not break chiral symmetry, since matrix γ0τ commutes with
both γ3 and γ5, but it does violate parity symmetry (contrary to the choice
made in (1)).

For matrices (2), we have ordinary relations

{γµ, γν} = gµν , Tr γµ = 0 , Tr [γµγν ] = 4gµν ,

Tr [γµγνγργσ] = 4 (gµνgρσ − gµρgνσ + gµσgνρ) , (5)

where we choose for the metric tensor

g00 = −g11 = −g22 = 1 . (6)

The trace of the product of an odd number of gamma matrices equals
zero as in four dimensions (this was not the case in the spinor representation,
where it was proportional to the antisymmetric tensor εµνρ). Additionally,
we have the identity

γµγνγµ = −γν . (7)

Using the Lagrangian density (1), one can derive in the standard way —
for instance, through the Feynman path integral — the Dyson–Schwinger
equations for propagators [31]. For boson propagator, we obtain the relation

Dµν(k) =
1

k2

(
−gµα +

kµkα

k2
− 1

λ

kµkα

k2

)[
δνα − ie20

×Tr γα

∫
d3p

(2π)3
S(p)Γβ(p, p− k)S(p− k)Dβν(k)

]
,

(8)

which may be given in the graphical form shown in Fig. 1. The propagator
Dµν(k) on the right-hand side is not integrated over three-momenta and,
therefore, it can fully be represented through fermion functions (and the
vertex).

= +

Fig. 1. The Dyson–Schwinger equation for the gauge boson propagator Dµν(k).
Light lines represent free propagators and heavy ones dressed propagators. The
full circle stands for the full fermion-boson vertex.

The DS equation for the fermion propagator does not allow for such a
separation, and has the form

S(p) =
1

6p−m0

[
1 + ie20γ

µ

∫
d3k

(2π)3
S(p+ k)Γ ν(p+ k, p)S(p)Dµν(k)

]
, (9)
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Its graphical representation is shown in Fig. 2. While introducing the
fermion self-energy Σ(p), it can be rewritten in a simpler manner

( 6p−m0)S(p) = 1 +Σ(p)S(p) , (10)

where

Σ(p)S(p) = ie20γ
µ

∫
d3k

(2π)3
S(p+ k)Γ ν(p+ k, p)S(p)Dµν(k) . (11)

= +

Fig. 2. The Dyson–Schwinger equation for the fermion propagator. As in Fig. 1,
heavy lines stand for full functions and light for free ones.

Higher equations are not considered in our present approach. The ver-
tex function Γµ is not taken from DS equations, but postulated in the form
proposed by Salam [30] and used afterwards in the so-called ‘gauge tech-
nique’ [24, 25, 32, 33]. The eventual extension of our method on higher
Green’s functions will be considered elsewhere.

3. Infrared Green’s functions

The free propagator of massless vector boson has the standard form

D(0)µν(k) =
1

k2

(
−gµν +

kµkν

k2

)
− 1

λ

kµkν

(k2)2
. (12)

As is well known, the interaction with fermions does not change the
longitudinal part of Dµν(k). This is guaranteed by the following Ward–
Takahashi (WT) identity

kµD
µν(k) = kµD

(0)µν(k) = − 1

λ

kν

k2
. (13)

Consequently, the nonperturbative propagator may be then written as

Dµν(k) =
Z3

d(k2)

(
−gµν +

kµkν

k2

)
− 1

λ

kµkν

(k2)2
, (14)

with certain unknown function d(k2). In the infrared domain, we assume
this function to have a Taylor expansion starting from k2, since for bispinor
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fermions the boson field remains massless [16] and we expect d(0) = 0. This
is not the case for massive two-component fermions, for which the topological
boson mass is generated.

