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TWIST DECOMPOSITION OF PROTON STRUCTURE
FROM BFKL AND BK AMPLITUDES∗
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An analysis of twist composition of Balitsky–Kovchegov (BK) ampli-
tude is performed in the double logarithmic limit. In this limit, the BK
evolution of color dipole–proton scattering is equivalent to BFKL evolution
which follows from vanishing of the Bartels vertex in the collinear limit. We
perform twist decomposition of the BFKL/BK amplitude for proton struc-
ture functions and find compact analytic expressions that provide accurate
approximations for higher twist amplitudes. The BFKL/BK higher twist
amplitudes are much smaller than those following from eikonal saturation
models.
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1. Introduction

The standard description of proton hard interactions is based on the lead-
ing twist-2 term in the Operator Product Expansion (OPE). At twist-2, the
hard factorization theorem holds true for sufficiently inclusive cross sections
and the non-perturbative features of the proton structure may be absorbed
into universal quantities — parton distribution functions (pdfs). The accu-
racy of this powerful description is, however, limited due to possible contri-
bution of higher twist terms in OPE. Although the higher twist terms are
power suppressed by the process hard scale, they may provide sizeable cor-
rections at moderate scales, in particular at small values of parton x, where
the QCD evolution leads to relative enhancement of higher twist contribu-
tion. Hence, the higher twist effects may affect the fits of parton distribu-
tion functions and they contribute to theoretical uncertainty of the fitted
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pdfs, and it is important to estimate their magnitude both with theoretical
and experimental methods. In particular, recent HERA data provided evi-
dence for breakdown of twist-2 DGLAP fits in diffractive DIS (DDIS) [1, 2],
which may be explained with emergence of strong, higher twist effects at
Q2 < 5 GeV2 and at small x [2]. Also the inclusive DIS data show signifi-
cant deviations from DGLAP fits in similar kinematic region [3]. Since these
are the first signals of higher twist effects in proton structure functions, theo-
retical estimates must rely on models that would allow to constrain unknown
non-perturbative matrix elements of higher twist operators.

Currently, the most common scheme to estimate higher twist contribu-
tions at small x proton scattering is based on the Glauber–Mueller (eikonal)
picture of multiple independent scatterings of color dipoles off proton. This
simplest assumption on scatterings was employed in the very successful and
efficient Golec-Biernat–Wüsthoff (GBW) saturation model [4]. It leads to
a unified description of DIS down to photoproduction limit together with
diffractive DIS, so it should carry some information about higher twist terms
that are important at low scales. The model was used for twist analyses of
DIS, DDIS and forward Drell–Yan cross sections [2, 5–7].

The simple GBW assumption of multiple independent color dipole scat-
terings, however, does not hold in QCD at leading logarithmic approxima-
tion. This follows, in particular, from the analysis of multiple gluon ex-
changes in the leading logarithmic 1/x-limit (LL1/x), that is in LL BFKL
formalism [8, 9]. At the LL1/x accuracy, the gluon reggeization mecha-
nism (Regge bootstrap) reduces multiple elementary gluon exchanges with
a projectile color dipole to an exchange of two reggeized gluons, that span
the BFKL ladder [10]. At the double leading logarithmic limit (DLA), the
BFKL and DGLAP evolutions are equivalent, so at DLA the amplitude of
color dipole scattering is driven by a single DGLAP ladder, corresponding
to a single scattering and not multiple, eikonal scatterings. Using the lan-
guage of anomalous dimensions, one concludes that the color dipole does not
couple at the leading logarithmic approximation to states with anomalous
dimensions of multiple independent DGLAP ladders at the large Nc limit.
It should be remembered though that the reggeized gluon is a composite of
infinitely many elementary gluons, so in BFKL the color dipole still under-
goes multiple scattering but the multiple exchanges are described by differ-
ent anomalous dimensions than the leading anomalous dimension of multiple
DGLAP ladder exchanges. Thus, the BFKL formalism provides an alterna-
tive QCD description to the GBW model of multiple gluon exchange — and
so of higher twist effects.

