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We apply a simple transformation method to construct a set of new
exactly solvable potentials (ESP) which gives rise to bound state solution
of the D-dimensional Schrödinger equation. The important property of
such exactly solvable quantum systems is that their normalized eigenfunc-
tions can be written in terms of recently introduced exceptional orthogonal
polynomials (EOP).
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1. Introduction

The exact solutions of fundamental dynamical equations are important
in different areas of physics and chemistry. Researchers always try to find a
new exact solution of Schrödinger equation as it is possible only for a few
potentials. Also, exactly solvable potentials are essential for the successful
implementation of approximate methods in the study of practical quantum
systems.

Since the early days of quantum mechanics, classical orthogonal poly-
nomials (COP) such as Laguerre, Legendre, Jacobi, Hermite etc. play an
important role, as the bound state eigenfunctions are expressible in terms of
these polynomials. The factorization method [1, 2] initiated by Schrödinger
is the pioneering work in this regard. Thereafter, researchers employed
various methods e.g. the point canonical transformation (PCT) method
[3–5], the supersymmetric (SUSY) method [6, 7], the Nikiforov–Uvarov (NU)
method [8–10], the Extended Transformation (ET) method [11, 12], the
asymptotic iteration method (AIM) [13], the new exact quantization rule [14],
the Laplace transforms method [15], the path integral method [16] etc. to
solve the Schrödinger equation analytically and they used COPs to express
the bound state eigenfunctions.

(15)
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In a recent advancement in the field of mathematics and physics, two
new families of exceptional orthogonal polynomials, L̂αn(x) and P̂

(α,β)
n (x),

n = 1, 2, 3 . . . have been introduced [17, 18]. The use of these polynomials
in constructing new ESPs [19, 20] has already drawn attention in quantum
mechanics. In this paper, we use a simple transformation method [21] to
construct four new exactly solvable extended potentials using the properties
of EOPs. These potentials are “extended” in the sense that they can be
expressed in terms of some well-known exactly solvable potentials and a few
additional rational terms.

The paper is organized as follows. In Section 2, we present a brief
overview of the transformation method. The construction of new ESPs
using the properties of EOPs is given in detail in Section 3. Conclusions
and discussions are covered in Section 4.

2. The transformation method

We consider a second order linear differential equation satisfied by a
special function Q(r) [21]

Q′′(r) +M(r)Q′(r) + J(r)Q(r) = 0 , (1)

where a prime denotes differentiation with respect to its argument. Q(r)
will later be identified as one of the orthogonal polynomials.

The transformation method comprises of the following two steps

r → g(r) , (2)
ψ(r) = f−1(r)Q(g(r)) . (3)

We implement the above prescription to equation (1) and obtain

ψ′′(r) +

(
d

dr
ln
f2(r) exp(

∫
M(g)dg)

g′(r)

)
ψ′(r)

+

(
f ′′(r)

f(r)
− g′′(r)

g′(r)

f ′(r)

f(r)
+ g′(r)M(g)

f ′(r)

f(r)
+ g′2J(g)

)
ψ(r) = 0 . (4)

The radial Schrödinger equation in D-dimensional Euclidean space is (~ =
1 = 2m)

ψ′′(r) +
(D − 1)

r
ψ′(r) +

(
En − V (r)− `(`+D − 2)

r2

)
ψ(r) = 0 . (5)

Consistency of equations (4) and (5) demand that

d

dr
ln
f2(r) exp(

∫
M(g)dg)

g′(r)
=

(D − 1)

r
(6)
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which fixes the form of f(r) as

f(r) = Nr
(D−1)

2 g′
1
2

(
exp

(
−
∫
M(g)dg

)) 1
2

, (7)

where N is the integration constant and plays the role of the normalization
constant of the wavefunctions.

Using (6) and (7) in equation (4) yields

ψ′′(r)

ψ(r)
+

(D − 1)

r

ψ′(r)

ψ(r)
= −1

2
{g, r}+ g′2(r)

4

[
M2(g) + 2M ′(g)− 4J(g)

]
−(D − 1)(D − 3)

4r2
, (8)

where the Schwartzian derivative symbol [22], {g, r}, is defined as

{g, r} = g′′′(r)

g′(r)
− 3

2

g′′2(r)

g′2(r)
.