Taking the first two terms of this expansion, we have

d(k2) = k2
(

1 +
k2

κ2

)
, (15)

where κ2, together with the renormalization constant Z3, will be determined
from consistency conditions. From the unitarity, we expect the value of Z3

to satisfy the restriction 0 < Z3 ≤ 1 [34]. This expectation was actually
confirmed in our previous works on spinor QED3 [28] and QED4 [29].

With the above assumptions the inverse of Dµν may be written as

D−1(k)µν = Z−13

(
1 +

k2

κ2

)(
−k2gµν + kµkν

)
− λkµkν . (16)

The free fermion propagator has the usual form

S(0)(p) =
1

6p−m0
. (17)

Due to the masslessness of the gauge boson and the absence of the mass
gap for emission of soft photons, the pole at mass m0 should, in the full
propagator, turn into a branch point at p2 = m2, where m is a physical
mass. This is expected also on the basis of general considerations on the an-
alytical structure of fermion propagator [17, 35] and of confinement, which
prohibits S(p) from having a simple pole. The numerical results, performed
in 1/N expansion with bare vertex and in Euclidean space, suggesting the
existence of complex singularities rather than real may as well constitute the
effect of the coarse approximations made while solving DS equations: the
approximations that are inevitable in any nonperturbative approach. Such
singularities may be a signal of confinement, but are not prerequisite. In
the Schwinger Model, massless electrodynamics in two space-time dimen-
sions, which exhibits confinement of fermions, the real singularity in the
infrared domain in the fermion propagator has been found (it has the form
of 1/(−p2)5/4) [36, 37].

Our infrared assumption for S(p) is then

S(p) =
1

(6p−m)(1− p2/m2)β
. (18)

We will later see that it will turn out to be self-consistent.
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The values of the exponent β and of mass renormalization constant δm =
m−m0 will be established by the requirement of consistency. The presence
of β in denominator improves the ultraviolet behavior of loop integrals (we
assume that 0 < β < 1, to be verified a posteriori).

For our further purposes, S(p) has to be written in the spectral form

S(p) =

∫
dMρ(M)

(
1

6p−m
− 1

6p−M

)
, (19)

with one spectral density

ρ(M) =
sin(πβ)

π

1

(M −m)(M2/m2 − 1)β

[
Θ(M−m)−Θ(−M−m)

]
, (20)

sufficient to define the infrared behavior of the propagator. Θ is here the
Heaviside step function. The particular form of ρ(M) was given in our
previous works [28, 29].

Using ρ(M), one can write the vertex function, which we need to put
into the DS equations (8) and (9). As mentioned in Introduction, we use
Salam’s vertex [30] (with slight and obvious modification resulting from the
form (19) of S(p), which in our case contains two terms)

S(p+ k)Γµ(p+ k, p)S(p) =

∫
dMρ(M)

×
[

1

6p + 6k −m
γµ

1

6p−m
− 1

6p + 6k −M
γµ

1

6p−M

]
. (21)

It automatically guarantees the compliance with the WT identity

kµS(p+ k)Γµ(p+ k, p)S(p) = S(p)− S(p+ k) . (22)

4. Self-consistent infrared equations

4.1. Gauge boson propagator

Inserting (19) and (21) into the right-hand side of (8), we obtain

D−1(k)µν = −k2gµν + kµkν − λkµkν + ie20Tr γµ
∫
dMρ(M)

∫
d3p

(2π)3

×
(

1

6p−m+ iε
γν

1

6p − 6k −m+ iε
− 1

6p−M + iε
γν

1

6p − 6k −M + iε

)
,

(23)

where we have rewritten this equation for inverse propagator, which is easier
to handle, because in this case Dµν decouples from other functions.
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The vacuum polarization tensor may be defined as the spectral integral

Πµν(k) =

∫
dMρ(M)

(
Πµν
m (k)−Πµν

M (k)
)
, (24)

where Πµν
m (k) denotes the usual perturbative tensor

Πµν
m (k) = ie20Tr γµ

∫
d3p

(2π)3
1

6p−m+ iε
γν

1

6p − 6k −m+ iε
. (25)

