
Vol. 45 (2014) ACTA PHYSICA POLONICA B No 1
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The phenomenon of stochastic resonance (SR) in a new bistable system
is investigated in the presence of periodic force and additive noise. The
exact expression of signal-to-noise ratio (SNR) of the new bistable system
is obtained. Theoretical analysis and numerical simulation results show
that the output SNR is a non-monotonic function of the noise intensity.
The influence of parameters of system on SR is studied, moreover, the
relationship between the barrier height of potential and the performance
of SR is discussed. The target of this work is to explore the influence of
the shape of potential function on SR and give a tool when dealing with
particle diffusion, SR control and information processing.
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1. Introduction

Noise and their effects on physical, chemical and biological systems have
been extensively studied over the last decade. One important effect is
stochastic resonance (SR), in which a weak external periodic signal can be
amplified by additive noise as it passes through a non-linear system [1–11].
The concept of SR was originally introduced by Benzi et al. [1] and the
two-state theory was investigated to describe SR [3, 6–10]. Today, SR is a
well-known behavior of non-linear stochastic dynamics [5]. The SR has been
widely discussed both theoretically and experimentally in many fields, such
as periodically recurrent of ice ages, laser physics, information processing,
chemistry, and other scientific fields [12–17].

Recently, there is a growing interest in exploring SR in complex sys-
tems such as the chaotic system, neuronal network, bistable system with
time delay [2–4, 6–29]. Especially, a typical bistable potential U(x) =
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−αx2/2 +βx4/4 in which a Brownian particle is present was extensively in-
vestigated. The system is driven by periodic perturbation s(t) = A cos(Ωt)
and random noise ξ(t). Due to perturbation, the particle randomly jumps
between the two wells with the Kramers escape rate rK. When the aver-
age escape time (τK = 1/rK) of the particle over the barrier approximately
equals the half-time period τΩ of periodic perturbation s(t), the noise in-
duced inter-well jumps. This phenomenon is the stochastic resonance (SR).
However, only a few works discussed the effects of different potential func-
tions on the output of SR. Note that various potential functions can be
generated and easily applied to real mechanical systems and information
processing. Consequently, it is necessary to investigate the SR mechanism
in different potential functions.

When studying the problem of a Brownian particle in a symmetric double
well periodically tilted in time, the corresponding potential U(x) is usually
assumed to diverge like U(x) ∼ x4 at large x. However, the divergence of
the potential for |x| → ∞ strongly affects the response of the system to an
external time-periodic forcing. Motivated by the above ideas, the goal of
the present paper is to investigate the effects of various potential functions
on SR. For simplicity, we assume that U(x) ∼ |x|q for x→ ±∞.

There are several technical methods to describe the SR phenomenon of
particle diffusion, for instance, adiabatic approximation(or two-state) theory,
Fokker–Plank equation. There are also several quantities to quantify the SR,
such as signal-to-noise ratio (SNR), spectral power amplification (SPA), the
position amplitude of the particle, the first moment of the position of the
particle. In this paper, some of the previous methods and quantities to study
the SR phenomenon in a new bistable system are used.

This paper is organized as follows. Section 2 presents the new bistable
system driven by sinusoidal signal and addictive Gaussian white noise. More-
over, the dynamic of potential function of new bistable system under various
parameters is studied. Section 3 gets the exact expression of SNR of the
system. With the output SNR, the conventional SR takes place with the
intensity. Section 4 draws some conclusions.

2. Potential function

In Refs. [12, 20], the researchers studied the following bistable potential

U(x) = a exp
(
−x

2

b2

)
+ k
|x|q

q
. (1)

Furthermore, they obtained material results about SR. In our work, the
potential function which we will investigate is given by
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U(x) = a exp
(
−x

2

b2

)
− c

2
x2 + k

|x|q

q
, (2)

where a ≥ 0, b, c, k > 0. If a = 0 and q = 4, then the potential function
U(x) is deduced to the typical bistable potential function −cx2/2 + kx4/4.
We consider a Brownian particle described by the overdamped Langevin
equation

ẋ =
2a

b2
x exp

(
−x

2

b2

)
+ cx− k |x|

q

x
+ s(t) + ξ(t) , (3)

where s(t) is a weak sinusoidal signal A cos(Ωt) and ξ(t) is an addictive
Gaussian white noise with zero-mean and auto-correlation function

