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We present a stochastic model where random walker can change its
position according to two competing motions: Gaussian motion or Lévy
flights and at each step, the type of motion is chosen randomly. We assume
that contribution from all processes to the entire process is determined
by the probabilities of appearances to each of them. For large times and
spatial distance, we derive fractional differential equation describing the
evolution of the probability density. This asymptotic form is determined
by parameters describing stochastic motion: probabilities of occurrence of
the Gaussian motion and Lévy flights, and two diffusion constants. We also
show that for the initial density in the form of the Dirac delta function, this
model has the analytic solution given in the integral form. For other forms
of initial densities, we present results of numerical solutions for various
model parameters.
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1. Introduction

In the description of natural phenomena by classical statistical physics,
we usually need to decide which theoretical model is sufficient to explain
observations. It occurs that many phenomena are well modeled by diffusion-
like processes, i.e., normal diffusion, subdiffusion or superdiffusion [1–3]. In
the present paper, we investigate a model which takes into account two
competing processes: normal diffusion and superdiffusion. Our motivation
to consider such a model is related to the specific behaviour of chaotic trajec-
tories in a deterministic Hamiltonian system in the presence of acceleration
modes in the phase space. An example of such a system is the well known
standard map [4–6], however similar effects may be observed for the whole
family of mappings. In Fig. 1, where we present an evolution of an angular
momentum for some initial conditions, one can see that the system performs
short jumps corresponding to the Gaussian motion and from time to time is
captured by an accelerating island what results in the long jump, i.e., a long
lasting movement with an almost linear momentum increase.
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Fig. 1. Selected trajectories in phase space of standard map with accelerating
modes.

Performing numerical statistics for such models, one can notice that
the momentum density for sufficiently long time has the inverse power tails
(compare Fig. 2). Based on this observation and the interplay of short and
long jumps for individual trajectories, we propose a model being a mixture
of two competing motions: Gaussian and Lévy.
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Recently, competition between Lev́y flights and Gaussian motion was
considered in context of biological systems [7–9], however their models and
results cannot be directly applied to the problem treated in the present
paper.
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Fig. 2. Logarithm of the angular momentum distribution function for the standard
map in the presence of accelerating modes.

2. Assumptions of the model

We assume that the particle goes from point x′ to point x in N steps,
N = 1, 2, . . . In each step, the particle jumps the distance x, but this
distance is taken from one of two different distributions: b(x) — normal
distribution (Gaussian motion) and l(x) — symmetric Lévy distribution
(Lévy motion). In each step, the probability that the particle will take
a Gaussian jump is equal a, and is independent of t and x; consequently,
1 − a denotes probability of the other (Lévy) choice. We further assume
that particle changes its position with infinite velocity and between jumps
it waits. Waiting time probability density is described by ψ(t), and each
waiting time is independent of previous waiting times and of a position x.
The probability that the particle does not change its position up to time t
is given by the following formula

Ω(t) = 1−
t∫

0

ψ(τ)dτ . (1)
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We introduce function P (N, t) which describes the probability that the
particle has done N steps until time t

P (N, t) =

t∫
0

ψ∗N (τ)Ω(t− τ)dτ , (2)

and another function P (N, x), describing the probability that the particle
has done N steps from point x0 and is at position x. This function may be
expressed in terms of probability a and distributions b(x), l(x) as

P (N, x) =

M≤N∑
M=0

(
N
M

)
[ab(x)]∗(N−M) ∗ [(1− a)l(x)]∗M , (3)

where symbol ∗N denotes N th convolution. The probability density that
the particle is at time t at position x is obtained as a sum over number of
steps

W (x, t) =
∑
N

P (N, t)P (N, x) . (4)

It is convenient to change the formula (4) to the following form

W (x, t) =

t∫
0

Ω(t− τ)
∑
N

P (x, τ,N)dτ , (5)

where
P (x, t,N) = ψ∗N (t)P (N, x)

is the probability density of just having arrived at position x at time t after
N steps.

3. Integral transforms

Applying standard techniques of Laplace and Fourier transforms to the
function P (x, t,N), we obtain the following result

P (k, s,N) = ψN (s)

M≤N∑
M=0

(
N
M

)
[ab(k)]N−M [(1− a)l(k)]M . (6)

The right-hand side of (6) can be written as

[ψ(s) (ab(k) + (1− a)l(k))]N . (7)
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Applying the same sequence of transforms to the equation (5) and taking
into account (7), we obtain

W (s, k) = Ω(s)η(k, s) , (8)

where
Ω(s) =

1− ψ(s)

s
(9)

and

η(k, s) =
∞∑
N=0

[ψ(s) [ab(k) + (1−a)l(k)]]N =
1

[1−ψ(s) (ab(k) + (1−a)l(k))]
.

(10)
We want to show how our approach relates to the standard framework

of Continuous Time Random Walk (CTRW)[2]; to this aim, it is convenient
to write the following identity for the function η(k, s)

η(k, s) = η(k, s)ψ(s) [ab(k) + (1− a)l(k)] + 1 . (11)

If we use inverse Laplace and inverse Fourier transforms, we can obtain
relation for function η(x, t)

η(x, t) =

∞∫
0

∞∫
−∞

η
(
x− x′, t− t′

)
ψ
(
t′
)

[ab(x) + (1− a)l(x)] dx′dt′+ δ(x)δ(t) .