It may be evaluated in the standard way with the use of identities (5) and,
for instance, by performing the Wicks rotation and introducing Feynman
parameters. Passing back to the Minkowski space, we have

Πµν
m (k) =

e20
π

(
−k2gµν + kµkν

) 1∫
0

dx
x(1− x)

(m2 − k2x(1− x))1/2
. (26)

For k2 < 4m2, the x integral is well defined. The transversality ofΠµν
m (k)

is a favorable consequence of using the vertex function in the form (21),
satisfying the WT identity (22). Performing the spectral integral over M
in (24) with the use of (20), similarly as it was done in [28], we obtain

Πµν(k) =
e20Γ (β + 1/2)

π3/2Γ (β + 1)m

(
−k2gµν + kµkν

) 1∫
0

dx
x(1−x)

(1− k2/m2 x(1−x))β+1/2
.

(27)
The integral over the Feynman parameter x leads to the hypergeometric

(Gauss) function

1∫
0

dx
x(1− x)

(1− y x(1− x))β+1/2
=

1

6
2F1(2, β + 1/2; 5/2; y/4) , (28)

and the DS equation (23) may be given in the form

D−1(k)µν =−λkµkν +
(
−k2gµν + kµkν

)
×
[
1+

e20Γ (β+ 1/2)

6π3/2Γ (β + 1)m
2F1

(
2, β+1/2; 5/2; k2/4m2

)]
. (29)

After the substitution of the expression (16) for the left-hand side and
cancellation of the tensor structures, we are left with the scalar equation, for
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which we require the adjustment the first two terms of the Taylor expansion
in k2. In that way, we get two equations for Z3 and κ2

Z−13 = 1 +
e20Γ (β + 1/2)

6π3/2mΓ (β + 1)
, (30)

Z−13

1

κ2
=

e20Γ (β + 3/2)

30π3/2m3Γ (β + 1)
, (31)

where we expanded the Gauss function for small momentum according to
the formula

2F1(a, b; c; z) ≈ 1 +
ab

c
z +O

(
z2
)
,

and Γ is the Euler function. These are two of the set of four equations for
parameters of the model, to be solved in Sec. 5.

4.2. Fermion propagator

To get other two equations for parameters, we put (19), (21) and (14)
together with (15) into the DS equation (9). We obtain, after some simpli-
fications,

(6p−m0)S(p) = 1 + [Σ(p)S(p)]A + [Σ(p)S(p)]B + [Σ(p)S(p)]C , (32)

where we divided fermion self-energy into pieces coming from different tensor
structures in Dµν(k): gµν and kµkν from the transverse part and again from
the gauge-dependent longitudinal part. After small rearrangement, they are

[Σ(p)S(p)]A = iZ3κ
2e20

∫
dMρ(M)

∫
d3k

(2π)3

×
[
γµ

1

6p + 6k −m+ iε
γµ

1

(k2 + iε)(k2 − κ2 + iε)(6p−m+ iε)
−(m→M)

]
,

(33)

[Σ(p)S(p)]B = iZ3κ
2e20

∫
dMρ(M)

∫
d3k

(2π)3

×
[
6k 1

6p + 6k −m+ iε)(k2 + iε)2(k2 − κ2 + iε)
− (m→M)

]
, (34)

[Σ(p)S(p)]C =
ie20
λ

∫
dMρ(M)

∫
d3k

(2π)3

×
[
6k 1

(6p + 6k −m+ iε)(k2 + iε)2
− (m→M)

