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We study a process of released substance from a medium in the shape of
sphere. In both the sphere and a surrounding medium occurs subdiffusion.
Using linear partial differential equations with a fractional time derivative,
we obtain concentration profiles and a time evolution of an amount of
substance which released from the sphere, both in the limit of large values
of time. We also briefly discuss the obtained results.
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1. Introduction

Process of subdiffusion can occur in media in which particles’ movement
is strongly hindered due to the internal structure of medium. Subdiffusion
can be treated as a random walk process in which a mean square displace-
ment of a particle 〈(∆~r )2(t)〉 fulfills the following relation [1]〈

(∆~r )2 (t)
〉
∼ tα , (1)

where α ∈ (0, 1) is a subdiffusion parameter. For α = 1, we have a situation
of normal diffusion. The examples of media in which the occurrence of
subdiffusion has been experimentally confirmed are porous media [2] and
gels [3, 4].

Subdiffusion can be described by means of a linear partial differential
equation with a fractional time derivative [1]

∂C (~r, t)

∂t
= Dα

∂1−α

∂t1−α
∇2C (~r, t) , (2)

where C(~r, t) is a concentration of the transported substance, Dα is a sub-
diffusion coefficient measured in the units of m2/sα and dαf(t)/dtα denotes
the Reimann–Liouville derivative which is defind for α > 0 as [5]

dαf(t)

dtα
=

1

Γ (n− α)

dn

dtn

t∫
0

dt′
f (t′)

(t− t′)1+α−n
, (3)

the integer number n fulfills the relation n− 1 < α ≤ n.
The problem of released substance from various media is the area of in-

terest for many domains of science, especially pharmacy. In particular, a
released medicine from carrier seems to be an important problem in phar-
macy. Certain results of recent experimental researches suggest that subdif-
fusion can occur when medicine is released from a carrier [6]. However, the
majority of this researches is based on the experimental methods and, as far
as we know, the problem of subdiffusive releasing substance from a medium
has not been considered theoretically. In this paper, we present a theoret-
ical model of released substance from carrier in the shape of sphere under
assumption that transport in both the sphere and surrounding area is sub-
diffusive. In our model, we consider a particular case of released substance.
Namely, we additionally assume that transport of substance is more hin-
dered outside the sphere then inside it. In our model, this assumption takes
the following form α > β, where α denotes a subdiffusion parameter inside
the sphere and β — outside. We suppose that the assumption about the
easiest transport of substance inside the sphere is linked with expectations
of fast released medicine from the carrier.
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2. The system

We study a system containing a sphere which is surrounded with an
unrestricted medium (see Fig. 1). In both parts of the system, subdiffusion
occurs with the subdiffusion parameters α, β and subdiffusion coefficients
Dα, Dβ , respectively. We consider the process in the spherical coordinate
system. We assume that this process is independent of the azimuthal angle θ
and the polar angle ϕ. At the initial moment only the sphere is filled with a
substance homogeneously thus, the problem is spherically symmetrical. In
that case, we lose the angles θ and ϕ in the notation of functions’ arguments
and we denote C(r, θ, ϕ, t) ≡ C(r, t). The initial condition reads

C1(r, 0) = C0 , C2(r, 0) = 0 , (4)

where C1 denotes a concentration inside the sphere (i.e. in the region 0 <
r < R, where R is a radius of the sphere) and C2 denotes a concentration
outside the sphere (i.e. for r > R).

α, αD

β, βD

R

Fig. 1. The system under consideration.

Subdiffusion equations which describe the transport processes in the sys-
tem under consideration are as follows

∂C1(r, t)

∂t
= Dα

∂1−α

dt1−α
1

r2
∂

∂r

(
r2
∂C1(r, t)

∂r

)
, (5)

∂C2(r, t)

∂t
= Dβ

∂1−β

dt1−β
1

r2
∂

∂r

(
r2
∂C2(r, t)

∂r

)
. (6)

We chose the following boundary conditions

C1(R, t) = κC2(R, t) , (7)
Jr1(R, t) = Jr2(R, t) , (8)

C2(+∞, t) = 0 , (9)
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we also demand that C1(r, t) is finite for 0 ≤ r ≤ R and t ≥ 0. The boundary
condition (7) assumes that the ratio of concentrations C1 to C2 on both sides
of the sphere surface is constant over time. The proportional coefficient κ
can be assumed as a ratio of the sum of overlapping surfaces of pores at the
sphere surface and the surrounding medium surface to the total surface of
the sphere.

We solve the above equations by means of the Laplace transform method
[7, 8]; the Laplace transform reads L{f(t)} ≡ f̂(s) ≡

∫∞
0 f(t) exp(−st)dt.

