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The one-dimensional attractive Hubbard model (U � 0) is discussed
assuming periodic boundary conditions and the half-filling case. The con-
sidered chains have N nodes, the same number of electrons, where N − 1
of them have the same spin projection. The discussed translational and
unitary symmetries provide the exact diagonalization of the Hamiltonian
for even N < 7 via various applications of the unitary group.
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1. Introduction

The Hubbard model derived in [1], and independently by Gutzwiller
in [2, 3] and Kanamori in [4], is based on the tight-binding approximation.
The model is one of the simplest with main aspects of the physical image
of interacting electrons in the crystal. The electrons occupying the atoms
can move between them by the so-called hopping during conduction and
provide electron bands in a crystal. In spite of a substantial simplification
of the model compared to the real physical situation of interacting electrons
in a crystal, obtained results may explain the insulating, magnetic, and even
superconducting effects in a solid. The Hubbard model has been impor-
tant for understanding of many sophisticated, physical problems like ferro-
magnetism, antiferromagnetism, the Mott transition, high-temperature su-
perconductivity, the Bose–Einstein condensate in cold optical lattice
[5–7], etc. Despite its apparently simple structure, the exact solution ex-
ists only for one spatial dimension, given in year 1968 by Lieb and Wu [8],
by using the method of Yang [9], and [10] from the year after, and is not
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easy to analyse. In general, there are several approximation techniques,
among the others mean field-theory, various Green’s function decoupling
schemes and functional methods. We continue the work with one spatial
dimension, which is of much importance for its possible generalizations to
higher dimensions, and as the exactly solvable model [11, 12]. In addition,
the one-dimensional case may become more important due to its possible
applications in intensively studied carbon nanotubes [13], one-dimensional
organic superconductors [14], or one-dimensional organic ferromagnet [15].
There is also possibility of modelling the one-dimensional Hubbard model of
fermionic quantum gas loaded into an optical lattice [16], which is a promis-
ing candidate for quantum information processing.

2. The Hamiltonian and its symmetries

The dynamics of the finite set of interacting electrons, occupying the one-
dimensional chain, consisting of N atoms, can be described by the Hubbard
Hamiltonian in the following form

Ĥ = t
∑
i∈2̃

∑
j∈Ñ

(
â†jiâj+1i + â†j+1iâji

)
+ U

∑
j∈Ñ

n̂j +n̂j − , (1)

where Ñ = {j = 1, 2, . . . , N} denotes the set of atoms of the chain, 2̃ = {i =

+,−}, n̂ji = â†jiâji, and finally â†ji , âji are the canonical Fermi operators,
that is creation and annihilation operators of electron of spin i, on the site j.
One can observe that electrons behave as waves in the first component of
the Hamiltonian (1), while they behave as particles in the second one, with
the assumption of the occurrence of electron–electron interaction with the
characteristic constant interaction denoted by U [17]. In general, U can be
of any value, with U < 0 (U � 0 — the case presented in this article)
and U > 0 (U � 0 [18, 19]) being responsible for attraction and repulsion,
respectively, and U = 0 standing for no effect or plain gas of fermions.

The single-node space hj has the basis consisting of n vectors denoting
all possible occupations of one node, since we are dealing with fermions

dimhj = n = 4 , hj = lcC{±, ∅,+,−} , (2)

where ∅ denotes the empty node, + and − stand for one-node spin projection
equal to 1

2 and −1
2 , respectively, ± denotes the double occupation of the one

node by two electrons with different spin projections, and lcCA stands for
the linear closure of a set A over the complex field C. One can obtain the
final Hilbert space H of all quantum states of the system in the following
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way

H =
N∏
j=1

⊗ hj , H =
2N∑
Ne=0

⊕ HNe , (3)

where HNe denotes the space with fixed number of electrons Ne. The set of
all linearly independent vectors called electron configurations [20] provides
the initial, orthonormal basis of the Hilbert space H. These configurations
are defined by the following mapping

f : Ñ −→ 4̃ , 4̃ = {±, ∅,+,−} , (4)

and constitute the N -sequences of the elements from the set 4̃

|f〉 = |f(1)f(2) . . . f(N)〉 = |i1i2 . . . iN 〉 , ij ∈ 4̃ , j ∈ Ñ , (5)

with

4̃Ñ =
{
f : Ñ −→ 4̃

}
, (6)

H = lcC 4̃Ñ . (7)