(12)
Inverse Laplace and Fourier transforms of (8) give

W (x, t) =

t∫
0

Ω
(
t− t′

)
η
(
x, t′

)
dt′ . (13)

Function η(x, t) is the probability density that the walker has just arrived
to point x at time t. We can compare equation (12) for density η(x, t) to
formula (22) in [17], where one can find a standard CTRW approach. One
easily sees that in our model the walker arrives to point x, starting from
some point x′, according to density of probability [ab(x) + (1− a)l(x)] (12),
which reflects competition of these two processes.

4. Differential equation

We assume the specific form of waiting time probability density, namely
the Poisson distribution whose Laplace transform has the following form
ψ(s)=1/(τs+1). We also assume that Fourier transforms of jump distribu-
tions have forms: b(k) = exp(−σ2k2) and l(k) = exp(−εα|k|α) (symmetric
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Lévy distribution with 1 < α < 2). We make typical approximations:
ψ(s) ∼ 1 − τs, b(k) ∼ 1 − σ2k2 and l(k) = e−ε

α|k|α ∼ 1 − εα|k|α. Tak-
ing into account this assumptions in formula (8) and neglecting terms of the
order higher than two, we obtain the following approximation

W (k, s) ≈ 1

s+ aσ
2

τ k
2 + (1− a) ε

α

τ |k|α
. (14)

This approximation allows us to obtain the following differential equation
(1 < α < 2)

∂W (x, t)

∂t
= aD1

∂2W (x, t)

∂x2
+ (1− a)D2

∂αW (x, t)

∂|x|α
, (15)

where: D1 = σ2

τ and D2 = εα

τ , and symbol ∂α

∂|x|α denotes a Riesz derivative

∂α

∂|x|α
f(x) = − 1

2 cos απ2

[
−∞D

α
xf(x) +x D

α
+∞f(x)

]
, 1 < α < 2 . (16)

In (16), symbols −∞Dα
x and xD

α
+∞ for 1 < α < 2 are defined by [10, 11]

−∞D
α
xf(x) =

1

Γ (2− α)

d2

dx2

x∫
−∞

f (x′)

(x− x′)α−1
dx′ (17)

and

xD
α
+∞f(x) =

1

Γ (2− α)

d2

dx2

+∞∫
x

f (x′)

(x′ − x)α−1
dx′ . (18)

5. Solution

It is possible to obtain a solution for this equation with the initial density
in a form of Dirac delta function. Taking the inverse Laplace transform of
W (k, s) given by (14), one gets

W (k, t) = e−aD1k2te−(1−a)D2|k|αt . (19)

Solution W (x, t) is obtained by taking the inverse Fourier transform, and
this leads to the following convolution formula

W (x, t) =
1√

4πaD1t

+∞∫
−∞

e
− (x−x′)2

aD1t
1

α|x′|
H1,1

2,2

[
|x′|

[(1− a)D2t]
1
α

∣∣∣∣(1, 1α)(1, 12)

(1,1)(1, 12)

]
dx′ ,

(20)
where H is the Fox H-function [12, 13].
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For given value of t, asymptotic behaviour (x → ∞) of W (x, t) is de-
termined by small values of k (k → 0) in formula (19). This implies the
power-law asymptotics

W (x, t) ∼ |x|−(1+α) (21)

and means that Lévy flights prevail.
On the other hand, numerical solutions of differential equation (15) can

be obtained for quite general initial densities. To get results of numerical
calculation, we use matrix approach [18, 19], where one considers differential
equation on a space-time grid.

It is convenient to introduce new function

W̃ (x, t) = W (x, t)−W (x, 0) (22)

for which equation (15) may be written as

∂W̃ (x, t)

∂t
− aD1

∂2W̃ (x, t)

∂x2
− (1− a)D2

∂αW̃ (x, t)

∂|x|α

=

[
aD1

∂2W (x, t)

∂x2
+ (1− a)D2

∂αW (x, t)

∂|x|α

]
t=0

. (23)

The time interval [0, t] is divided into equidistant time points tj , where
j = 0, 1, 2, . . . , N and tN = t with step ∆t. The spatial variable is bounded
to the interval [−xmax, xmax] and is divided into equidistant spatial points xi,
where i = 1, 2, . . . ,M with step ∆x, x1 = −xmax and xM = xmax. The pairs
(xi, tj) form a space-time grid on which one solves numerically the fractional
differential equation, i.e., computes approximation to W̃ (xi, tj). From def-
inition (22), it follows that the function W̃ satisfies the following initial
condition: W̃ (x, 0) = 0. Additionally, we introduce boundary conditions in
the form: W̃ (x1, tj) = 0 and W̃ (xM , tj) = 0.