From equations (3) and (7), the expression for normalizable wavefunction is

ψ(r) = Nr−
(D−1)

2 g′−
1
2

(
exp

(∫
M(g)dg

)) 1
2

Q(g(r)) . (9)

The radial wavefunction ψ(r) = u(r)
r has to satisfy the boundary condition

u(r) = 0, in order to rule out singular solutions [23].
Expression (8) can be cast in the standard Schrödinger equation form

(equation (5)) if we can write

−(En − V (r)) = −1

2
{g, r}+ g′2(r)

4

[
M2(g) + 2M ′(g)− 4J(g)

]
−(D − 1)(D − 3)

4r2
. (10)

Once we choose a particular orthogonal polynomial Q(g) to construct an
exact solution of the Schrödinger equation, the characteristic functions of
the polynomial M(g), J(g) get specified. We have to choose one or more
than one terms containing the function g(r) in expression (10) and put it
equal to a constant to get the energy eigenvalues En. In our recent paper [21],
we have identified Q(g) as one of the COPs and constructed many new ESPs.
In this paper, we identify Q(g) as the extended Laguerre polynomial L̂αn(x)
and also as the extended Jacobi polynomial P̂ (α,β)

n (x) and try to construct
ESPs associated with them.
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3. Construction of ESPs from exceptional orthogonal polynomials

One of the significant properties of Laguerre or Jacobi type X1 EOPs is
that they start with a linear polynomial, unlike the COPs which start with a
constant, and still form an orthogonal and complete set with respect to some
positive-definite measure. Their properties are given in detail in [17, 18] (see
Appendix A).

3.1. Construction of ESPs from Laguerre EOPs

Identifying

Q(g(r)) = L̂αn(g) (11)

as the exceptional Laguerre polynomial, its characteristic functions M(g)
and J(g) are

M(g) = −(g − α)(g − α+ 1)

g(g + α)
, (12)

J(g) =
1

g

(
g − α
g + α

+ n− 1

)
. (13)

Using equations (12) and (13) in equation (8), we obtain

ψ′′(r)

ψ(r)
+

(D − 1)

r

ψ′(r)

ψ(r)
= −(α2 + 2αn− α+ 2)

2α

g′2

g
+

(α+ 1)(α− 1)

4

g′2

g2

+
1

4
g′2 +

1

α

g′2

(g + α)
+ 2

g′2

(g + α)2
− 1

2
{g, r} − (D − 1)(D − 3)

4r2
, (14)

and using equations (11) and (12) in (9) yields

ψ(r) = Nr−
(D−1)

2 g′−
1
2
g
α+1
2

(g + α)
exp

(
−g
2

)
L̂αn(g(r)) . (15)

To convert equation (14) into a standard stationary state Schrödinger equa-
tion, we make one or more terms of the right-hand side of equation (14) a
constant quantity. This enables us to get the energy eigenvalues En, the
functional form of g(r) and subsequently potential V (r), and the wavefunc-
tion ψ(r).

(i) Let us choose

g′2

g
= p21 , (16)
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where p21 is a real positive constant. The functional form of g(r) is

g(r) = 1
4p

2
1r

2 . (17)

Equations (10), (14) and (15) then yield

En =
p21
2
(2n+ α− 1) , (18)

V (r) =
1

16
p41r

2 +

(
(α+ 1)(α− 1) +

3

4
− (D − 1)(D − 3)

4

)
1

r2

+
4p21

(p21r
2 + 4α)

− 32p21α

(p21r
2 + 4α)2

, (19)

and

ψn,`(r) = N
rα−

(D−2)
2

(p21r
2 + 4α)

e−
1
8
p21r

2
L̂αn

(
1

4
p21r

2

)
. (20)

To get the correct form of centrifugal barrier term in D-dimensional Eu-
clidean space, we have to identify the coefficient of 1

r2
in potential term (19)

to be `(`+D − 2) [21], which fixes the value of α as

α = `+
D − 2

2
. (21)

For three dimensional case (D = 3), let p21 = 2ω and n = m + 1. From
expressions (18) and (19), we get the energy eigenvalues and potential as

Em = ω

(
2m+ `+

3

2

)
; m = 0, 1, 2, . . . (22)

V (r) = V1(r) + V2(r) , (23)

where

V1(r) =
1

4
ω2r2 +

`(`+ 1)

r2
(24)

and

V2(r) =
4ω

(ωr2 + 2`+ 1)
− 8ω(2`+ 1)

