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1. Introduction

Some attention has been attracted in the last decade by the problem of
quantizing the models defined by the Lagrangians which are nonlocal in time.
This is mainly due to the fact that such nonlocalities do appear in field the-
ories on noncommutative space-time [1]. However, the very problem dates
back to the seminal paper of Pais and Uhlenbeck [2]. They have shown
how the quadratic nonlocal Lagrangians can be converted into (alternat-
ing) sum of independent oscillators (possibly complex). The corresponding
transformation is defined slightly formally in terms of infinite order differ-
ential operators which single out particular frequencies of classical motion.
Once the Lagrangian is represented as a sum of independent oscillators, the
Hamiltonian form of dynamics can be readily constructed and quantization
performed. However, the method seems to be applicable only to some par-
ticular models.

(2057)
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The Hamiltonian formalism for general higher-derivative theories has
been constructed long time ago by Ostrogradski [3]. Its more sophisticated
form, in principle applicable to arbitrary nonlocal theories, has been given
by a number of authors [4–7]. Its applicability is restricted by the fact that
the original dynamical equations appear here as a constraint which has to
be dealt with by use of Dirac formalism. This is very difficult because the
explicit solutions to the equations of motion are hardly known. However,
for particular linear theories, one is able to find solutions which allows to
describe explicitly the dynamics in Hamiltonian form.

It has been noted quite recently that the Pais–Uhlenbeck model exhibits
a remarkable symmetry provided its eigenfrequencies are proportional to
the consecutive odd integers. More precisely, the Noether symmetries of the
Pais–Uhlenbeck oscillator of the order of 2l + 1 (l being half integer) form
the so-called l-conformal Galilei group [8–14] which gained recently much
attention. The nonlocal model introduced by Pais and Uhlenbeck provides
a natural infinite order generalization of their finite order oscillators with
special eigenfrequencies. Therefore, it deserves a more careful study. In
particular, it is interesting to quantize it using the generalized Ostrograd-
ski formalism which would also provide proper framework for studying the
relevant symmetries.

Let us conclude this short introduction with the following remarks. The
Hamiltonian formalism proposed by Ostrogradski has a significant disad-
vantage: the energy is not bounded from below. The resulting dynamics is,
therefore, unstable under external perturbations. The instability stems from
the fact that some of the momenta enter the Hamiltonian linearly; conse-
quently, it is related to the unbounded regions in phase space (contrary, for
example, to the case of hydrogen atom where it follows from the behaviour
of potential energy in the neighbourhood of the origin of coordinate space).
Such kind of instability cannot be cured on the quantum level by uncertainty
principle. In fact, Pais and Uhlenbeck have shown that the resulting quan-
tum models continue to be unstable. In their quantization procedure, the
metric in the space of states is positively definite. On the other hand, if one
admits indefinite metric, the consistent quantization preserving positivity of
energy is possible [15, 16]. In particular, the method proposed in Ref. [16]
can be applied to the case under consideration. However, below we restrict
ourselves to the standard quantization procedure preserving the positivity
of the space of states metric.

In the present note, we use the method developed in Refs. [4–7] to put
into Hamiltonian form and quantize the nonlocal model Pais and Uhlenbeck.
The final results coincide, as expected, with those of Pais and Uhlenbeck but
the method used is quite different. The model is so simple that all details
of the generalized Ostrogradski method can be revealed.
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2. Hamiltonian formalism and quantization

Our starting point is the following nonlocal Lagrangian

L = −m
α2
q (t) q (t+ α) , (1)

where m and α are some constants of dimensions of mass and time, respec-
tively. L provides a natural generalization of standard harmonic oscillator.
Indeed, expanding q (t+ α) to the second order in α, one obtains

L =
mq̇2

2
− mω2q2

2
+
d

dt

(m
2α
q2 − m

2
qq̇
)
+O (α) . (2)

Skipping total derivative, one obtains harmonic oscillator with the frequency
ω2 ≡ 2

α2 .
The equation of motion

δS ≡
∞∫
−∞

dt′
δL (t′)

δq (t)
= 0 (3)

following from Eq. (1) reads

q (t− α) + q (t+ α) = 0 . (4)

In order to quantize our theory, one has to put it into Hamiltonian form.
To this end, we use the formalism proposed in Refs. [4–6] which provides
a far-reaching generalization of the Ostrogradski approach [3]. According
to the prescription of Refs. [4–6], one introduces a continuous index λ and
makes the following replacements

q (t) → Q (t, λ) , q (t+ α)→ Q (t, λ+ α) ,

q̇ (t) → Q′ (t, λ) ≡ ∂Q (t, λ)

∂λ
, q̇ (t+ α)→ Q′ (t, λ+ α) . (5)

The Lagrangian is defined as

L̃ (t) ≡
∞∫
−∞

dλδ (λ)L
(
Q (t, λ) , Q′ (t, λ) , . . .

)
, (6)

where L (Q (t, λ) , Q′ (t, λ) , . . .) is obtained from the original Lagrangian by
making the replacements (5).