Following [19], we define vectors

~W =
[
W̃ (x1, 0), . . . , W̃ (xM , 0), . . . , W̃ (x1, t1), . . . , W̃ (xM , tN )

]T
, (24)

~P =
[
W (2)(x1, 0), . . . ,W (2)(xM , 0), . . . ,W (2)(x1, 0), . . . ,W (2)(xM , 0)

]T
,

(25)

and

~R =
[
W (α)(x1, 0), . . . ,W (α)(xM , 0), . . . ,W (α)(x1, 0), . . . ,W (α)(xM , 0)

]T
,

(26)
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where T is a transposition. Vector ~W consists of values of density W̃ at all
nodes of the space-time grid, while vectors ~P and ~R consists of N + 1 times
replicated values of second derivative and Riesz derivative of the order α
of density W̃ (xi, 0), respectively. With these definitions, discretization of
equation (23) leads to the following system (N + 1)M linear equations

[BN+1 ⊗ IM − aD1IN+1 ⊗ SM − (1− a)D2IN+1 ⊗RM ] ~W

= aD1
~P + (1− a)D2

~R , (27)

where ⊗ is a Kronecker product, IM and IN+1 represent identity matrices,
BN+1, SM , RM correspond to the time derivative, spatial derivative of the
second order and spatial Riesz derivative of the order α, respectively. The
lower index (M,N+1) denotes the size of each of these matrices and the three
matrices corresponding to derivatives are defined by the following formulas:

BN+1 =
1

∆t


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
. . .

... 0
0 0 . . . −1 1

 , (28)

SM =
1

∆x2


−2 1 0 . . . 0
1 −2 1 . . . 0
0 1 −2 1 0
...

...
...

. . .
...

0 0 . . . 1 −2

 . (29)

Matrix RM is given by

RM = − 1

2 cos
(
απ
2

) [QM +QTM
]
, (30)

where QM is defined by [19]

QM =
1

|∆x|α



rα1 rα0 0 0 . . . 0
rα2 rα1 rα0 0 . . . 0
rα3 rα2 rα1 rα0 . . . 0
...

...
...

...
. . .

...
rαM−1 rαM−2 rαM−3 rαM−4 . . . rα0
rαM rαM−1 rαM−2 rαM−3 . . . rα1

 (31)

and
rαj = (−1)j

(
α
j

)
= (−1)j

Γ (1 + α)

Γ (1 + j)Γ (1 + α− j)
. (32)
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Matrix RM , in the limit α→ 2, is equal to the matrix SM (29). The form of
the matrix RM is a direct consequence of the discretization formula of Riesz
derivatives, which is described at [14–16][

∂α

∂|x|α
f(x)

]
x=xn

≈ − 1

2 cos απ2

[
Dα

+ +Dα
−
]
fn , (33)

where fn = f(xn) and

Dα
±fn =

1

|∆x|α
∞∑
j=0

(−1)j
(
α
j

)
fn±1∓j , 1 < α < 2 . (34)

In Fig. 3, we present density W (x, t) at time t = 3 for three distinct
values of the fractional order α. Other parameters have the following values
a = 0.5, D1 = 1, and D2 = 1. For all cases, the same Gaussian was used as
an initial density. One can see that for α = 1.1 (dotted line) the distribution
for |x| → ∞ tends to zero slower than for the remaining densities. On the
other hand, density for α = 1.9 (solid line) for |x| → ∞ tends to zero most
quickly.
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Fig. 3. Densities W (x, t) at time t = 3 obtained in numerical integration of frac-
tional differential equation for three values of parameter α: α = 1.1 (dotted line),
α = 1.5 (dashed line) and α = 1.9 (solid line). Other parameters have the following
values a = 0.5, D1 = 1 and D2 = 1. All densities started from the same Gaussian
initial density.
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In Fig. 4, we present density W (x, t) at time t = 3 for three distinct val-
ues of probability a. Here, we assume that the order of fractional derivative
α is equal 1.5, and diffusion constants have the following values: D1 = 1
and D2 = 1. As the initial density, we use the same Gaussian function for
all three cases. One can see that, when |x| → ∞, the density for a = 0.2
(dotted line) tends to zero slower than for the other two cases, while for
a = 0.8 it tends to zero faster than the other ones. This property has clear
interpretation from microscopic point of view. If a is small, then the parti-
cle performs more frequent jumps according to symmetric Lévy distribution
and this property is reflected in the macroscopic density of a process.
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Fig. 4. Densities W (x, t) at time t = 3 obtained in numerical integration of frac-
tional differential equation with different parameter a: a = 0.2 (dotted line),
a = 0.5 (dashed line) and a = 0.8 (solid line). The order of fractional deriva-
tive α is equal 1.5. Diffusion constants have following values: D1 = 1 and D2 = 1.
All densities started from the same Gaussian initial density.

6. Conclusions

In this paper, we presented the model, which links Gaussian motion
with Lévy flights. This connection was achieved as an extension of the well
known CTRW model. We formulated this model in two equivalent ways.
They lead to the fractional differential equation (15), which is parametrized
by four constants: probability a, two diffusion constantsD1, D2 and an order
of fractional derivative α. Using numerical methods and analytical results,
we can follow the time evolution of the probability density.
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