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In this empirical paper, we design a dynamic Kalman filtering approach
to investigate time-varying relationship between spot and futures equity
markets. In addition to static bounds test from statistics, we revisit the
econophysics discipline, and set up a dynamic Kalman filtering process that
provides an iterative process for parameter estimation. The methodology is
practically tested with a growing futures market in Turkey in the crisis pe-
riod. Results of empirical evidence show that the prices of futures contracts
can be predicted by spot prices indicating that the markets have not got in-
formation efficiency yet. The methodology based on econophysics discipline
in the paper can be applied in other financial markets and macroeconomic
indicators to detect time varying dynamic relationship between economic
and financial variables.
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1. Motivation

The Kalman filter is a discrete, recursive linear filter to arrive at a con-
ditional density function of the unobservable using the Bayes’ Theorem [1].
The filter separates a time-series into two components as “signal” and “noise”.
It is assumed that there is a smooth trend line within the time series which
represents the fundamental value of the price before it is perturbed by “mar-
ket noise”. The filter uses the current observation to predict the next period’s
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value of unobservable and then uses the realization next period to update
that forecast. As a recursive algorithm, it allows to upgrade model estimates
using new information.

Though the Kalman filter was originally developed by Kalman in en-
gineering field [2], it has been gaining popularity with other econophysics
methodologies such as multi-fractal analysis and wavelet transformations ap-
plied in finance and economics. The preliminary application of the Kalman
filtering in econophysics was based on defining unobservable parameters and
state variables to predict financial time series. After successful implementa-
tion of Hamilton [3] and Harvey [4], the Kalman filter has been especially
used for detecting regime switches in financial markets. In this empirical
paper, we design an econophysics process via dynamic Kalman filtering to
predict the prices of futures index contracts from their spot prices in Turk-
ish equity markets. Though Turkish futures index contracts were started to
trade in the beginning of 2005, the volume of the futures market has dra-
matically grown and is currently more than the volume of the spot market.
The emerging Turkish futures markets, in that sense, present a valuable en-
vironment for empirical research on development of market efficiency, spot
and futures markets interaction, and detecting regime switches in the finan-
cial time series. As the Turkish futures market is a newly emerging market,
we think that it is worthy to examine if the prices in the futures market
are predictable using a recent methodology allowing volatility clustering.
The Kalman filter does not require that the deterministic dynamics have
stationary properties.

There are certain researches based on econophysics including wavelets,
multi-fractal analysis, time-varying copula, multi-scale causality and Markov
chain processes to examine the price patterns in the stock markets. How-
ever, examining in this article the causality between the spot and futures
markets with a dynamic Kalman filtering process is a contribution to the
econophysics literature. In the empirical study, the time series of the Is-
tanbul Stock Exchange National Index-30 (ISE-30 Index) along with time
to maturity are used to construct a time series of futures contracts. Then,
these futures prices are used to estimate the spot prices using the Kalman
filter. Comparison of the spot prices and Kalman estimated spot prices
shows how accurately the Kalman filter estimates the unobservable vari-
able. The empirical findings show that the futures prices can be successfully
predicted by their spot values using the Kalman filter in the Turkish stock
markets. Therefore, the futures stock market has not got informational ef-
ficiency though it has been within a growing trend.

The rest of the paper is constructed as follows. In the next part, a liter-
ature survey focusing on the application of the Kalman filter in predicting
financial time series is presented. Methodology and data used are overviewed
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in the third part. In that part, the Kalman filter is used, in particular, to
our research interest. The descriptive statistics of the spot and futures time
series are given in the same part. In the fourth part, the empirical findings
are discussed in terms of their theoretical and practical implications. The
fifth and the last part is the conclusion containing some suggestions for the
future researches.

2. Literature review

As this paper examines the prediction of futures index with its underlying
spot index using the Kalman filter, the literature review will include previous
research on both interaction between spot and futures markets and also
application of certain econophysics methods and the Kalman filtering in
financial time series prediction.

Futures prices reflect expectations of the market participants in addition
to the cost of carrying the position. The earlier researches on the relationship
between spot and futures prices mainly relied on the cost of carry model
[5–8]. The idea behind cost of carry model is based on the calculation of the
opportunity cost in holding the position.