It is well known that at low scales and small x, the BFKL amplitudes
may lead to violations of unitarity and gluon recombination effects should
be taken into account. This phenomenon was treated in the LL1/x ap-
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proximation for an asymmetric configuration of hard projectile (e.g. a vir-
tual γ∗) and extended target (e.g. a nucleus) by Bartels [11], Balitsky [12]
and Kovchegov [13]. This approach resulted with the Balitsky–Kovchegov
(BK) evolution equation for QCD amplitudes, valid in the large Nc limit. In
a diagrammatic representation, the BK equation resums BFKL ladder fan
diagrams in which mergings of two BFKL ladders occur (via a triple ladder
vertex obtained by Bartels [11]), when the multi-ladder states evolve from
the soft target to the hard projectile.

A natural question to address in a twist analysis of small-x amplitudes
is the twist content of BK amplitudes. One might expect some mixing to
occur of higher twist operators with lower twist operators due to merging
vertex of BFKL ladders. It was found, however, that this vertex vanishes
in the collinear limit [14]. This means that in the LL1/x approximation,
the triple-ladder vertex does not affect the leading order Q2-evolution of
QCD amplitudes. In fact, this finding agrees with a classical result of [15]
which shows that parton ladder merging vertices vanish in LLQ2 evolution
of multiple parton densities described by quasipartonic operators. Vanishing
of the merging vertex in the collinear limit combined with the coupling of
the color dipole to a single BFKL ladder implies that the BK evolution of
color dipole scattering off proton is described by a single BFKL ladder in the
collinear limit. It does not mean that the BK unitarity corrections vanish
completely — in the Q2 evolution they do modify the initial conditions, but
they do not affect the evolution. Hence, the conclusion of this analysis is that
in double logarithmic approximation, the twist structure of BK evolution
is given by the twist structure of BFKL evolution in which the unitarity
corrections are included in the input of Q2 evolution.

To sum up, in this paper we analyze the twist content of color dipole
scattering amplitude off proton in the BK approach. As described above,
for the twist evolution, BK amplitude reduces to BFKL evolution with a
modified input. Hence, we investigate twist corrections in proton structure
functions in BFKL formalism and derive conclusions for BK amplitudes.

2. Cross sections in the color dipole model

In the kinematical region of low x, the total cross section of virtual
photon–proton scattering may be described within the color dipole repre-
sentation [4, 16]

σγ
∗p

T,L

(
x,Q2

)
=

∫
d2r

1∫
0

dz
∣∣ψT,L

(
z, r,Q2

)∣∣2 σqq̄(x, r) , (1)
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where T, L denotes transverse and longitudinal polarization of the photon.
At the lowest order in the electromagnetic coupling constant αem, the photon
light-cone wave functions squared take the form [4, 16]:

∣∣ψL

(
z, r,Q2

)∣∣2 =
8Ncαem

4π2

∑
f

e2
fQ

2z2(1− z)2K2
0 (εr) ,

∣∣ψT

(
z, r,Q2

)∣∣2 =
2Ncαem

4π2

∑
f

e2
f

[
z2 + (1− z)2

]
ε2K2

1 (εr) , (2)

where for massless quarks ε =
√
z(1− z)Q and r = |r| and K0,1 are Bessel–

McDonald functions. The wave functions (2) describe probability amplitude
that the virtual photon of polarization L, T fluctuates into a quark–antiquark
pair of the transverse size r and a fraction z of the longitudinal light-cone
photon momentum carried by the quark. The dipole–proton cross section
can be written as [13]

σqq̄(x, r) = 2

∫
d2b N(x, r, b) ≡ 2πR2

pN(Y, r) , (3)

where N(x, r, b) is an imaginary part of the forward dipole–nucleon scatter-
ing amplitude and Y = ln(xin/x) is a rapidity variable counted with respect
to some initial value xin. The last equality in (3) introduces effective radius
of the proton Rp, which emerges after integration over impact parameter b.
The resulting function N(x, r) fulfills Balitsky–Kovchegov (BK) equation
without impact parameter dependence [12, 13]. The proton structure func-
tions are related to the σγ∗p by the formulae

FT,L =
Q2

4π2αem
σγ
∗p

T,L , F2 = FT + FL , (4)

and the reduced cross section is defined as

σr = F2 −
y2

Y+
FL , Y+ = 1 + (1− y)2 , y =

Q2

xs
. (5)