The one-dimensional Hubbard model has many symmetries, systematically
studied by many researchers, starting from Lieb and Wu [8], Yang [9] and
continued in, inter alia, Refs. [17, 21, 22], with the book of Essler et al. being
the eminent summary and supplement of their work [23]. Since the periodic
boundary condition are assumed, the Hamiltonian (1) has the obvious trans-
lational symmetry (âN+1i = â1i), this means that one-particle Hamiltonian
of the form (1) is completely diagonalized by a Fourier transformation. Apart
from the cyclic symmetry, system reveals, among others, two independent
SU(2) symmetries [23, 24], that is SU(2) × SU(2), in spin and pseudospin
space [25]. This symmetry involves spin and charge degrees of freedom, thus,
one has two sets of generators, {Ŝz, Ŝ+, Ŝ−} and {Ĵz, Ĵ+, Ĵ−}, for spin and
charge, respectively. These generators can be written in the following forms

Ŝz = 1
2

∑
j∈Ñ

(
â†j+âj+ − â

†
j−âj−

)
, Ŝ+ = Ŝ†− =

∑
j∈Ñ

â†j+âj− , (8)

Ĵz = 1
2

∑
j∈Ñ

(
â†j+âj+ + â†j−âj− − 1

)
, Ĵ+ =

∑
j∈Ñ

(−1)j â†j+â
†
j− ,

Ĵ− =
∑
j∈Ñ

(−1)j âj+âj− (9)

and the transfer between these two sets is known as the Shiba transforma-
tion [8, 23].
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3. Exact diagonalization

The action A : ΣN × 4̃Ñ −→ 4̃Ñ of the symmetric group ΣN on the
set 4̃Ñ provides orbits Oµ of the group ΣN labelled by the weight µ, which
is a sequence of non-negative integers µ = (µ1, µ2, µ3, µ4), with relation∑

i∈4̃ µi = N , defined by the following equation

µi =
∣∣∣{ij = i | j ∈ Ñ

}∣∣∣ , i ∈ 4̃ . (10)

From now on, we confine our considerations only to the case of U � 0, and
to the half-filling magnetic rings, that is with N nodes occupied by Ne = N
electrons, including N −1 electrons with the same spin projection. Since we
are dealing with U � 0, the set of electron configurations no longer contains
the elements with two atoms singly occupied by opposite spin projection
(unpaired spins). Thus, the weights belong to the set

{(1, 1, N − 2, 0), (1, 1, 0, N − 2)} . (11)

Since the numbers of up- and down-spin electrons are separately conserved,
the matrix representation of the Hamiltonian (1), within the postulated
set (11), gets reduced to the sectors characterized by elements of the subset

{(N − 1, 1), (1, N − 1)} (12)

of the Cartesian product N+ × N−, where N+ and N− denote the number
of electrons with the spin projection equal to 1

2 and −1
2 , respectively. We

proceed with the total magnetization M = N
2 − 1, and with the initial basis

given by Table I, where f i denotes the initial electron configuration of the
orbit Of i of the translational symmetry group CN , and F is the set of f i
differing from each other by transposition of the elements ± and ∅. As we
consider the case of U � 0 — the nodes with the − alone will never appear.

The first step in the process of diagonalization of the system Hamiltonian
is application of the so-called basis of wavelets [26] i.e. Fourier transform
on the orbits Of i of the group CN , as the aftermath of the translational
symmetry of the magnetic ring. The appropriate amplitude takes the form∣∣k, f i〉 =

1√
N

∑
j∈Ñ

ei2πkj/N
∣∣fj , f i〉 , (13)

where |fj , f i〉 denotes the jth electron configuration of the orbit Of i , and
the quasi-momentum k ∈ B, with

B = {k = 0,±1,±2, . . . ,

{
±(N/2− 1) , N/2 for N even
±(N − 1)/2 , for N odd

}
. (14)
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TABLE I

The decomposition of the set of electron configurations, for the case of µ =
(1, 1, 4, 0), and U � 0 into orbits Of i of the translational symmetry group C6.

i M µ f i Of i

1 2 (1, 1, 4, 0) | ± ∅+ + + +〉 | ± ∅+ + + +〉
|+±∅+ + +〉
|+ +± ∅+ +〉
|+ + +±∅+〉
|+ + + +± ∅〉
| ∅+ + + +±〉

2 | ∅ ±+ + + +〉 | ∅ ±+ + + +〉
|+ ∅ ±+ + +〉
|+ + ∅ ±+ +〉
|+ + + ∅ ±+〉
|+ + + + ∅±〉
| ±+ + + + ∅〉

3 | ±+ ∅+ + +〉 | ±+ ∅+ + +〉
|+±+ ∅+ +〉
|+ +±+ ∅+〉
|+ + +±+ ∅〉
| ∅+ + +±+〉
|+ ∅+ + +±〉