The recent literature, on the other hand, has relied on the time-varying
dynamic models to analyze the interactions of price behaviours of the spot
and futures markets. Some researchers are based on pure statistical and
econometric processes. Routledge et al., for example, state that the corre-
lation between spot and futures prices might vary in time [9]. Najand uses
linear and non-linear ARCH models to examine the time-varying effect of
spot prices on futures [10]. He shows that EGARCH model, as a non-linear
one, performs better than the other ARCH models. Tang and Shieih em-
ploy non-linear FIGARCH (1,d,1) and HYGARCH (1,d,1) models to model
the futures index prices [11]. The research results show that the prediction
success of the non-linear models is better than the linear ones. The effects
of spot prices on futures prices or vice versa are examined in terms of the
question if there exists co-integration between them. The empirical evidence
shows that the spot and futures markets are cointegrated indicating that the
markets have informational efficiency [12–15].

On the other hand, apart from pure econometrics models, recently dy-
namic models based on econophysics discipline have been applied in finance
and economics. The current chaotic price behaviours in the financial mar-
kets have shown that the markets should be seen as dynamic organisms fed
by the new information arrived into the market place. As it is theoretically
accepted, the factor that changes the prices of the financial assets is the
new information being related to those assets. Recent empirical evidence
displays the fact that the prices in the financial markets have an asymmet-
ric adjustment process [16, 17]. Dynamic and complex structures of the
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financial markets have encouraged the researchers for interdisciplinary stud-
ies combining physics with financial economics. Successful implementations
of physics models into explanation of financial asset prices facilitated the
popularity of the econophysics.

The main econophysics methods in the literature are based on adap-
tation of multi-fractal analysis, copula models, wavelet transformation and
the Kalman filtering. For example, Oświęcimka et al. employs the multi-
fractal model of asset returns (MMAR) where multifractality is carried by
time deformation [18]. With inclusion of the Lux extension to MMAR, they
showed that the model reproduces relevant aspects of the market dynamics
in the Warsaw Stock Exchange. Oświęcimka et al. also investigate the frac-
tal characteristics of the positive and the negative changes of the German
DAX30 index by employing multifractal detrended fluctuation analysis. Af-
ter calculating the singularity spectra f(α), they show that returns of both
signs reveal multi-scaling, and conclude that a bear market is more persis-
tent than the bull market irrespective of the sign of fluctuations [19]. Cifter
and Ozun [20] tests the multi-scale capital asset pricing model (CAPM) in
the Istanbul Stock Exchange-30 Index by wavelets based on the variance
changing to the scale as a general risk indicator. They show that risk-return
maximization of some stocks can be optimized at a level of 32 days. Cifter
and Ozun also combine the wavelets with neural networks, and test whether
the EUR–USD parity has any timescale impacts on Turkish lira and Rus-
sian ruble. They conclude that Russian ruble is impacted from EUR–USD
parities in the long run based on wavelet network analysis [20]. Ozun and
Ozbakis adopt a non-parametric copula analysis to examine the return dis-
tribution for a portfolio including the SP-500 (the US) and Bovespa (Brazil)
stock markets. The results show that there exists a strong dependency in re-
turn distributions between two markets when non-parametric copula models
based on Kendall‘s To and Sperman‘s Ro are used [21]. Ozun et al. success-
fully apply Grassberger and Procaccia‘s method into finance to predict stock
returns in the Greek and Turkish stock markets. The estimations are based
on correlation and minimum embedding dimensions of the corresponding
strange attractor [22]. Recently, Ghosh et al. examines the time series for
gold price from 1973 and detects degree of multifractality in the prices [23].
For a comprehensive and updated econophysics literature, the researchers
can visit [24]. The Kalman filtering as another application of physics into
finance discipline sees the markets as dynamic organisms and presents adap-
tive filtering for price adjustment process. When applying the Kalman filter
in predicting returns, it is assumed that there is a smooth trend in the time
series of the prices that inherent the real value of the price before it was
perturbed by noise. By fitting the last few trend-line values to a suitable
model, it is extended to the next time-value to reach a prediction.
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The filter uses the current observation to predict the next periods value
of unobservable and then uses the realisation next period to update that
forecast. Cheung derives the Kalman filter algorithm for the state space
model [25]. Harvey compares the Kalman filter approach to other estima-
tion procedures, and concludes that it generates estimated parameters with
better statistical properties in terms of efficiency and forecasting [26].