]
. (35)
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A comment should be made here. To avoid technical difficulty while per-
forming Wick’s rotation in the above momentum integrals, we analytically
continued the value of κ to imaginary values on the upper half plane of com-
plex κ. Now, the deformation of the integration contour as is required by
passing into Euclidean space, is not disturbed by the inappropriate location
of poles since all singularities have the ‘Feynman’ position. After perform-
ing the integrals, we will come back to real values of κ. The procedure was
discussed in [29]. With this trick, each of the above momentum integrals
can be performed in an ordinary way known from perturbation theory. It
can easily be seen that all integrals are finite without the need of any reg-
ularization. Omitting details of this standard calculation, we find (in the
Minkowski space)

IA = ie20

∫
d3k

(2π)3
γµ

1

6p + 6k −m+ iε
γµ

1

(k2 + iε)(k2 − κ2 + iε)

=
e20

8πκ2

1∫
0

dx(3m− 6p(1− x))

[
1

(m2x− p2x(1− x))1/2

− 1

(m2x− p2x(1− x) + κ2(1− x))1/2

]
,

(36)

IB = ie20

∫
d3k

(2π)3
6k 1

(6p + 6k −m+ iε)(k2 + iε)2(k2 − κ2 + iε)

=
e20

8πκ2

1∫
0

dx

[(
1− x 6p(6p+m)

κ2

)(
1

(m2x− p2x(1− x))1/2

− 1

(m2x− p2x(1− x) + κ2(1− x))1/2

)
+
6p(6p+m)

2

× x(1− x)

(m2x− p2x(1− x))3/2

]
, (37)

IC = ie20

∫
d3k

(2π)3
6k 1

(6p + 6k −m+ iε)(k2 + iε)2
= − e

2
0

8π

1∫
0

dx

×
[

1

(m2x− p2x(1− x))1/2
+
6p( 6p+m)

2

x(1− x)

(m2x− p2x(1− x))3/2

]
.

(38)
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Now, the contributions to Σ(p)S(p) may be written as

[Σ(p)S(p)]A = Z3κ
2

∫
dMρ(M)

[
IA

1

6p−m+ iε
− (m→M)

]
, (39)

[Σ(p)S(p)]B = Z3κ
2

∫
dMρ(M) [IB − (m→M)] , (40)

[Σ(p)S(p)]C =
1

λ

∫
dMρ(M) [IC − (m→M)] . (41)

All the above spectral integrals can been found similarly as in [28], therefore,
we omit the technicalities.

In the infrared domain, when p2 → m2, the left-hand side of the DS
equation (32), after substituting (18), contains two types of singular terms
(the only terms that are important)

−m
2βδm( 6p+m)

(m2 − p2)β+1
+

m2β

(m2 − p2)β
. (42)

Therefore, to avoid lengthy expressions, we will not give the results for (39),
(40), and (41) in their full complexity, because it is sufficient for our goal to
only pick out from them the identical singular terms. We find

[Σ(p)S(p)]A ≈
e20Z3

8π

{[
1

m2
I1
(
m2, κ2

)
− 1

m3

]
6p(6p+m)

(1− p2/m2)β+1

+

[
6p(6p+m)

2

(
I2
(
m2, κ2

)
− 1

m3

)
− 3

4βm

]
1

(1− p2/m2)β

}
, (43)

[Σ(p)S(p)]B ≈
e20Z3

8π

[
1

m3

6p( 6p+m)

(1− p2/m2)β+1

−
(
6p(6p+m)

2m3

1− β
β
− 1

4βm

)
1

(1− p2/m2)β

]
, (44)

[Σ(p)S(p)]C ≈ −
e20

8πλ

[
6p( 6p+m)

m3

1

(1− p2/m2)β+1

+

(
6p(6p+m)

2m3

β − 1

β
+

1

4βm

)
1

(1− p2/m2)β

]
, (45)

where ≈ refers to diverging terms, when p2 → m2. The functions I1 and I2
have the following form

I1
(
m2, κ2

)
=

1∫
0

dx
x+ 2

(m2x2 + κ2(1− x))1/2
, (46)
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I2
(
m2, κ2

)
=

1∫
0

dx
x2(x+ 2)