ξ(t)ξ
(
t′
)

= 2Dδ
(
t− t′

)
, (4)

in which D is the noise intensity.
First, the dynamic of potential function Eq. (2) under various parameters

will be studied. For numerical purpose, it is convenient to choose a, b, c
and k as 1. Then we investigate the relation between the barrier height and
parameter q. Figure 1 demonstrates that the barrier height, ∆U , and the
potential minima, ±xm, weakly depend on q. As q is increased, the slope of
the potential wall increases as shown in Fig. 1. Figure 1 depicts also that
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Fig. 1. Potential function (2) for a = b = c = k = 1.

the potential U(x) (about x > 2) is horizontal for q = 2. If parameters
a = b = c = 1, q = 3 are fixed, the relation between the barrier height
and parameter k is depicted in Fig. 2. Figure 2 shows that both the barrier
height and potential minima depend on k. Figure 2 demonstrates that the
barrier height and potential minima shrink with k increasing which means
that the particle is more confined between the two minima. As k is increased,
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Fig. 2. Potential function (2) for a = b = c = 1, q = 3.
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Fig. 3. Potential function (2) for a = b = k = 1, q = 3.

the slope of the potential wall increases as shown in Fig. 2. The relation
between barrier height and parameter c is depicted in Fig. 3. The barrier
height and potential minima expend with c increasing which means that
the particle goes more farther from one well to the other. Figure 4 depicts
that the barrier height depends on b. However, the potential minima weakly
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Fig. 4. Potential function (2) for a = c = k = 1, q = 3.
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depend on b. The valley is shallow with b increasing which implies that the
particle jumps over the barrier more easily with b increased. The parameters
b = c = k = 1, q = 3 are fixed and the relation between barrier height and
parameter a is demonstrated in Fig. 5. The barrier height depends on a,
however, the potential minima weakly depend on a. The peak is lifted with
a increasing which means that the particle jumps over the barrier much
harder.
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Fig. 5. Potential function (2) for b = c = k = 1, q = 3.

3. Stochastic resonance in a new bistable system

For small amplitudes, the response of the system to the periodic input
signal can be written as [4]

〈x(t)〉 = x̄ cos
(
Ωt− φ̄

)
(5)

with amplitude x̄ and a phase lag φ̄. Approximate expressions for the am-
plitude and phase shift read

x̄(D) =
A
〈
x2
〉
0

D

2rK
4r2K +Ω

(6)

and
φ̄ = arctan

(
Ω

2rK

)
. (7)

Here, the angular brackets 〈·〉 denote ensemble averaging over a large number
of phase space trajectories. 〈x2〉0 is the variance of the stationary unper-
turbed process x(t) (A = 0).

According to Eq. (6), the behavior of the amplitude reads (for details
refer to [12, 20])

lim
D→∞

x̄(D) ∼ D
2
q
−1
. (8)
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From Eq. (8), we can obviously see that x̄(D) goes to zero for D → 0,
D →∞ and q > 2 [12, 20]. This implies that there exists a maximum of x(D)
for some D. However, the x̄(D) goes monotonically with D increased. The
case q = 2 is the marginal case. Figure 1 also presents the case. Therefore,
we will investigate SR of Eq. (3) under the condition q > 2.

The signal-to-noise ratio (SNR), spectral power amplification (SPA), and
other quantities have been proposed as indices to quantify the efficiency
of SR. We will apply the signal-to-noise ratio (SNR) to quantify SR of the
new bistable system. The corresponding Fokker–Plank equation (FPE) of
Eq. (3) reads

∂ρ(x, t)

∂t
=

∂

∂x

(
U ′(x)−A cos(Ωt)

)
ρ(x, t) +D

∂2

∂x2
ρ(x, t) , (9)

where U ′(x) denotes dU(x)/dx. Therefore, the steady state distribution
function ρs(x, t) can be written as

ρs(x, t) = Nexp
(
−Φ(x, t)

D

)
, (10)

where N is the normalization constant, and Φ(x, t) is given by

Φ(x, t) = U(x)−Ax cos(Ωt) . (11)