In this paper, we analyze the BFKL scattering amplitude, viewed as a
linear version of the BK amplitude. The solution to BFKL equation in the
Mellin space is well known [9] and it leads to the following BFKL amplitude
of color dipole scattering:

N(x, r) =
1

2πi

∫
Cf

ds r−2sC(s)eᾱsχ(s)Y , ᾱs =
Ncαs

π
, (6)
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where the integral is performed along the contour Cf located in the funda-
mental strip of Mellin transformation. Function C(s) depends on the initial
condition for the BFKL or BK equation and χ(s) is the BFKL characteristic
function

χ(s) = 2ψ(1)− ψ(−s)− ψ(1 + s) , (7)

where ψ is digamma function. In this analysis, we choose the exponen-
tial form of the initial condition, suggested by the Golec-Biernat–Wüsthoff
(GBW) model [4]

N(Y = 0, r) = 1− exp

(
−r

2Q2
0

4

)
, (8)

which gives C(s) = −Γ (s)(4/Q2
0)s and as a possible choice of the integration

contour a parallel line to imaginary axis Cf = (−1/2− i∞,−1/2 + i∞).
Twist decomposition of the cross sections is performed using a standard

Mellin technique [5, 6]. Substituting (6) into (1), one obtains

σγ
∗p

T,L

(
x,Q2

)
=

1

2πi

∫
Cf

ds

(
Q2

0

Q2

)−s
HT,L(−s)σ̃qq̄(s, Y ) , (9)

where the Mellin transform of photon wave functions HT,L can be found in
[5, 6] and

σ̃qq̄(s, Y ) = −2πR2
pΓ (s)eᾱsχ(s)Y . (10)

Mellin singularities of this amplitude give contributions to the twist expan-
sion. They may be isolated with standard techniques of complex analysis.
One closes the inverse Mellin integration contour Cf by a left semicircle at
complex infinity. The integral over this closed contour is then equal to a
sum of contours enveloping the singularities,

⋃
nC−n for n = 1, 2, . . . C−n is

a small circle of radius ε around negative integer −n. This procedure yields
twist decomposition of the integral (9)

σγ
∗p

T,L

(
x,Q2

)
=

∞∑
n=1

σ
(2n)
T,L

(
x,Q2

)
, (11)

where twist contribution σ(2n)
T,L is given by the formula (9) with Cf = C−n.

3. Twist decomposition

Expressions for twist coefficients read

σ
(2n)
T,L

(
x,Q2

)
= −R2

pe
−nt

2π∫
0

dθh(n) exp

(
εteiθ +

ᾱsY

ε
e−iθ

)
, (12)
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where t = lnQ2/Q2
0, function

h(n) = εeiθHT,L

(
n− εeiθ

)
Γ
(
−n+ εeiθ

)
eᾱsY χ

(n)
reg , (13)

and

χ(n)
reg = χ

(
−n+ εeiθ

)
− e−iθ

ε
(14)

is a regular function in the limit of ε → 0. One can expand function h(n)

into a series

h(n) = A0

∞∑
m=−1

a(2n)T,L
m

(
εeiθ
)m

, (15)

where A0 = Ncαem
∑

f e
2
f/π and the most singular element scales as 1/ε.

Coefficients a(2n)T,L
m are functions of ᾱsY only and they are independent of t.

Substituting (15) into equation (12), one finds that the only integrals left
are of the form

2π∫
0

dθ exp

(
εteiθ +

ᾱsY

ε
e−iθ + imθ

)
=

(
ᾱsY

ε2t

)m/2
I|m|

(
2
√
ᾱsY t

)
,

m = −1, 0, 1, 2, . . . , (16)

where Im are modified Bessel functions of the first kind. Thus, using (15)
and (16), one can show that

σ
(2n)
T,L

(
x,Q2

)
= −2πR2

pA0

(
Q0

Q

)2n ∞∑
m=−1

a(2n)T,L
m

(
ᾱsY

t

)m/2
I|m|

(
2
√
αsY t

)
= −2πR2

pA0

(
Q0

Q

)2n [
a

(2n)T,L
−1 t 0F̃1(2, ᾱsY t)