(m2x2 + κ2(1− x))3/2
. (47)

If the solution is to be self-consistent close to the fermion mass shell, the
divergent terms on both sides of the DS equation (10) must be identical.
Equating them and making use of the fact that up to finite terms, we have

6p(6p+m)

(1− p2/m2)β
≈ 2m2

(1− p2/m2)β
, (48)

6p(6p+m)

(1− p2/m2)β+1
≈ m( 6p+m)

(1− p2/m2)β+1
− m2

(1− p2/m2)β
, (49)

we derive the following two relations for unknown parameters δm and β

δm =
e20Z3

8π

[
−mI1

(
m2, κ2

)
+

1

λZ3

]
, (50)

1 =
e20Z3

8π

[
−κ2I3

(
m2, κ2

)
+

3

4βm

(
1

λZ3
− 2

)]
. (51)

The function I3(m2, κ2) is defined as follows

I3 =
1

κ2
[
I1
(
m2, κ2

)
−m2I2

(
m2, κ2

)]
=

1∫
0

dx
(1− x)(x+ 2)

(m2x2 + κ2(1− x))3/2
.

(52)

5. Solutions and conclusions

The four equations we have obtained, i.e. (30), (31), (50) and (51) are
sufficient to determine all parameters. We rewrite them with the use of
renormalized quantities: fermion mass m = m0 + δm, gauge coupling con-
stant e = Z

1/2
3 e0 and gauge parameter λR = Z3λ. Besides, it is useful to

introduce a dimensionless parameter ζ = e2

4πm . After executing the paramet-
ric integrals in I1 and I3 and performing the reverse analytical continuation
in κ, we get

δm

m
=

ζ

2

[
1

λR
− 1− 4m2 − κ2

4m2
ln
(
4m2/κ2 + 1

) ]
, (53)

1 =
ζ

2

[
3

4β

(
1

λR
−2

)
− 2

4m2 − κ2

4m2 + κ2
− κ2

2m2
ln
(
4m2/κ2 + 1

) ]
, (54)
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Z3 = 1− 2ζ

3

Γ (β + 1/2)√
πΓ (β + 1)

, (55)

κ2

m2
=

15

2ζ

√
πΓ (β + 1)

Γ (β + 3/2)
. (56)

This set of equations for δm/m, β, Z3 and κ2/m2 may be solved numer-
ically for certain chosen values of renormalized gauge parameter λR and the
results plot as functions of parameter ζ. Let us consider the case of weak
coupling, when ζ is small. Since the applicability of our method requires
0 < β < 1, then from equation (56) we deduce that κ2/m2 should be large.
It may be justified by the elementary estimation given below. First, we
rewrite the following expression in terms of beta function B(x, y) and its
integral representation

√
πΓ (β + 1)

2Γ (β + 3/2)
=

1

2
B(β + 1, 1/2) =

1

2

1∫
0

t−1/2(1− t)βdt , (57)

and next use the inequalities valid for 0 < β < 1

1

2

1∫
0

t−1/2(1− t)βdt < 1

2

1∫
0

t−1/2dt = 1 ,

1

2

1∫
0

t−1/2(1− t)βdt > 1

2

1∫
0

t−1/2(1− t)dt =
2

3
.

Now, from (56) it becomes obvious that for small ζ, the left-hand side must
be large. This is in agreement with our expectations concerning the subse-
quent terms in the Taylor expansion (15). But for κ2 � m2, the first term
in square brackets on the right-hand side of (54) dominates over all other,
which may be easily verified. The expected positivity of β requires then con-
sidering only gauges for which 0 < λR < 1/2. This is not surprising, since β
is a strongly gauge dependent quantity. For our numerical calculations, we
have then chosen the values of the gauge parameters from that range.