In our case,

L
(
Q (t, λ) , Q′ (t, λ) , . . .

)
= −m

α2
Q (t, λ)Q (t, λ+ α) (7)
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and
L̃ (t) = −m

α2
Q (t, 0)Q (t, α) . (8)

The Hamiltonian and the Poisson bracket read

H (t) ≡
∞∫
−∞

dλP (t, λ)Q′ (t, λ)− L̃ (t)

=

∞∫
−∞

dλP (t, λ)Q′ (t, λ) +
m

α2
Q (t, 0)Q (t, α) , (9)

{
Q (t, λ) , P

(
t, λ′

)}
= δ

(
λ− λ′

)
. (10)

Equations (9) and (10) generate the following dynamics

Q̇ (t, λ) = Q′ (t, λ) , (11)

Ṗ (t, λ) = P ′ (t, λ)− m

α2
(δ (λ)Q (t, α) + δ (λ− α)Q (t, 0)) . (12)

In order to recover the original dynamics, one has to impose new constraints.
First, we define the primary momentum constraints

P (t, λ)− 1

2

∞∫
−∞

dσ (sgn (λ)− sgn (σ)) ε (t, σ, λ) ≈ 0 , (13)

where

ε (t, σ, λ) ≡ δL (Q (t, σ) , Q′ (t, σ) . . .)

δQ (t, λ)
. (14)

In our case, Eqs. (13) and (14) imply

P (t, λ)− m

2α2
(sgn (λ− α)− sgn (λ))Q (t, λ− α) ≈ 0 . (15)

By differentiating a number of times with respect to time, one obtains the
secondary constraints

∞∫
−∞

dσε (t, σ, λ) = 0 (16)

giving here
Q (t, λ− α) +Q (t, λ+ α) = 0 . (17)
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Summarizing, we have the following set of constraints

ϕ1 (t, λ) ≡ P (t, λ)− m

2α2
(sgn (λ− α)− sgn (λ))Q (t, λ− α) ≈ 0 , (18)

ϕ2 (t, λ) ≡ Q (t, λ− α) +Q (t, λ+ α) ≈ 0 . (19)

In order to convert the constraints, which are here of second kind, into strong
inequalities, one can define the Dirac bracket

{A,B}D ≡ {A,B} −
∞∫
−∞

∞∫
−∞

dλdλ′ {A,ϕi (λ)}C−1ij
(
λ, λ′

) {
ϕj
(
λ′
)
, B
}
,

(20)
where

C
(
λ, λ′

)
=

[
{ϕ1 (λ) , ϕ1 (λ

′)} {ϕ1 (λ) , ϕ2 (λ
′)}

{ϕ2 (λ) , ϕ1 (λ
′)} {ϕ2 (λ) , ϕ2 (λ

′)}

]
(21)

and
∞∫
−∞

dλ′′Cij
(
λ, λ′′

)
C−1jk

(
λ′′, λ′

)
= δikδ

(
λ− λ′

)
. (22)

However, instead of proceeding via direct computation as sketched above,
one can do better. First, ϕ1 can be used to solve explicitly for P (t, λ). Then,
the reduced phase space is spanned by Q (t, λ) subject to the constraint ϕ2.
The Hamiltonian (9), expressed in terms of basic coordinates, reads

H (t) =

∞∫
−∞

dλ∆ (λ, α)Q (t, λ− α)Q′ (t, λ) + m

α2
Q (t, 0)Q (t, α) , (23)

where
∆ (λ, α) ≡ m

2α2
(sgn (λ− α)− sgn (λ)) . (24)

Due to the constraints ϕ2, the original dynamics is recovered provided the
Hamiltonian equations implied by (20) and (23) coincide with Eq. (11). This
is the first condition imposed on Dirac bracket{

Q (t, λ) , Q
(
t, λ′

)}
= F

(
λ, λ′

)
. (25)

The remaining ones are:

F
(
λ, λ′

)
= −F

(
λ′, λ

)
, (26)

F
(
λ− α, λ′

)
+ F

(
λ+ α, λ′

)
= 0 , (27)

the latter being the consequence of the strong equality ϕ2 = 0.
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The unique solution to Eqs. (26), (27) which produces Eq. (11) reads

F
(
λ, λ′

)
=
α2

m

∞∑
k=−∞

(−1)k δ
(
λ− λ′ + (2k + 1)α

)
. (28)

The remaining brackets are easily recovered by demanding that they respect
constraints {

Q (t, λ) , P
(
t, λ′

)}
D

= ∆
(
λ′, α

)
F
(
λ, λ′ − α

)
, (29){

P (t, λ) , P
(
t, λ′

)}
D

= ∆ (λ, α)∆
(
λ′, α

)
F
(
λ, λ′

)
. (30)

We shall now solve explicitly the second constraint. To this end, we define
new variables

Q̃ (t, λ) ≡ Q (t, λ) e−
iπ
2α
λ . (31)

Then, by virtue of Eq. (19), Q̃ (t, λ) is periodic in λ, the period being 2α.
It can be expanded in Fourier series. Taking this into account, we conclude
that Q (t, λ) can be expanded as follows