+

∞∑
m=0

a(2n)T,L
m (ᾱsY )m 0F̃1(1 +m, ᾱsY t)

]
, (17)

where 0F̃1 is a regularized confluent hypergeometric function 0F̃1(m,x) =

0F1(m;x)/Γ (m). The convenience of the above series follows from its fast
convergence. In the experimentally interesting, broad kinematical range
2 < Y < 7 and 1 < t < 10 already first five terms of (17) reproduce the
exact result with accuracy better than 1%. Hence, in numerical calculations
below we use first five terms, which gives sufficient accuracy for our purposes.
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Performing the calculations one finds coefficients for twist-2:

a
(2)T
−1 = −1

3
, a

(2)T
0 = −1 + 6γE

18
,

a
(2)T
1 = −112− 3π2 + 6γE(1 + 3γE)

108
− 2

3
ζ(3)ᾱsY ,

a
(2)T
2 = −

124− 3π2 + 6γE
(
112 + 3γE + 6γ2

E − 3π2
)

+ 72ζ(3)

648

−1

9
(1 + 6γE)ζ(3)ᾱsY ,

a
(2)L
−1 = 0 , a

(2)L
0 = −1

3
, a

(2)L
1 = −−4 + 3γE

9
,

a
(2)L
2 = −148− 3π2 + 6γE(3γE − 8)

108
− 2

3
ζ(3)ᾱsY , (18)

and coefficients for twist-4:

a
(4)T
−1 = 0 , a

(4)T
0 = −1

5
e−2ᾱsY ,

a
(4)T
1 = −e−2ᾱsY

(
37 + 30γE

150
− 2

5
ζ(3)ᾱsY

)
,

a
(4)T
2 = −e−2ᾱsY

(
2144 + 30γE(37 + 15γE)− 75π2

4500

−67 + 30γE − 30ζ(3)

75
ᾱsY +

2

5
(ᾱsY )2

)
,

a
(4)L
−1 =

4

15
e−2ᾱsY , a

(4)L
0 = e−2ᾱsY

(
4(1 + 15γE)

225
− 8

15
ᾱsY

)
,

a
(4)L
1 = e−2ᾱsY

(
949 + 30γE(2 + 15γE)− 75π2

3375

−8(16 + 15γE − 15ζ(3))

225
ᾱsY +

8

15
(ᾱsY )2

)
. (19)

We do not display explicit expression for a(4)L
2 coefficient because of rather

lengthy formula, but is used in the numerical estimates. Let us notice
exp(−nαsY ) factor which is present in the higher twist-(2n) coefficients.
This term is responsible for the suppression of the higher twist terms at
small x values, contrary to expectations of the eikonal approach. In the
double logarithmic limit

0F̃1(1 +m, ᾱsY t) ≈
e2
√
ᾱsY t

2
√
π(ᾱsY t)(1+2m)/4

(20)



2086 L. Motyka, M. Sadzikowski

and using the lowest order non-zero expressions from (18), (19), one obtains
approximate formulae for twist components

σ
(2)
T = R2

pA0

√
π

(
Q0

Q

)2 t1/4e2
√
ᾱsY t

3(ᾱsY )3/4
,

σ
(2)
L = R2

pA0

√
π

(
Q0

Q

)2 e2
√
ᾱsY t

3(ᾱsY t)1/4
,

σ
(4)
T = R2

pA0

√
π

(
Q0

Q

)4 e2
√
ᾱsY t−2ᾱsY

5(ᾱsY t)1/4
,

σ
(4)
L = −R2

pA0

√
π

(
Q0

Q

)4 4t1/4e2
√
ᾱsY t−2ᾱsY

15(ᾱsY )3/4
. (21)

The above expressions coincide with the saddle point approximation of in-
tegrals σ(2n)

T,L [17].