The Kalman filter started to be used to model the price behaviours in
financial markets after its successful application to the engineering. Wells
employs the Kalman technique to estimate beta parameters of the stocks
traded in the Stockholm Stock Exchange [27]. Faff et al., and Godbey and
Hilliard successfully employ the Kalman filter to analyze the spot and futures
markets interaction for different financial instruments [28, 29]. Arnold et al.
have recently created an excel-based model to derive future prices from their
spot prices. In the model, they show how the Kalman filter is combined with
Expectation Maximization using an excel-based platform [30]. We use that
combined model to predict future stock index using their underlying spot
prices.

Before concluding the survey, it should be emphasized that the academic
research on the price patterns in the futures markets in Turkey is scarce as
it is newly growing market opened in 2005. Baklaci examines the volatility
effects of futures prices of exchange rates on the spot prices and concludes
that futures prices have structural change effects on the spot markets [31].
Baklaci argues that as the information is reflected on the futures prices more
rapidly, the futures markets have a leading role in the price dynamics within
the exchange rate markets. Ozun and Turk successfully use a stochastic
process model set up [32] by Borovkova and Geman [33] to analyze the fu-
tures prices in the Turkish stock and exchange rate markets. In addition, the
authors examine factor components of the futures prices by PCA factor load-
ings. That first academic work using data from the Turkish equity futures
markets shows that the futures markets do not follow random walk process
and have informational inefficiency as there exist arbitrage opportunities.
What is more, in the literature, there are not any econophysics methods
that examine the futures markets in Turkey. In this respect, this research
article contributes also into applied finance as being the first research on
econophysics application for futures markets in Turkey.

3. Data and methodology

3.1. Data and unit root tests

The study uses daily time series of spot and futures prices of ISE30 100
from January 2, 2009 to August 6, 2012. The period includes the global crisis
environment with high volatility. Spot and future prices of ISE30 are mea-
sured in natural logarithms similar to the empirical literature and natural
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logarithms of spot and future prices are denoted as LS and LF respectively.
Most of the studies in the literature investigate the relationship between spot
and forward prices by employing co-integration and ARDL model assuming
a static link. We distinguish our analysis from the existing literature by
employing the Kalman filter to depict the time varying interaction between
spot and forward prices.

In empirical analysis firstly, we investigate stationarity characteristics
of the series. Investigating stationarity with conventional unit root tests
does not consider the structural breaks. Our sample periods include shortly
after the global financial crises period and structural breaks that could affect
stationarity properties of our variables. In order to solve this problem, we
employ both conventional unit root tests including ADF, PP and Ng–Perron
tests and unit root tests with structural breaks including Zivot–Andrews test
and Lee and Strazitch tests [34–38].

After stationarity check, we investigate the existence of the long term
co-integration relationship between variables employing the bounds test de-
veloped by Pesaran et al. [39]. The bounds test approach has advantages of
investigating co-integration relationship irrespective of whether the regres-
sors are purely I(0) or I(1). In the bounds test, the existence of co-integration
between spot and futures prices can be captured regardless of their station-
arity levels. In that sense, it has superiority over the co-integration tests
performed by Engle and Granger, Johansen and Johansen and Juselius [40].
Furthermore, the bounds test co-integration approach has superior proper-
ties in small sample sizes to other co-integration approaches [41].

We investigate stationarity properties of series by employing both con-
ventional unit root tests including ADF, PP and Ng–Perron tests and unit
root tests with structural breaks including the Zivot–Andrews test with one-
break and Lee and Strazicich tests with two-breaks. Table I shows the results
of conventional stationary tests.

