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We derive the energy levels for oscillator model defined on the twisted
N -enlarged Newton–Hooke space-time, i.e., we find time-dependent eigen-
values and corresponding time-dependent eigenstates. We also demonstrate
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above spectrum can be identified with the time-dependent Landau one.
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1. Introduction

The suggestion to use noncommutative coordinates goes back to Heisen-
berg and was firstly formalized by Snyder in [1]. Recently, there were also
found formal arguments based mainly on Quantum Gravity [2, 3] and String
Theory models [4, 5], indicating that space-time at Planck scale should be
noncommutative, i.e., it should have a quantum nature. Consequently, there
are a number of papers dealing with noncommutative classical and quantum
mechanics (see e.g. [6–8]) as well as with field theoretical models (see e.g.
[9–11]) in which the quantum space-time is employed.

It is well-known that a proper modification of the Poincare and Galilei
Hopf algebras can be realized in the framework of Quantum Groups [12, 13].
Hence, in accordance with the Hopf-algebraic classification of all deforma-
tions of relativistic and nonrelativistic symmetries (see [14, 15]), one can
distinguish three types of quantum spaces [14, 15] (for details, see also [16]):

canonical (θµν-deformed) type of quantum space [17–19]

[xµ, xν ] = iθµν , (1)

(2047)
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Lie-algebraic modification of classical space-time [19–22]

[xµ, xν ] = iθρµνxρ , (2)

and quadratic deformation of Minkowski and Galilei spaces [19, 22–24]

[xµ, xν ] = iθρτµνxρxτ , (3)

with coefficients θµν , θ
ρ
µν and θρτµν being constants.

Moreover, it has been demonstrated in [16], that in the case of the so-
called N -enlarged Newton–Hooke Hopf algebras U (N)

0 (NH±) the twist de-
formation provides the new space-time noncommutativity of the form1,2

[t, xi] = 0 , [xi, xj ] = if±

(
t

τ

)
θij(x) , (4)

with time-dependent functions

f+

(
t

τ

)
= f

(
sinh

(
t

τ

)
, cosh

(
t

τ

))
,

f−

(
t

τ

)
= f

(
sin

(
t

τ

)
, cos

(
t

τ

))
,

θij(x) ∼ θij = const or θij(x) ∼ θkijxk, and τ denoting the time scale pa-
rameter — the cosmological constant. Besides, it should be noted that the
mentioned above quantum spaces (1), (2) and (3) can be obtained by the
proper contraction limit of the commutation relations (4)3.

As mentioned above, recently, there has been discussed the impact of
different kinds of quantum spaces on the dynamical structure of physical
systems (see e.g. [6–10] and [25–36]). Particularly, it has been demonstrated,
that in the case of a classical oscillator model [28] as well as in the case of a
nonrelativistic particle moving in constant external field force ~F [29], there
are generated by space-time noncommutativity additional force terms. Such
a type of investigation has been performed for quantum oscillator model as
well [28], i.e., it was demonstrated that the quantum space in nontrivial way
affects the spectrum of the energy operator. Besides, in the paper [30] there
has been considered a model of a particle moving on the κ-Galilei space-
time in the presence of gravitational field force. It has been demonstrated,

1 x0 = ct.
2 The discussed space-times have been defined as the quantum representation spaces,
the so-called Hopf modules (see ee.g. [17, 18]), for the quantum N -enlarged Newton–
Hooke Hopf algebras.

3 Such a result indicates that the twistedN -enlarged Newton–Hooke Hopf algebra plays
a role of the most general type of quantum group deformation at nonrelativistic level.
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that in such a case there is produced a force term, which can be identified
with the so-called Pioneer anomaly [32], and the value of the deformation
parameter κ can be fixed by a comparison of obtained result with obser-
vational data. Moreover, especially interesting results have been obtained
in the series of papers [33–36] concerning the Hall effect for canonically de-
formed space-time (1). Particularly, there has been found the θ-dependent
(Landau) energy spectrum of an electron moving in uniform magnetic as
well as in uniform electric field. Such results have been generalized to the
case of the twisted N -enlarged Newton–Hooke Hopf algebra [16], i.e., there
has been derived the time-dependent Landau levels for the particle moving
in the corresponding quantum space in the presence of external fields [37].