4. Numerical results

With our choice of the initial condition, Eqs. (3) and (8), the dipole cross
section in the BK framework depends on 4 parameters: the fixed strong cou-
pling constant ᾱs, the initial saturation scale Q0 assumed at x = xin, and the
effective proton radius Rp. For the present study, instead of fitting the data,
we relate the BK parameters to the parameters of the GBW model [4] such
that the reduced cross sections (5) predicted in GBW and BK approaches
coincide at given value of Q2 = 10 GeV2 (see left panel of Fig. 1). We found
σ′0 = 2πR2

p = 17.04 mb, Q0 = 0.67 GeV and the strong coupling constant
ᾱs = 0.083 which corresponds to the intercept λ = ᾱs4 ln 2 = 0.23 (around
80% of the GBW value). For numerical studies, we assume xin = 0.1. Ad-
ditionally, we approximate reduced cross section by first three twists, which
is a reasonable numerical approximation of the full result at Q2 = 10 GeV2.
At the very beginning, it is interesting to note that at low Q2 = 2 GeV2 the
leading twist of BK already contains much of the information from twist-2
and twist-4 contributions of the GBW model (right panel of Fig. 1). This
fact alone already points out that twist decomposition in both approaches
behaves differently. Additionally, comparison between BK and GBW models
presented in Fig. 1 strongly suggests that it is possible to find a reasonable set
of model parameters for BK approach, which also provides a good descrip-
tion of the data. Let us finally mention that the twists analysis described
below is not affected by the detailed values of the model parameters.
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Fig. 1. Reduced cross section (5) as a function of x. Left panel: Q2 = 10 GeV2;
the full result is approximated by the first three twists in BK (solid line) and
GBW (dashed curve) models. Right panel: Q2 = 2 GeV2; the BK curve shows
only the leading twist contribution whereas the GBW contains contributions from
twist-2 and twist-4. Adding twist-4 contribution in the BK approach does not
much influence the result.

Let us define a quantity that is a measure of a relative twist content in
the total cross section

R
(2,...,2k)
T,L = 1−

∑k
i=1 σ

(2i)
T,L

σγ
∗p

T,L

. (22)

With more higher twist terms included the variable R tends to zero, as the
series converges to the total cross section. In Fig. 2 we compare R(2)

T for
GBW model and BK equation. It is clearly visible that twist-2 component
of the BK cross section makes larger part of the total cross section than it
occurs within the GBW model. This difference becomes even more striking
towards smaller values of x, where the higher twist contribution of GBW
is much larger than in the BK cross sections. In fact, the higher twist
contributions are decreasing with decreasing x in the BK approach whereas
they are increasing in the GBW model. In particular, for Q2 = 1 GeV2

and x = 10−3, the higher twists contribution is close to 30 per cent for the
transverse structure function in GBW model and only around 2 per cent
in the BK approach. Similar pattern is visible in the case of longitudinal
structure function (see Fig. 3) — in this case, the higher twist contribution
dominates the result at Q2 = 1 GeV2 in the case of GBW model and it
is below 10 per cent in the BK framework. Notice that the higher twist
contributions are more important for the longitudinal structure function
obtained from the BFKL/BK amplitudes, following the pattern found earlier
within the saturation model [5, 6].
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Fig. 2. Relative difference R(2)
T between twist-2 transverse cross section and total

transverse cross section (see the text for definition) as a function of Q2 in GeV2 in
log–log scale. Left panel: x = 0.01. Right panel: x = 0.001. The dashed curve
follows from GBW model whereas the solid line from BK equation. Saturation
scales from GBW model are Q2

sat = 0.36, 0.71 GeV2 for x = 0.01, 0.001 respectively.
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Fig. 3. Relative difference R(2)
L between twist-2 longitudinal cross section and total

longitudinal cross section (see the text for definition) as a function of Q2 in GeV2.
Left panel: x = 0.01. Right panel: x = 0.001. The solid line follows from BK
equation whereas the dashed curve from GBW model. Saturation scales from
GBW model are Q2

sat = 0.36, 0.71 GeV2 for x = 0.01, 0.001 respectively.