According to Table I for ADF and PP tests, the null hypothesis indicates
that the series include unit root. For both ADF and PP tests, the calculated
t-statistics for all variables are lower than the critical values. Thus, the null
hypothesis of unit root cannot be rejected; hence variables are non-stationary
in levels. The results of first differenced variables shows that the calculated
t-statistics both for ADF and PP tests are greater than critical values at 1%
levels and the all variables are stationary after differencing, suggesting that
all variables are integrated of order I(1) according to ADF and PP tests.
In addition, for Ng–Perron test, according to MZa, MZt tests, the null
hypothesis shows that the series have unit root and according to MSB and
MPT tests the null hypothesis shows that the series are stationary [42]. For
MZa, MZt tests, the calculated t-statistics are less and for MSB and MPT
tests the calculated t-statistics are greater than the critical values for all
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TABLE I

Conventional unit root test results.

ADF test results

LS −1.836 ∆LS −29.504*
LF −1.790 ∆LF −29.442*

ADF critical values for LS 1% = −3.437 ADF critical values for ∆LS 1% = −2.567
ADF critical values for LF 5% = −2.864 ADF critical values for ∆LF 5% = −1.941

PP test results

LS −1.834 ∆LS −29.509*
LF −1.788 ∆LF −29.443*

PP critical values for LS 1% = −3.437 PP critical values for ∆LS 1% = −2.567
PP critical values for LF 5% = −2.864 PP critical values for ∆LF 5% = −1.941

Ng–Perron test results

MZa MZt MSB MPT

LS −1.842 −0.888 0.482 44.462
LF −1.992 −0.930 0.466 41.641

∆LS −18.456** −3.395** 0.149** 4.135**
∆LF −20.683** −3.184** 0.153** 4.602**

Ng–Perron critical values for LS, LF, ∆LS and ∆LF series;
MZa, MZt, MSB, MPT, respectively;
1% significance level −23.80, −3.42, 0.14 and 4.03;
5% significance level for −17.30, −2.91, 0.17 and 5.48;
* denotes 1% significance level, ** denotes 5% significance level.

variables suggesting that LS and LF are non-stationary in their level forms.
For the first differenced series, according to MZa, MZt tests, the calculated
t-statistics are greater and for MSB and MPT tests the calculated t-statistics
are lower than the critical values at 5% levels for all variables, suggesting
that our series become stationary after differencing so that LS and LF series
are I(1) according to Ng–Perron tests. The results of unit root tests with
structural breaks are presented in Table II.

According to both the Zivot–Andrews and Lee–Strazicich tests, the null
hypothesis shows that the series have unit root. For both the Zivot–Andrews
and Lee–Strazicich tests, the calculated t-statistics for LS and LF variables
are lower than the critical values in their level forms and greater than the
critical values in their first difference at 5% significance levels. Moreover,
both the Zivot–Andrews and Lee–Strazicich tests suggest that LS and LF
variables become stationary after differencing, suggesting LS and LF series
are I(1). In sum, both conventional unit root tests and unit root tests with
structural breaks indicate that all the series used in the empirical analysis
are integrated of order I(1).



1936 H.M. Ertugrul, A. Ozun

TABLE II

Unit root tests with structural breaks.

Zivot–Andrews test

Level First difference

Model A Model C Model A Model C

LS −1.63 −2.60 −30.91* −31.10*
LF −1.60 −2.57 −31.14* −31.39*

Critical value (5%) −4.80 −5.08 −4.80 −5.08

Lee–Strazitch test

Level First difference

Model A Model C Model A Model C

LS −1.88 −4.15 −8.16* −31.10*
LF −1.81 −4.08 −6.05* −31.17*

Critical value (5%) −3.84 −5.71 −3.84 −5.71

3.2. Methodology
3.2.1. Bounds test approach

Before employing the Kalman filter approach, we first examine co-inte-
gration between spot and futures markets by the bounds test developed by
Pesaran et al. [39] which has some superior properties explained above. In
order to perform the bounds test, an unrestricted error correction model
(UECM) should be created. UECM specification for our study is shown in
Eq. (1)

∆LFt = α0 +
m∑
i=1

α1,i∆LFt−i +
m∑
i=0

α2,i∆LSt−i

+α3LFt−1 + α4LSt−1 + µt , (1)

where, LS is log of spot prices and LF log of forward prices. In UECM model
in Eq. (1), m represents number of lags. For testing the existence of co-
integration relationship, the statistics underlying the procedure is the Wald
or F-statistics in a generalized Dickey–Fuller type regression, which is used
to test the significance of lagged levels of the variables under consideration in
a conditional UECM [41]. F-test is applied on first period lags of dependent
and independent variables to test the existence of co-integration relationship.