Q (t, λ) =

∞∑
n=−∞

an (t)Ψn (λ) , (32)

where
Ψn (λ) ≡

1√
2α
e
iπ
2α

(2n+1)λ . (33)

{Ψn (λ)}∞n=−∞ form an orthonormal

α∫
−α

dλΨn (λ)Ψm (λ) = δnm (34)

and complete set. Additionally,

Ψn (λ) = Ψ−(n+1) (λ) . (35)

By virtue of Eq. (35), the reality condition for Q (t, λ) reads

an = a−(n+1) , (36)

a′ns providing new dynamical variables. Equations (32) and (34) imply

an (t) =

α∫
−α

dλΨm (λ)Q (t, λ) . (37)
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It is now straightforward to compute the Dirac bracket for new variables

{am, an} =
iα2

m
(−1)m δm+n+1,0 . (38)

Also the Hamiltonian is easily expressible in terms of new variables

H =
m

2α2

∞∑
k=−∞

(−1)k π

2α
(2k + 1) aka−(k+1) . (39)

By defining

an =


α√
m
cn , n− odd positive

α√
m
c−(n+1) , n− odd negative

α√
m
cn , n− even nonnegative

α√
m
c−(n+1) , n− even negative

, (40)

one obtains
{cm, cn} = −iδmn (41)

and

H =

∞∑
k=0

(−1)k π

2α
(2k + 1) ckck . (42)

Equations (41), (42) tell us that our theory is an alternating sum of inde-
pendent harmonic oscillators of frequencies ωk = π

2α (2k + 1).
Equations (41), (42) can be readily quantized. Upon rescaling cm →√

~ĉm and keeping the order of factors as in Eq. (42) (which implies the
subtraction of zero-energy value), one arrives at[

cm, c
+
n

]
= δmn , (43)

H = ~
∞∑
k=0

(−1)k π

2α
(2k + 1) c+k ck . (44)

Our results coincide with those obtained by the Pais–Uhlenbeck method.

3. α-expansion

The model defined by Eq. (1) can be approximated by finite-order oscil-
lators. To this end, let us expand the right-hand side of Eq. (1) in Taylor
series in α

L = −m
2

α2

∞∑
n=0

αn

n!
q (t) q(n) (t) . (45)
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Due to the identity

qq(2k+1) =
d

dt

(
k−1∑
i=0

q(i)q(2k−i) +
(−1)k

2
q(k)

2

)
, (46)

L can be rewritten as

L = −m
2

α2

∞∑
n=0

α2n

(2n)!
q (t) q(2n) (t) , (47)

or

L = −m
2

α2
q (t) cos

(
iα
d

dt

)
q (t) . (48)

Consider the Lagrangian Lk obtained by truncating the expansion (47) on
kth term. Let us denote

Fk (x) ≡
k∑

n=0

(−1)n x2n

(2n)!
. (49)

Using d2Fk
dx2

= −Fk−1, we find easily that Fk has 2k real roots ±ν(k)n , n =
1, . . . , k. Consequently,

Lk =
(−1)k−1m2α2(k−1)q (t)

(2k)!

k∏
n=1

 d2

dt2
+
ν
(k)
n

2

α2

 q (t) . (50)

According to Pais and Uhlenbeck, the Hamiltonian corresponding to the
above Lagrangian can be written as an alternating sum of harmonic oscilla-
tors with frequencies ν

(k)
n
α . By virtue of Eq. (48)

lim
k→∞

ν(k)n = (2n+ 1)
π

2
. (51)

We conclude that taking the limit k → ∞ in the theories described by the
Lagrangians Lk, we arrive at the original nonlocal model (42).

4. Final remarks

We quantized simple nonlocal model of Pais and Uhlenbeck using the
generalized Ostrogradski method described in Refs. [4–7]. The main point
of this method is that the proper equations of motion are imposed as a
constraint (Eqs. (15) and (17) in our case). The reason for the necessity of
imposing such a constraint is the following. In the standard Ostrogradski
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approach, applicable to the theories of arbitrary but finite order, all canonical
equations but one, related to the highest time derivative, serve to define the
consecutive time derivatives of the initial coordinate variable. The proper
equation of motion results from the last Hamiltonian equation related to the
highest time derivative. But for systems of infinite order, this equation is
lacking. This is why one has to introduce the constraint.

Let us also note that, in the case under consideration, we could modify
the quantization procedure in such a way that the energy remains positive
definite. In fact, once the dynamics is formulated in completely decoupled
form (cf. Eqs. (43), (44)) one can replace the Hamiltonian (44) by the one
in which all terms enter with positive sign. However, in general, we cannot
expect additional integrals of motion beyond the Ostrogradski Hamiltonian
which results from time translation invariance and we are left with the al-
ternative: unbounded energy or indefinite metric.

The formalism described above is well suited for the description of sym-
metries of nonlocal generalization of the set of harmonic oscillators. This
will be the subject of the forthcoming paper.
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