(ωr2 + 2`+ 1)2
(25)

for ω > 0 and ` = 0, 1, 2, . . .
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V (r) is a well-behaved ‘extended potential’ as it incorporates some ad-
ditional rational terms to the standard radial oscillator potential V1(r) (see
Appendix B). It is clear from equation (22) that the extended potential has
the same energy spectrum as that of the standard one. The corresponding
normalized eigenfunctions can be written as

ψm,`(r) = Nm
r`

(ωr2 + 2`+ 1)
e−

1
4
ωr2L̂αm+1

(
1

2
ωr2
)
, (26)

where

Nm =

((
2

ω

)`− 3
2 m!(
m+ `+ 3

2

)
Γ
(
m+ `+ 1

2

)) 1
2

. (27)

(ii) Choosing g′2

g2
= p22, where p22 is a real positive constant independent

of r, we get the functional form of g(r) as

g(r) = e−p2r . (28)

To fulfill the normalizability condition, we consider here only the negative
sign in the exponential. Then equations (10) and (14) yield

Em = −1
4(2A− 2m− 1)2p22 , (29)

where n = m+ 1; m = 0, 1, 2, . . .

V (r) = V1(r) + V2(r)−
(D − 1)(D − 3)

4r2
(30)

with

V1(r) = p22
(
Be−p2r + 1

4e
−2p2r) (31)

and

V2(r) = p22

(
(B −A) e−2p2r

(e−2p2r + α)
+

2e−2p2r

(e−p2r + α)2

)
, (32)

where A and B are constants and are given as

α+ 2n− 1

2
= A ; A+

1

α
= −B . (33)

The function V1(r) defines a Morse-like potential [4, 24] (see Appendix B).
So, V (r) is an extended Morse potential with the same energy spectrum (29)
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as that of Morse potential. It is interesting to note that the potential given
by expression (30) is non-power law and, as our formalism suggests, it has
an inverse square potential term in spaces where the dimensionality is other
than 1 and 3 [21]. The wavefunctions of the quantum system can be writ-
ten as

ψm,`=0(r) = Nmr
− (D−1)

2
e−

1
2
αp2r

(e−p2r + α)
exp

(
−1

2
e−p2r

)
L̂αm+1(e

−p2r) , (34)

where normalization constant Nm is given by

Nm =

(
m!

(2A−m)Γ (2A−m− 1)

) 1
2

. (35)

3.2. Construction of ESPs from Jacobi EOPs

Identifying

Q(g(r)) = P̂ (α,β)
n (g) (36)

as the Jacobi-type X1 polynomial, n = 1, 2, 3, . . . and α, β > −1, α 6= β
[17, 18]. Its characteristic functions are

M(g) = −(β + α+ 2)g − (β − α)
1− g2

− 2(β − α)
(β − α)g − (β + α)

, (37)

J(g) = −(β − α)g − (n− 1)(n+ β + α)

1− g2
− (β − α)2

(β − α)g − (β + α)
. (38)

Using equations (37) and (38) in equation (8), we get

ψ′′(r)

ψ(r)
+
(D−1)
r

ψ′(r)

ψ(r)
=
(Cg+D1)g

′2

1−g2
+
(Eg+F )g′2

(1−g2)2
+

Gg′2

(β − α)g − (β + α)

+
Kg′2

[(β − α)g − (β + α)]2
− 1

2
{g, r} − (D − 1)(D − 3)

4r2
, (39)

where

C = −1

2

(β − α)(β + α)

βα
,

D1 = −n2 − (β + α− 1)n− 1

4

[
(β + α)2 − 2(β + α)− 4

]
− β2 + α2

2βα
,

E = −1

2
(β − α)(β + α) , F =

1

2
(β2 + α2 − 2) ,



22 N. Bhagawati

G = −(β − α)2(β + α)

2βα
, K = 2(β − α)2 ,

and equation (9) gives

ψ(r) = Nr−
(D−1)

2 g′−
1
2
(1− g)

1
2
(α+1)(1 + g)

1
2
(β+1)

[(β − α)g − (β + α)]
P̂ (α,β)
n (g) . (40)

(i) Let us choose

g′2

1− g2
= p2 , (41)

where p is a constant independent of r. We get the functional form of g(r) as

g(r) = sin pr . (42)

The parameter p can be set equal to 1 by rescaling the variable r. By
changing the parameters