The solutions to Eqs. (5) and (6) with the initial condition (4) and the
boundary conditions (7)–(9) in the Laplace transform domain read

Ĉ1(r, s) =
1

M

C0DβR

sβ

(
1

R
+ δ

)
sinh(γr)

r
+
C0

s
, (10)

Ĉ2(r, s) =
1

M

C0DαR

sα

[
1

R
sinh(γR)− γ cosh(γR)

]
e−δ(r−R)

r
, (11)

where

M = κDαs
1−α

[
1

R
sinh(γR)− γ cosh(γR)

]
−Dβs

1−β
(

1

R
+ δ

)
sinh(γR) , (12)

and

γ =
sα/2√
Dα

, δ =
sβ/2√
Dβ

. (13)

In order to determine the inverse Laplace transform of Eqs. (10)–(13), we
firstly calculate (10) and (11) in the limit of small values of s (which corre-
sponds to large values of t). We get

Ĉ1(r, s) =
C0

s
− C0

s

(
1 +

Rsβ/2√
Dβ

)[
1− Rsβ/2√

Dβ

+
R2sβ

Dβ

(
1− κ

3

)]
e
− sα/2√

Dα
r
,

(14)
and

Ĉ2(r, s) =
C0R

3

3Dβs1−β

(
1 +

R2sα

10Dα

)[
1− Rsβ/2√

Dβ

+
R2sβ

Dβ

(
1− κ

3

)] 1

r
e
− sβ/2√

Dβ
(r−R)

. (15)
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Next, using the following formula [8]

L−1
{
sνe−as

β
}

= fν,β(t; a) ≡ 1

t1+ν

∞∑
k=0

1

k!Γ (−kβ − ν)

(
− a
tβ

)k
, (16)

we obtain

C1(x, t) = C0 − C0

[
f−1,α/2

(
t;

r√
Dα

)
− R√

Dβ

fβ/2−1,α/2

(
t;

r√
Dα

)
+
R2

Dβ

(
1− κ

3

)
fβ−1,α/2

(
t;

r√
Dα

)
+

R√
Dβ

fβ/2,α/2

(
t;

r√
Dα

)
−R

2

Dβ
fβ,α/2

(
t;

r√
Dα

)
+

R3

Dβ

√
Dβ

(
1− κ

3

)
f3β/2,α/2

(
t;

r√
Dα

)]
, (17)

C2(x, t) =
C0R

3

3Dβ

1

r

[
fβ−1,β/2

(
t;
r −R√
Dβ

)
− R√

Dβ

f(3/2)β−1,β/2

(
t;
r −R√
Dβ

)

+
R2

Dβ

(
1− κ

3

)
f2β−1,β/2

(
t;
r −R√
Dβ

)

+
R2

10Dα
fα+β−1,β/2

(
t;
r −R√
Dβ

)

− R3

10Dα

√
Dβ

fα+(3/2)β−1,β/2

(
t;
r −R√
Dβ

)

+
R4

10DαDβ

(
1− κ

3

)
fα+2β−1,β/2

(
t;
r −R√
Dβ

)]
. (18)

The example plots of the solutions (17) and (18) are presented in Fig. 2.
The values of the parameters used in the calculation of the concentration
profiles were κ = 0.25, C0 = 1.0, R = 2.5, α = 0.7, Dα = 2.4, β = 0.4 and
Dβ = 1.5 (all quantities are given in arbitrary chosen units). The values of
time are given in the legend of the figure. In Fig. 2 the sphere spreads over
the range (0, 2.5) and the surrounding medium exists for r > 2.5.

Time evolution of the amount of substance released from the sphere can
be calculated from the following formula

W (t) = 4π

R∫
0

r2C1(r, t)dr . (19)
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Fig. 2. The concentration profiles (17) and (18) obtained for different times given in
the legend. The auxiliary dotted vertical line represents the surface of the sphere.
The values of the rest of parameters are given in the text.

Keeping only leading terms of Eq. (19), we obtain

W (t) =
4πR3C0

3
− 4πR2

√
DαC0

Dβ

(
Dβt

α/2

Γ
(
α
2 + 1

) − κR2t(α/2)−β

3Γ
(
α
2 − β + 1

)) , (20)

where Γ (x) denotes the Gamma function.

3. Final remarks

We have found the concentration profiles (17) and (18) for the subdiffu-
sive system composed of the sphere and surrounding medium under assump-
tion that α > β. It means that substance encounters more hindrance when
is transported outside the sphere than inside it. The solutions have been
obtained in the limit of large values of time. Moreover, we find the time evo-
lution of an amount of substance released from the sphere (Eq. (20)). The
model presented in this paper does not exclude the case of normal diffusion.
For the case of normal diffusion, all formulae remain correct under condition
that we substitute α = β = 1.

The time evolution of amount of substance released from the sphere can
be particularly useful in experimental determining of subdiffusive parameters
characterizing the process. One of such experiments can be conducted by
means of the laser interferometric method [6, 9–11].
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In Fig. 2 we can notice that the boundary of the sphere acts as a partially
reflecting wall causing an accumulation of the substance under the sphere
surface. It is likely connected with a plenty of transport hindrance which
substance occurs when leaving the sphere.
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