In Fig. 3 we show the dependence of parameters κ and β on ζ for ex-
emplary value of λR = 0.3 (solid lines). In Fig. 4 we similarly plot the
dependence of two other parameters: fermion mass renormalization con-
stant δm and gauge field renormalization constant Z3. It is nice to observe
that we have 0 < δm < m and 0 < Z3 < 1, as we expected. The dashed
lines in these figures represent approximate solutions of the set (53)–(56), as
described below.
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Fig. 3. The dependence of κ in units of m (upper plot) and of power β (lower
plot) on the parameter ζ. The dashed line corresponds to approximated solutions
defined by equations (58)–(61). The gauge parameter is chosen as λR = 0.3.

In the weak coupling regime, assuming that we do not choose the gauge
parameter λR approaching zero (but still to be less than 1/2), the equations
may be given the following approximated form

δm

m
=

ζ

2

[
1

λR
− 6m2

κ2

]
, (58)

1 =
ζ

2

[
3

4β

(
1

λR
− 2

)
− 12m2

κ2

]
, (59)

Z3 = 1− 2ζ

3
, (60)

κ2

m2
=

15

ζ
. (61)
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Fig. 4. The dependence of mass renormalization δm in units of m (upper plot) and
charge renormalization constant Z3 (lower plot) on the parameter ζ. The dashed
line corresponds to approximated solutions defined by equations (58)–(61). In the
upper plot, the dashed line is almost identical with the solid one and, therefore, it
is not visible. The gauge parameter is chosen as λR = 0.3.

The terms m2/κ2 in the first two equations arise from the expansion of I1
and I3 for large κ2 but, in fact, they may be omitted, since they are of the
order of ζ, as results from the last equation. As already told, the solutions
of these simplified equations are drawn in Figs. 3 and 4 as dashed lines. In
the plots for κ and δm, these curves are not visible since they are almost
identical with the full solutions, but also on the other two they do not deviate
from the ‘exact’ results too much.

From (59), we see that the exponent β in this approximation may be
written as

β =
3ζ

8

(
1

λR
− 2

)
, (62)

which means that λR = 1/2 is a kind of the Yennie gauge.
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It is interesting to observe if and how the values of the parameters depend
on the gauge. This is shown in Figs. 5 and 6 which are performed for the
following values from the range [0, 1/2]: λR = 0.1, 0.2, 0.3, 0.5. The
Landau gauge cannot be used because it would lead to negative value of β.

0.1 0.2 0.3 0.4
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0.2

0.5

0.8

Β

0.1 0.2 0.3 0.4

Ζ

10

20

30

Κ

Fig. 5. The comparison of the behavior of κ (upper plot) and parameter β (lower
plot) for different values of gauge parameter: dotted line — λR = 0.1, dashed line
— λR = 0.2, solid line — λR = 0.3, mixed line — λR = 0.5 (the Yennie gauge).
The plots of κ for various gauges follow almost the same curve.

The particular stress deserves the observation that the gauge dependence
of the parameter κ is extremely weak. This means that the renormalized
gauge boson propagator (strictly speaking its transverse part) is practically
gauge independent, as it should be. Please note that in other approxima-
tion schemes applied to the DS equations in QED3 one obtains the gauge
dependent value of the polarization scalar [16].

The dependence of Z3 on λR is relatively weak for small ζ too. These
results are worth noticing, since the full gauge independence should appear
in the exact theory, and one ought not to expect too much from the approx-
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Fig. 6. The comparison of the behavior of fermion mass renormalization δm (upper
plot) and gauge field renormalization constant Z3 (lower plot) for different vales of
gauge parameter: dotted line — λR = 0.1, dashed line — λR = 0.2, solid line —
λR = 0.3, mixed line — λR = 0.5 (the Yennie gauge).

imated model, where infrared forms of Green’s functions are postulated in a
simple form. Gauge dependence of the ‘physical’ fermion mass obtained in
our work is relatively strong but it is a common feature of nonperturbative
calculations in this model [6, 7, 21].
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