In this article, we find the time-dependent energy levels for oscillator
model defined on noncommutative space-time (11). In particular, we demon-
strate that for a special choice of deformation parameters of corresponding
phase space (see formula (35)) the above spectrum can be identified with
time-dependent Landau one.

The paper is organized as follows. In Sect. 2 we recall basic facts con-
cerning the twisted N -enlarged Newton–Hooke space-times provided in the
article [16]. The third section is devoted to the calculation of energy spec-
trum (as well as Landau levels) for the twist-deformed oscillator model. The
final remarks are presented in the last section.

2. Twisted N -enlarged Newton–Hooke space-times

In this section, we recall the basic facts associated with the twisted
N -enlarged Newton–Hooke Hopf algebra U (N)

α (NH±) and with the corre-
sponding quantum space-times [16]. Firstly, it should be noted, that in ac-
cordance with the Drinfeld twist procedure, the algebraic sector of twisted
Hopf structure U (N)

α (NH±) remains undeformed, i.e., it takes the form

[Mij ,Mkl] = i (δilMjk − δjlMik + δjkMil − δikMjl) , [H,Mij ] = 0 , (5)[
Mij , G

(n)
k

]
= i
(
δjkG

(n)
i − δikG

(n)
j

)
,

[
G

(n)
i , G

(m)
j

]
= 0 , (6)[

G
(k)
i , H

]
= −ikG(k−1)

i ,
[
H,G

(0)
i

]
= ± i

τ
G

(1)
i ; k > 1 , (7)

where τ , Mij , H, G(0)
i (= Pi), G

(1)
i (= Ki) and G

(n)
i (n > 1) can be identified

with cosmological time parameter, rotation, time translation, momentum,
boost and accelerations operators respectively. Besides, the coproducts and
antipodes of considered algebra are given by4

∆α(a) = Fα ◦∆0(a) ◦ F−1α , Sα(a) = uαS0(a)u
−1
α (8)

4 ∆0(a) = a⊗ 1 + 1⊗ a, S0(a) = −a.
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with uα =
∑
f(1)S0(f(2)) (we use the Sweedler’s notation Fα =

∑
f(1)⊗f(2))

and with the twist factor Fα ∈ U (N)
α (NH±) ⊗ U (N)

α (NH±) satisfying the
classical cocycle condition

Fα12 · (∆0 ⊗ 1)Fα = Fα23 · (1⊗∆0)Fα , (9)

and the normalization condition

(ε⊗ 1) Fα = (1⊗ ε) Fα = 1 (10)

such that Fα12 = Fα ⊗ 1 and Fα23 = 1⊗Fα.
The corresponding quantum space-times are defined as the representa-

tion spaces (Hopf modules) for the N -enlarged Newton–Hooke Hopf algebra
U (N)
α (NH±). Generally, they are equipped with two the spatial directions

commuting to classical time, i.e. they take the form

[t, x̂i] = [x̂1, x̂3] = [x̂2, x̂3] = 0 , [x̂1, x̂2] = if(t) , i = 1, 2, 3 . (11)

However, it should be noted that this type of noncommutativity has been
constructed explicitly only in the case of the 6-enlarged Newton–Hooke Hopf
algebra, with [16]5

f(t) = fκ1(t) = f±,κ1

(
t

τ

)
= κ1C

2
±

(
t

τ

)
,

f(t) = fκ2(t) = f±,κ2

(
t

τ

)
= κ2τ C±

(
t

τ

)
S±

(
t

τ

)
,

·
·
·

f(t) = fκ35

(
t

τ

)
=86400κ35 τ

11

(
±C±

(
t

τ

)
∓ 1

24

(
t

τ

)4

− 1

2

(
t

τ

)2

∓ 1

)