In the absence of modulation (A = 0), within the framework of the
theory of SR [1–4, 6–10], one can obtain the Kramers rate

W0 =

√
|U ′′(xm)||U ′′(0)|

2π
exp

(
−∆U

D

)
, (12)

where

U ′′(x) = −2a

b2
exp

(
−x

2

b2

)
+

4ax2

b4
exp

(
−x

2

b2

)
+ k(q − 1)|x|q−2 − c ,

∆U = |U(xm)− U(0)| , (13)

and in the presence of modulation (A 6= 0), the modified Kramers rate is
given by

W± =

√
|U ′′(xm)||U ′′(0)|

2π
exp

(
−Φ(0, t)− Φ(±xm, t)

D

)
=

√
|U ′′(xm)||U ′′(0)|

2π
exp

(
−∆U ± xmA cos(Ωt)

D

)
. (14)



The Role of the Potential of a New Bistable System on Stochastic . . . 35

According to the theory of Refs. [1–4, 6, 7], the bistable case is reduced to
a two-state system, characterized by the occupation probabilities n+(t) =∫ +∞
0 P (x, t)dx and n−(t) = 1 − n+, respectively. The master equation for
these occupation probabilities is

dn+(t)

dt
= −dn−(t)

dt
= W−(t)n−(t)−W+(t)n+(t)

= W−(t)− [W−(t) +W+(t)]n+(t) . (15)

The general solution of Eq. (15) is

n+(t) = g−(t)

n+(t0)g(t0) +

t∫
t0

W+(t′)g(t′)dt′

 (16)

with g(t) = exp
∫ t
t0

[W−(t′) +W+(t′)]dt′.

We assume that the transition rate W±(t) is of the form

W±(t) = f(∆± s) . (17)

Since we assume that A is small compared with the barrier height, then it
is possible to make a Taylor expansion of the function W±(t)

W±(t) = 1
2

[
W0 ∓WsA+ o

(
A2
)]
, (18)

where W0 and Ws are given by

W0

2
= f(∆) ,

Ws

2
= −df(∆)

ds
|A=0 . (19)

The power spectrum is given by

S(ω) =
πW 2

sA
2

2
(
W 2

0 +Ω2
)δ(ω −Ω) +

2W0

W 2
0 + ω2

(
1− W 2

sA
2

2
(
W 2

0 +Ω2
)) . (20)

The SNR reads

SNR =
πW 2

sA
2

4W0

(
1− W 2

sA
2

2
(
W 2

0 +Ω2
))−1 , (21)

where

W0 =

√
|U ′′(xm)||U ′′(0)|

π
exp

(
−∆U

D

)
,

Ws =
xmW0

D
.

(22)
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Since the SNR is always positive, namely, 1− W 2
sA

2

2(W 2
0+Ω

2)
> 0, we can obtain

the valid range of the noise intensity

D >

√
x2mW

2
0A

2

2(W 2
0 +Ω2)

' xmA√
2
. (23)

SNR shows a rich structure as a function of D, a, b, c, k, A and Ω.
The influence of noise intensity on the SNR is shown from Fig. 6 to Fig. 12.
In order to compare with Fig. 1, the parameters a, b, c and k of Fig. 6
are the same as in Fig. 1. Figure 6 shows the SNR as a function of noise
intensity D with various values q. The peak of the curve is sharp and there is
an optimal noise intensity at which SNR takes its maximum that identifies
a characteristic of the SR phenomenon. When D is small, the system is
dominated by the effect of the standard SR model. The peak of the curve
decreases slowly with the parameter q increasing. Comparing Fig. 1 and
Fig. 6, it can be seen that the parameter q has a little influence on the
barrier height and the SR phenomenon.
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Fig. 6. SNR versus the noise intensity D with varied q for a = b = c = k = 1,

A = 0.4, Ω = 0.1.

The parameters of Fig. 7 are specified in figure caption. In Fig. 7, SNR
is plotted as a function of the noise intensity D with varied k. There exists
a maximum of SNR at some D which induces SR and the curve of SNR
turns flat as D increases. It can be seen that SNR goes to zero as D → 0 or
D → ∞. Comparing Fig. 2 and Fig. 7, we can see that the barrier height
shrinks and the peak of SNR is lifted with k increased. The larger k, the
lower barrier and the more easily SR is induced.