α = A−B − 1
2 , β = A+B − 1

2

or

A = 1
2(β + α+ 1) , B = 1

2(β − α) ; n = m+ 1

we get the following results

Em = (m+A)2 , m = 0, 1, 2, . . . (43)

V (r) = V1(r) + V2(r)−
(D − 1)(D − 3)

4r2
, (44)

with

V1(r) =
[
A(A− 1) +B2

]
sec2 r −B(2A− 1) sec r tan r (45)

and

V2(r) =
2(2A− 1)

(2A− 1− 2B sin r)
−

2
[
(2A− 1)2 − 4B2

]
(2A− 1− 2B sin r)2

. (46)

V1(r) can be identified as Scarf I potential (see Appendix B). So, V (r) is an
extended potential with the same behavior as V1(r). Its wavefunctions can
be written as

ψm,`=0(r) = Nmr
− (D−1)

2
(1− sin r)

1
2
(A−B)(1 + sin r)

1
2
(A+B)

(2A− 1− 2B sin r)

×P̂ (A−B−
1
2
,A+B− 1

2)
m+1 (sin r) , (47)
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where

Nm=

(
m!(2m+2A)Γ (m+2A)

22A−2
(
m+A−B+ 1

2

)(
m+A+B+ 1

2

)
Γ
(
m+A−B− 1

2

)
Γ
(
m+A+B− 1

2

))1
2

.

(48)

(ii) By assuming

g′2

(1− g2)2
= c2 , (49)

where c2 is a real positive constant, we get

g(r) = tanh cr . (50)

Taking c = 1 and rearranging some parameters

m+A = P1 , B(2P1 − 2m− 1) = Q ,

we arrive at the following results

Em = −
(
P1 −m−

1

2

)2

− Q2/4(
P1 −m− 1

2

)2 , m = 0, 1, 2, . . . (51)

V (r) = V1(r) + V2(r) (52)

with

V1(r) = −
(
P 2
1 −

5

4

)
sech2 r −Q tanh r , (53)

V2(r) =
4
(
2− tanh2 r

)
(2 sinh r −Q1 cosh r)2

, (54)

where Q1 = (2P1−2m−1)2
Q . By looking at the energy spectrum and the form

of the potential V1(r) (see Appendix B), we can conclude that the overall
potential V (r) is an extended Rosen–Morse-like potential. Its normalized
wavefunctions can be written as

ψm,`=0(r) = Nmr
− (D−1)

2 (cosh r)
1
2

(1− tanh r)
λ
2 (1 + tanh r)

δ
2[

2Q
(2P1−2m−1) tanh r − (2P1 − 2m− 1)

]
×P̂ (λ−

1
2
,δ− 1

2)
m+1 (tanh r) , (55)
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where

λ = P1 −m−
Q

2P1 − 2m− 1
, δ = P1 −m+

Q

2P1 − 2m− 1
.

The normalization constant Nm is given by

Nm=

[
2P1m!Γ (2P1 −m)

22P1−2m−2
(
m+ λ+ 1

2

) (
m+ δ + 1

2

)
Γ
(
m+ λ− 1

2

)
Γ
(
m+ δ − 1

2

)] 1
2

.

(56)

4. Discussion and conclusion

In this paper, we have constructed four new exactly solvable quan-
tum mechanical potentials which give rise to bound state solutions of the
D-dimensional radial Schrödinger equation. To achieve this, we employed a
simple transformation method which comprises a co-ordinate transformation
followed by a functional transformation. The Laguerre or Jacobi type X1

exceptional orthogonal polynomials play an important role in constructing
extended exactly solvable potentials. While the extended radial oscillator
potential and the extended Scarf I potential have already been introduced
in [19], in this paper we have re-derived these potentials in theD-dimensional
Euclidean space. The extended Morse potential and the extended Rosen–
Morse potential are completely new and have not been covered in the liter-
ature so far.

The author is indebted to Prof. S.A.S. Ahmed for his valuable suggestions
on the subject and thanks the UGC-RFSMS, India for financial support.