Null hypothesis for F-test is established as

H0 = α3 = α4 = 0
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for our study and calculated F-statistics is compared with table bottom and
upper critical levels in Pesaran et al. [39]. A lower than Pesaran bottom
critical value F-statistics suggests the absence of co-integration relationship
between the series. If the calculated F-statistics is between the bottom
and top critical values, no exact opinion can be made and there is a need
to apply supplementary co-integration tests [43]. Lastly, if the calculated
F-statistics is higher than the top critical value, there is a co-integration
relationship between the series [40]. The number of lags is determined ac-
cording to Schwarz criteria and lag number is found 11. After determining
lag number of UECM model, we investigate co-integration relationship. We
compared the computed F-statistics from UECM model with table bottom
and upper critical levels in Pesaran et al. [39]. Table III shows the bounds
test results.

TABLE III

Bounds test results. k is number of independent variable number in Eq. (1). Critical
values are taken from Table C1(iii), Pesaran et al. [39], p. 300.

K F-statistics Critical value at 5% significance level

Bottom bound Upper bound

1 7.27 4.94 5.73

According to Table III, F-statistics is higher than the upper bound of the
critical values, and the null hypothesis of no co-integration is rejected. As
a result, we found a significant long run co-integration relationship between
spot and forward prices according to the bounds test analysis.

Finally, we followed a dynamic approach by employing the Kalman filter
to depict the time varying interaction between spot and future prices. In
time varying parameter (TVP) models, the parameters are allowed to change
with each new observation [44].

3.2.2. State space form and dynamic Kalman filter approach

After static investigation of spot and forward price relationship, we fi-
nally examine this relationship dynamically by employing the Kalman filter
approach to depict time varying interaction between spot and forward prices.
A dynamic approach by employing the Kalman filter method based on re-
cursive estimation is used to detect the statistically significant relationship
between time series of spot and futures stock markets.

1 Serial correlation for UECM model investigated by employing the Breusch–Godfrey
serial correlation LM test and no serial correlation found in UECM model. Test
results can be taken from the authors.
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We base our dynamic approach on a classical reference of Harvey that
introduces the Kalman filter approach. The Kalman filter approach is based
on a form of state space representation. A linear state space of the dynamics
of an equation can be represented as

yt = ct + Ztαt + εt , (2)
αt+1 = dt + Ttαt + νt , (3)

where, in our case, αt is a 2 × 1 vector of unobserved state variables, where
ct, Zt, Tt, and dt are adaptable vectors and matrices, and where εt and
νt are vectors of mean zero, Gaussian disturbances. As stated in Eq. (3),
unobserved state vector αt is assumed to change over time as a first-order
vector auto-regression. The Kalman filter recursively estimates the param-
eters by updating the estimation with every additional observation. The
disturbance vectors εt and νt are assumed to be serially independent and
with contemporaneous variance structure

Γt = var

[
εt
νt

]
=

[
Ht Gt

G′t Qt

]
, (4)

where Ht and Qt are the variance matrices, and Gt is the covariance ma-
trix [45]. The mean and variance of the conditional distribution of the state
vector available at time is defined as

at|s ≡ Es(αt) , (5)

pt|s ≡ Es

[
(αt − αt|s) (αt − αt|s)

′ ] . (6)

Setting s = t− 1, we may obtain one step ahead mean and variance, at|t−1
and Pt|t−1 of the state αt. Here, at|t−1 is the mean square estimator of αt and
Pt|t−1 is the mean square error. The Kalman filter is a recursive algorithm
for sequentially updating the one step ahead estimate of the state mean and
variance given new information/observation. Given the one step ahead state
conditional mean, the one step ahead minimum mean square error estimate
of yt

ỹt = yt|t−1 ≡ Et−1(yt) = Eyt|at|t−1
= ctZtat|t−1 . (7)