The parameters of Fig. 8 are specified in figure caption. In Fig. 8, the
SNR as a function of noise intensity D with various value c is depicted.
There is a maximum of SNR at some D. Figure 8 demonstrates that the
resonance peaks decrease with c increasing. For large c, the curve is rather
flat. Comparing Fig. 3 and Fig. 8, the larger c, the higher barrier, and the
harder SR is induced.
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Fig. 7. SNR versus the noise intensity D with varied k for a = b = c = 1, q = 3,
A = 0.4, Ω = 0.1.
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Fig. 8. SNR versus the noise intensity D with varied c for a = b = k = 1, q = 3,
A = 0.4, Ω = 0.1.

In Fig. 9, SNR is plotted as a function of the noise intensity D with
varied b. Figure 9 shows that the resonance peak is lifted with b increasing.
For large b, the peak is sharp, however, the peak is flat when b is small.
Comparing Fig. 4 and Fig. 9, the larger b, the lower barrier, and the more
easily SR is induced.
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Fig. 9. SNR versus the noise intensity D with varied b for a = c = k = 1, q = 3,
A = 0.4, Ω = 0.1.
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The parameters of Fig. 10 are specified in figure caption. In Fig. 10, the
SNR as a function of noise intensityD with various values a is plotted. There
is an optimal noise intensity at which SNR takes its maximum that induces
SR. The resonance peak decreases with a increasing, as seen in Fig. 10. For
small a, the peak is sharp, whereas the curve becomes flat with a increasing.
Comparing Fig. 5 and Fig. 10, the larger a, the higher barrier and the harder
SR is induced.
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Fig. 10. SNR versus the noise intensity D with varied a for b = c = k = 1, q = 3,
A = 0.4, Ω = 0.1.

The parameters of Fig. 11 are specified in figure caption. In Fig. 11, SNR
is plotted as a function of the noise intensity D with varied A. There is a
maximum of SNR at some D which is the characteristic of the SR. Figure 11
depicts that the peak increases with the periodic force A increasing. For
small force A, the peak is rather flat, however, the resonance peak becomes
sharp with A increasing. The larger A, the more easily SR is induced.
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Fig. 11. SNR versus the noise intensity D with varied A for a = b = c = k = 1,
q = 3, Ω = 0.1.
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Figure 12 plots the SNR as a function of noise intensity D with various
value Ω and shows that the resonance peak decrease slowly with the fre-
quency Ω increasing. It can be seen that parameter Ω has a little influence
on the SR phenomenon.
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Fig. 12. SNR versus the noise intensity D with varied Ω for a = b = c = k = 1,
q = 3, A = 0.4.

Comparing Fig. 1–Fig. 5 and Fig.6–Fig.10, the higher the barrier height
∆U , the flatter the resonance peak and the harder SR is induced. On the
contrary, the lower the barrier height ∆U , the sharper the resonance peak
and the more easy SR is induced. Thus, the parameters present the opposite
effects on the barrier height and resonance peak.

In Fig. 13, we have plotted the real time trajectory of the particle. In
Fig. 13 (left) (for q = 3), because of the potential, the particle travels large
distances away from the minima and spends more time in the wings of the
potential (x > xmor x < xm) over a duration of many cycles of the applied
force without passing over the barrier. On the other hand, in Fig. 13 (right)
(for q = 6), the potential helps the particle to pass the barrier, and the
particle travels short distances away from the minima. This is clear from
the figure.
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(Left) for q = 3 potential; (Right) for q = 6 potential.
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4. Conclusion

In this paper, we have investigated the SR phenomenon in a new bistable
system with potential function U(x) ∼ |x|q for q > 2. A detailed discussion
of the effects of the potential function Eq. (2) is presented. For periodic
input signal, the SNR is employed to quantify SR of new bistable system. We
investigate the influence of parameters of the new bistable system on the SR
phenomenon. Moreover, our further investigation reveals the relationship
between the barrier height and the mechanism of SR in the new bistable
system by simulations. The simulations present the opposite influence on
the barrier height of potential and SR phenomenon, which is sensitive to the
nature of the confining potential. The results also give the theoretical and
experimental tool when dealing with SR control and information processing.
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