×

(
S±

(
t

τ

)
∓ 1

6

(
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τ

)3

− t

τ

)
,

f(t) = fκ36

(
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τ
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=518400κ36 τ

12

(
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∓ 1
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(
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)4
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2

(
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)2

∓ 1

)2

,

(12)
5 κa = α (a = 1, . . . , 36) denote the deformation parameters.
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and

C+/−

(
t

τ

)
= cosh / cos

(
t

τ

)
and S+/−

(
t

τ

)
= sinh / sin

(
t

τ

)
.

Moreover, one can easily check that when τ is approaching the infinity limit,
the above quantum spaces reproduce the canonical (1), Lie-algebraic (2) and
quadratic (3) type of space-time noncommutativity, i.e., for τ →∞, we get

fκ1(t) = κ1 ,

fκ2(t) = κ2 t ,

·
· (13)
·

fκ35(t) = κ35 t
11 ,

fκ36(t) = κ36 t
12 .

Of course, for all deformation parameters κa going to zero, the above defor-
mations disappear.

3. Quantum oscillator model for twisted N-enlarged
Newton–Hooke space-time

Let us now return to the main aim of our investigations, i.e., to the
oscillator model defined on quantum space-times (11)–(13). In the first step
of our construction, we extend the described in previous section spaces to
the whole algebra of momentum and position operators as follows

[x̂1, x̂2] = 2ifκa(t) , [ p̂1, p̂2] = 2igκa(t) , (14)
[x̂i, x̂j ] = iδij [1 + fκa(t)gκa(t)] (15)

with the arbitrary function gκa(t). One can check that relations (14), (15)
satisfy the Jacobi identity and for deformation parameters κa approaching
zero become classical.

Next, by analogy to the commutative case, we define the Hamiltonian
operator

Ĥ =
1

2m

(
p̂21 + p̂22

)
+

1

2
mω2

(
x̂21 + x̂22

)
(16)

with m and ω denoting the mass and frequency of a particle, respectively.
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In order to analyse the above system, we represent the noncommutative
operators (x̂i, p̂i) by the classical ones (xi, pi) as (see e.g. [26–28])

x̂1 = x1 − fκa(t)p2 , (17)
x̂2 = x2 + fκa(t)p1 , (18)
p̂1 = p1 + gκa(t)x2 , (19)
p̂2 = p2 − gκa(t)x1 , (20)

where
[xi, xj ] = 0 = [ pi, p] , [xi, pj ] = i~δij . (21)

Then, the Hamiltonian (16) takes the form

Ĥ = Ĥ(t) =
1

2M(t)

(
p21 + p22

)
+

1

2
M(t)Ω2(t)

(
x21 + x22

)
− S(t)L (22)

with

L = x1p2 − x2p1 , (23)
1/M(t) = 1/m+mω2f2κa(t) , (24)

Ω(t) =
√(

1/m+mω2f2κa(t)
) (
mω2 + g2κa(t)/m

)
, (25)

and
S(t) = mω2fκa(t) + gκa(t)/m . (26)

In accordance with the scheme proposed in [28], we introduce a set of
time-dependent creation (a†A(t)) and annihilation (aA(t)) operators

â±(t) =
1

2

[
(p2 ± ip1)√
M(t)Ω(t)

− i
√
M(t)Ω(t)(x2 ± ix1)

]
(27)

satisfying the standard commutation relations

[âA, âB] = 0 ,
[
â†A, â

†
B

]
= 0 ,

[
âA, â

†
B

]
= δAB ; A,B = ± . (28)

Then, it is easy to see that in terms of the objects (27), the Hamiltonian
function (22) can be written as follows

Ĥ(t) = Ω+(t)
(
N̂+(t) +

1
2

)
+Ω−(t)

(
N̂−(t) +

1
2

)
(29)

with the coefficient Ω±(t) and the particle number operators N̂±(t) given by

Ω±(t) = Ω(t)∓ S(t) , (30)

N̂±(t) = â†±(t)â±(t) . (31)
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Besides, one can observe that the eigenvectors of Hamiltonian (29) can be
written as

|n+, n−, t〉 =
1√
n+!