Figure 4 shows relative content of twist-2 and twist-4 contributions in
the total transverse cross section. For Q2 = 1 GeV2 and x = 10−3, there
is only around 3 per cent contribution left for twist-6 and higher in the
case of the GBW model. This is a significant reduction of higher twist
remainder compared to the 30 per cent of the higher twist remainder beyond
twist-2. The contribution of twists higher than 4 is completely negligible
in the BK approach. The case of the longitudinal structure function is
represented in Fig. 5. Similarly to the transverse case inclusion of twist-4
reduces R parameter. In the GBW approach, however, the contribution
from still higher twists grows quickly with decreasing Q2.
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Fig. 4. Relative difference R(2,4)
T between twist-2 plus twist-4 transverse cross sec-

tion and total transverse cross section (see the text for definition) as a function of
Q2 in GeV2 in logarithmic scale. Left panel: x = 0.01. Right panel: x = 0.001. The
solid line follows from BK equation whereas the dashed curve from GBW model.
Saturation scales from GBW model are Q2

sat = 0.36, 0.71 GeV2 for x = 0.01, 0.001

respectively.
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Fig. 5. Relative difference R(2,4)
L between twist-2 plus twist-4 longitudinal cross

section and total longitudinal cross section (see the text for definition) as a function
of Q2 in GeV2. Left panel: x = 0.01. Right panel: x = 0.001. The solid line follows
from BK equation whereas the dashed curve from GBW model. Note different
scales on vertical axis in the left and right panels. Saturation scales from GBW
model are Q2

sat = 0.36, 0.71 GeV2 for x = 0.01, 0.001 respectively.

It is also interesting to look at the relative content R2 for F2 structure
function, defined as in (22) with σT,L replaced by F2, (see Fig. 6). As was
previously noticed [5, 6], higher twist contributions tend to cancel in this
structure function. This pattern, driven by the twist structure of the γ∗
impact factor is found in both models.

All of the above results imply important consequences for experimental
analysis of twist composition of proton structure. The BFKL/BK amplitude
analysis suggests that the GBW model overestimates higher twists contribu-
tion to the total cross section. It would mean that an accurate determination
of higher twist effects in DIS would require an enhanced experimental pre-
cision.
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Fig. 6. Relative difference between F2 structure function and twists expansion for
x = 0.001. Left panel: R(2)

2 contribution. Right panel: R(2,4)
2 contribution. The

solid lines follows from BK equation whereas the dashed curve from GBW model.
Saturation scales from GBW model are Q2

sat = 0.71 GeV2 for x = 0.001.

5. Conclusions

In this paper, we analyzed the twist content of the proton structure func-
tions in DIS within the framework of BFKL/BK equations and compared
the obtained results with the GBW saturation model predictions [5, 6]. We
confirmed that the higher twists contribution is more important for the lon-
gitudinal than for the transverse structure functions. We also found that for
BFKL/BK the F2 structure function is less susceptible for higher twist effects
because of partial cancellation of twist-4 contribution (which is negative for
FL and positive for FT), as it was earlier found for the GBW model. There
is, however, an important difference between the models in magnitude of
higher twist corrections. The total cross section in the BFKL/BK approach
is strongly dominated by the leading twist contribution. In particular, the
higher twists are strongly suppressed in the BFKL/BK calculation compared
to the GBW predictions. This difference increases with decreasing x. The
main reason is that at moderately low Q2 the higher twists contribution
decreases with decreasing x in the BK framework and in increases with de-
creasing x in the GBW model. This prediction of the BK equation could
provide a systematic explanation of why the higher twist effects in proton
structure are relatively small and have not been found in DIS experiments
yet. However, with enhanced sensitivity of the newest combined analysis of
ZEUS and H1 DIS data including HERA2 results, one sees some deviations
from the leading twist description extrapolated towards small scales [3] that
might be a signature of higher twist effects and these deviations may be used
to probe the models of higher twists in the proton structure.

There are two related issues that remain open. The first is a complete
twist analysis of the BK amplitudes, that would have to treat not only the
Q2-evolution in the double-logarithmic limit, as done in this paper, but also



Twist Decomposition of Proton Structure from BFKL and BK Amplitudes 2091

a more careful treatment of an impact of non-linear corrections on the input
for the Q2-evolution. Also important is to perform a twist decomposition of
the diffractive DIS events within BFKL/BK formalism. This should be quite
interesting as recently an evidence of large higher twist contribution seems to
emerge from ZEUS and H1 data [1, 2], and it calls for better understanding
within QCD.

This research was supported by the Polish National Science Centre grant
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