4 | ∅+±+ + +〉 | ∅+±+ + +〉
|+ ∅+±+ +〉
|+ + ∅+±+〉
|+ + + ∅+±〉
| ±+ + + ∅+〉
|+±+ + + ∅〉

5 | ±+ + ∅+ +〉 | ±+ + ∅+ +〉
|+±+ + ∅+〉
|+ +±+ + ∅〉
| ∅+ +±+ +〉
|+ ∅+ +±+〉
|+ + ∅+ +±〉

The representation of the Hamiltonian in the basis of wavelets includes the
complex elements. To get rid of them, one can use the gauge transformation,
as the second step of the procedure of the exact diagonalization, by adding
to the amplitude (13) the additional phase as follows
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∣∣k, f i, F〉 =
1√
N
eiπkt±∅/N

∑
j∈Ñ

ei2πkj/N
∣∣fj , f i〉 , (15)

where t±∅ denotes the distance between the elements ± and ∅ in the initial
electron configuration f i, equal to the number of singly occupied nodes be-
tween them plus 1. The transformation (15) constitutes the local gauge field
dependent on the quasi-momentum k and the parameter t±∅ characterizing
the set F . The example of the representation of the Hamiltonian for the
case N = 6, Ne = 6, N+ = 5, k = 1 in the gauged basis of wavelets takes
the form

Ȟ =



U 0 −
√

3 t 0 0

0 U 0 −
√

3 t 0

−
√

3 t 0 U 0 −
√

3 t

0 −
√

3 t 0 U
√

3 t

0 0 −
√

3 t
√

3 t U


. (16)

The third step in the diagonalization procedure of the Hamiltonian is tak-
ing into account the SU(2) × I symmetry in the pseudo-spin space, where
I denotes the identity element of the group SU(2), since the singly occu-
pied atoms have the same spin projection. The appropriate amplitude con-
structed on the gauged basis of wavelets (15) is

|F, k, J, Jz〉 =
1√
|F |

∑
g∈(SU(2)×I)

Γ (g) g
∣∣k, f i, F〉 , (17)

and will be called spin basis, where Γ (g) marks the irreducible representation
of the group SU(2) [25], and |F | denotes the cardinality of the set F . The
physical meaning of this symmetry is the decoupling of the spin and charge
degrees of freedom related with the elementary excitations of the Luttinger
liquid [27] called spinons and holons, respectively. The matrix (16) after the
appropriate change of basis (17) transforms into

Ȟ =



U −
√

3 t 0 0 0

−
√

3 t U 0 0 0

0 0 U 0 −
√

2
√

3 t

0 0 0 U −
√

3 t

0 0 −
√

2
√

3 t −
√

3 t U


. (18)
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The diagonalization procedure for even N < 7 within the blocks with fixed
k, J , Jz provides the eigenstates given as the irreducible basis of another
SU(2) group, possible to obtain by the Kostka matrices at the level of basis
for n = 2, and µ = {µ1, µ2} = {N − 1, 1} [28]. This kind of symmetry ends
the process of exact diagonalization. For the case of N = 6, k = 1, the
representation of the Hamiltonian takes the form

Ȟ =



U −
√

3 t 0 0 0 0

0 U +
√

3 t 0 0 0

0 0 U − 3 t 0 0

0 0 0 U + 3 t 0

0 0 0 0 U


. (19)

4. Conclusions

In the present paper, we gave the description of the one-dimensional Hub-
bard model for the chains with N atoms, the same number of electrons, and
N − 1 of them with the spin projection equal to 1

2 . After the decomposition
of the set of electron configurations into orbits Of i of the cyclic symmetry
group C6, we presented the quasidiagonal form of the Hubbard Hamiltonian
on the example of N = 6, Ne = 6, N+ = 5, k = 1 using the irreducible ba-
sis, adapted to the assumed translational symmetry. The appropriate gauge
transformation removes the complex elements from the representation of the
Hamiltonian. Next, we present, on the example of N = 6, the double action
of the unitary group SU(2) ending the process of the exact diagonalization.
Rotational symmetry within the spinless part of the magnetic ring provides
the quantum numbers J and Jz, whereas S = M = 2 for all cases. The
group SU(2) manifests itself for even N < 7 for the second time within
each of SU(2)× I symmetrized parts of the wave function and leads to the
appropriate transformation of amplitudes (17). The eigenstates are simply
identified as given by the Kostka matrices at the level of basis for n = 2,
and µ = {µ1, µ2} = {N − 1, 1}. Adjusting the appropriate irreducible rep-
resentations of SU(2) for any N , as well as the physical meaning of the last
transformation and its possible applications in more general cases are still
the open questions.
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