1√
n−!

(
â†+(t)

)n+
(
â†−(t)

)n−
|0〉 , (32)

while the corresponding eigenvalues take the form

En+,n−(t) = Ω+(t)
(
n+ + 1

2

)
+Ω−(t)

(
n− + 1

2

)
. (33)

Let us now consider an interesting situation such that

Ω(t) = S(t) = mω2fκa(t) +
1

fκa(t)m
. (34)

One can check that it appears when functions fκa(t) and gκa(t) satisfy the
following condition

fκa(t) · gκa(t) = 1 . (35)

Then, we have

Ω−(t) = 2Ω(t) , Ω+(t) = 0 , (36)

and, consequently, the spectrum (33) provides the Landau energy levels with
the time-dependent frequency Ω(t) 6

En(t) = Ω(t) (2n+ 1) ; n = 0, 1, 2, 3, . . . (37)

It should be mentioned, however, that the above result can be obtained
in simpler (but less general) way as well. Firstly, one can observe that under
the condition (35) the Hamiltonian (22) takes a particular form

Ĥ = Ĥ(t) =
1

2M(t)

(
p21 + p22

)
+

1

2
M(t)Ω2(t)

(
x21 + x22

)
−Ω(t)L . (38)

Next, if one defines the following creation and annihilation operators7

Â(t) =
1√
2
(π1 + iπ2) , Â(t) =

1√
2
(π1 − iπ2) (39)

6 For canonical deformation (fκ1(t) = κ1), we get constant frequency Ω(κ1).
7
[
Â(t), Â†(t)

]
= 1.
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with

π1(t) =
1√

2M(t)Ω(t)
(p1 +M(t)Ω(t)x2) , (40)

π2(t) =
1√

2M(t)Ω(t)
(p2 −M(t)Ω(t)x1) , (41)

then, the function (38) can be written as

Ĥ(t) = Ω(t)
[
π21 + π22

]
= 2Ω(t)

(
Â†(t)Â(t) + 1

2

)
. (42)

Consequently, it is easy to notice that (in fact) the corresponding eigenvec-
tors and the corresponding eigenvalues are given by

|n, t〉 =
1√
n!

(
Â†(t)

)n
|0〉 , (43)

En(t) = Ω(t) (2n+ 1) ; n = 0, 1, 2, 3, . . . , (44)

respectively.

4. Final remarks

In this paper, we find the time-dependent energy levels for an oscil-
lator model defined on the twisted N -enlarged Newton–Hooke space-time
(11). Moreover, we demonstrate that for a special choice of the deformation
parameters of the corresponding phase space (see formula (35)) the above
spectrum can be identified with the time-dependent Landau one.

As it was already mentioned in Introduction the time-dependent Landau
energies for quantum space (11) (with function gκa(t) equal zero) has been
already found in [37]. Precisely, there has been provided the energy levels
for a nonrelativistic particle moving in uniform magnetic (B) as well as in
uniform electric (external) field; they read as follows

Ên(t) = Ω̂(t) (2n+ 1) ; n = 0, 1, 2, 3, . . . (45)

with frequency Ω̂(t) given by

Ω̂(t) =

(
1− fκa(t)B

4

)
B

2m
, (46)

where m denotes the mass of particle.
Finally, it should be mentioned that the presented investigation has been

performed for most general (constructed explicitly) type of space-time non-
commutativity at nonrelativistic level.
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