Appendix A

Basic properties of Laguerre EOPs

The X1 Laguerre EOP, denoted by L̂αn(z); n = 1, 2, 3, . . . , α > 0, has the
following properties [17]:

L̂α1 (z) = −z − α− 1 , L̂α2 (z) = z2 − α(α+ 2), . . . , (A.1)(
z
d2

dz2
− z − α
z + α

[
(z + α+ 1)

d

dz
− 1

])
L̂αn(z) = −(n− 1)L̂αn(z) , (A.2)

∞∫
0

L̂αn′(z)L̂
α
n(z)

zαe−z

(z + α)2
dz = δn′,n

Γ (n+ α+ 1)

(n+ α− 1)(n− 1)!
, (A.3)

L̂αn(z) = nLαn − 2(n+ α)Lαn−1(z) + (n+ α)Lαn−2(z) . (A.4)
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Basic properties of Jacobi EOPs

The X1 Jacobi EOP, denoted by P̂ (α,β)
n (z); n = 1, 2, 3, . . . , α, β > −1,

α 6= β, has following properties [17]:

P̂
(α,β)
1 (z) = −1

2
z − 2 + α+ β

2(α− β)
,

P̂
(α,β)
2 (z) = −α+ β + 2

4
z2 − α2 + β2 + 2(α+ β)

2(α− β)
z − α+ β + 2

4
, . . .

(A.5)[(
z2 − 1

) d2
dz2

+ 2a

(
1− bz
b− z

)(
(z − c) d

dz
− 1

)]
P̂ (α,β)
n (z) = (n− 1)

×(α+ β + n)P̂ (α,β)
n (z) , (A.6)

where the real parameters a, b and c are given by

a =
β − α
2

; b =
β + α

β − α
; c = b+

1

a
,

1∫
−1

(1− z)α(1 + z)β

(z − b)2
(
P̂ (α,β)
n (z)

)2
dz =

(α+ n)(β + n)

4(α+ n− 1)(β + n− 1)
Cn−1 , (A.7)

where

Cn =
2α+β+1

(α+ β + 2n+ 1)

Γ (α+ n+ 1)Γ (β + n+ 1)

Γ (n+ 1)Γ (α+ β + n+ 1)
,

P̂ (α,β)
n (z) = −fnP (α,β)

n (z) + 2bgnP
(α,β)
n−1 (z)− hnP (α,β)

n−2 (z) , (A.8)

where

fn =
n(α+ β + n)

(α+ β + 2n− 1)(α+ β + 2n)
,

gn =
(α+ n)(β + n)

(α+ β + 2n− 2)(α+ β + 2n)
,

hn =
(α+ n)(β + n)

(α+ β + 2n− 2)(α+ β + 2n− 1)
.
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Appendix B

Standard ESPs referred

The radial oscillator potential (VRO) in the D-dimensional Euclidean
space [21] is

VRO(r) =
1

4
ω2r2 +

`(`+D − 2)

r2
. (B.1)

The corresponding exact energy eigenvalues and the wavefunction are given
by

ERO
nr = ω

(
2nr + `+

D

2

)
, (B.2)

ψRO(r) = Nr` exp

(
−ωr

2

4

)
L
`+D−2

2
nr

(
ωr2

2

)
. (B.3)

The Morse potential (VM) is given by [4, 24]

VM(r) = −B(2A+ a)e−ar +B2e−2ar . (B.4)

The corresponding exact energy eigenvalues and the wavefunction are given
by

EM
n = −(A− na)2 , (B.5)

ψM(r) = Ngs−ne−
g
2L(2s−2n)

n (g(r)) , (B.6)

where

g(r) =
2B

a
e−ar ; s =

A

a
.

The Scarf I potential (VS) is given by [25]

VS(r) =
(
a2 + b2 − aα

)
sec2 αr − b(2a+ α) tanαr secαr . (B.7)

The corresponding exact energy eigenvalues and the wavefunction are given
by

ES
n = (nα+ a)2 , (B.8)

ψS(r) = N(1− sinαr)
γ
2 (1 + sinαr)

δ
2P

γ− 1
2
,δ− 1

2
n (sinαr) , (B.9)

where

γ =
a− b
α

; δ =
a+ b

α
.
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The Rosen–Morse potential (VRM) is given by [24]

VRM(r) = −A(A+ a) sech2 (ar) + 2B tanh ar . (B.10)

The corresponding exact energy eigenvalues and the wavefunction are given
by

ERM
n = −(A−na)2 − B2

(A− na)2
, (B.11)

ψRM(r) = N(1−tanh ar)
s−n+a

2 (1+tanh ar)
s−n−a

2 P (s−n+a,s−n−a)
n (tanh ar) ,

(B.12)

where

s =
A

a
.
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