The one step ahead, the prediction error is

ε̃t = εt|t−1 ≡ yt − ỹt|t−1 (8)

and the prediction error variance is defined as

F̃t = Ft|t−1 ≡ var(εt|t−1) = ZtPt|t−1Z
′
t +Ht . (9)
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Given that the initial values are specified, the Kalman filter may be used
to compute one step ahead of state and the associated mean and variance
matrix, thus, one step ahead prediction, prediction error and prediction
error variance [45]. The increasing number of updates enable αt and Pt to
converge to steady state. The steady state condition can be accessed via
maximizing the log likelihood function

logL(θ) = −nT
2

log 2π − 1

2

∑
t

log
[
F̃t(θ)

]
−1

2

∑
t

ε̃′t(θ)F̃t(θ)
−1ε̃t(θ) . (10)

The Kalman filter specification which employs level data is presented in
Eqs. (11) and (12) below

LFt = a0 + a1,tLSt + εt , (11)
ai,t = ai,t−1 + νi,t . (12)

4. Empirical evidence

The time-varying parameter (TVP) estimations for the Kalman filter
that used to analyzes the dynamic relationship between spot and futures
stock markets with level data are presented in Fig. 1.

Fig. 1. Parameter estimates for the Kalman filter approach with level data.
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The empirical evidence shows that the returns in futures market have
significant impacts on returns in spot market at ISE-30 under high volatil-
ity. The futures markets have an decreasing impact on spot markets in the
bearish market conditions. However, especially in recovery periods between
Q2/09–Q1/10, the futures markets have significant increasing effect on spot
market. In the market conditions where there exists a stable increasing
trend, the impact of futures markets on the spot markets remains at stable
magnitude.

In the empirical analysis, we also examine the volatility of futures mar-
kets on spot market prices by using differenced data. Therefore, the sec-
ond Kalman filter specification which employs first differenced data (growth
data) is presented in Eqs. (13) and (14).

∆LFt = a0 + a1,t∆LSt + εt , (13)
ai,t = ai,t−1 + νi,t . (14)

As presented in Fig. 2, the empirical results show similar results when dif-
ference data is employed.

Fig. 2. Parameter estimates for the Kalman filter approach with difference data.

Empirical evidence points out the fact that the returns in spot and fu-
tures markets are interacted. There exists a dynamic relationship between
spot and futures markets at ISE-30 Index. The causality is magnitude in
recovery and bullish markets. The practical results and implications of the
detected relationship is discussed in the next section.
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5. Conclusion

We have tried to investigate spot and forward price interaction of ISE30
100 for the period of January 2, 2009 to August 6, 2012. In the empirical
model, we firstly investigated stationarity properties of series employing both
conventional unit root tests and unit root tests with structural breaks and
according to all unit root tests, spot and futures prices series were found
I(1).

After investigating stationarity properties of series, we examined co-inte-
gration relationship between spot and forward prices employing the bounds
test approach developed by Pesaran et al. which has some advantages over
the conventional co-integration models. According to the bound test results,
we found a significant long run co-integration relationship between spot and
forward prices.

Finally, we investigated dynamic relationship between spot and forward
prices using a dynamic approach by employing the Kalman filter to depict
the time varying interaction between spot and future prices.

The Kalman filter results show that the returns in futures market have
significant impacts on returns in spot market at ISE-30 under high volatil-
ity. The futures markets have an decreasing impact on spot markets in the
bearish market conditions. However, especially in recovery periods between
Q2/09–Q1/10, the futures markets have significant increasing effect on spot
market. Moreover, the empirical evidence points out the fact that the re-
turns in spot and futures markets are interacted. There exists a significant
asymmetric causality relationship from futures markets to spot markets at
ISE-30. The causality is magnitude in recovery and bullish markets.

The findings are in line with the financial theory in that the futures mar-
ket is able to fulfil its function in directing the spot markets. The increasing
causality during the recovery periods can be interpreted that positive expec-
tations are reflected in the prices with stronger impact.

Another conclusion that can be driven from the empirical results is re-
lated to market efficiency. Since the spot and futures markets have sig-
nificant causality relationship, we can conclude there exists informational
efficiency in the Turkish equity markets. The methodology in the paper
could be applied in other markets for further researches in order to detect
time varying dynamic relationship between the spot and futures markets.
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