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EXACT SOLUTION OF A LINEAR SPIN-ELECTRON
CHAIN COMPOSED OF LOCALIZED ISING SPINS

AND MOBILE ELECTRONS∗
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Exact solution of a coupled spin-electron linear chain composed of lo-
calized Ising spins and mobile electrons is found with the use of a transfer-
matrix method. The ground-state phase diagram consists of three phases
with different number of mobile electrons per unit cell, one of which is
paramagnetic, one is ferromagnetic and one is antiferromagnetic. Ther-
mal variations of specific heat with up to four distinct peaks are observed,
while temperature dependences of isothermal electron compressibility re-
veal a round maximum at low temperatures when the investigated system
is driven close to the ground-state boundary between the ferromagnetic and
antiferromagnetic phase.
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1. Introduction

Exactly soluble models have received a great amount of research interest
since they can provide a deeper insight into many unusual cooperative phe-
nomena [1–3]. Recently, a new class of exactly tractable models has been
introduced by decorating the bonds of a simple lattice occupied by local-
ized Ising spins with relatively small electron subsystems [4–8]. Theoretical
study of this kind of spin-electron systems could provide an explanation of
how the mobile electrons influence magnetic properties of various classes of
materials with both localized and itinerant electrons [9–11].
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2. Model and method

In this paper, we will study a hybrid spin-electron model on a linear
chain with localized Ising spins placed on its nodal sites and mobile electrons
delocalized over the pairs of the decorating sites placed at each of its bonds
(see Fig. 1 for schematic representation). The total Hamiltonian of the
model can be defined as a sum over mutually commuting bond Hamiltonians
Ĥ =

∑N
i=1 Ĥi, each containing all interaction terms involving the mobile

electrons from ith bond

Ĥi = −t
(
â†i,↑b̂i,↑ + â†i,↓b̂i,↓ + b̂†i,↑âi,↑ + b̂†i,↓âi,↓

)
−J
2

[
σzi (n̂ai,↑ − n̂ai,↓) + σzi+1(n̂bi,↑ − n̂bi,↓)

]
. (1)

The symbols α̂†i,γ and α̂i,γ denote fermionic creation and annihilation op-
erators for mobile electrons, which occupy decorating sites α = {a, b} and
have spin orientation γ = {↑, ↓}. Moreover, the operator n̂αi,γ = α̂†i,γα̂i,γ
with eigenvalues nαi,γ = {0, 1} represents the number operator for mobile
electrons and the variable σzi = ±1/2 corresponds to the localized Ising spin
placed on the ith nodal lattice site. Finally, the parameter t represents the
kinetic term for mobile electrons and the coupling constant J describes the
Ising-type exchange interaction between the nearest-neighbour Ising spins
and mobile electrons.
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Fig. 1. A schematic representation of the investigated spin-electron system. Black
circles denote nodal lattice sites occupied by the localized Ising spins, while grey cir-
cles denote decorating sites over which the mobile electrons are delocalized. A part
of the system demarked by a rectangle is described by the bond Hamiltonian (1).

The grand-canonical partition function Ξ of the correlated spin-electron
linear chain defined by the Hamiltonian (1) can be exactly calculated by fol-
lowing the procedure, which was elaborated in detail in our previous work
[12]. For brevity, we will present in this paper just the crucial steps of the
calculation procedure. Due to the commuting character of the bond Hamil-
tonians, the grand-canonical partition function can be partially factorized
into the following product

Ξ =
∑
{σi}

N∏
i=1

Tri exp
(
−βĤi

)
exp (βµn̂i) , (2)
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where the symbol β stands for the inverse temperature β = 1/T (kB is set
to unity). Symbol

∑
{σi} denotes summation over all possible configurations

of nodal Ising spins, Tri stands for the trace over degrees of freedom of all
mobile electrons delocalized over the ith bond, n̂i =

∑
γ={↑,↓}(n̂ai,γ+n̂bi,γ) is

the number operator corresponding to the total number of mobile electrons
on ith bond, and µ stands for the chemical potential. After tracing out the
degrees of freedom of the mobile electrons, the grand-canonical partition
function Ξ depends solely on the localized Ising spins {σi} and this enables
one to utilize the transfer-matrix method [1]. With the help of this method,
the derivation of the exact solution for the grand-canonical partition function
and the corresponding grand potential Ω = −kBT limN→∞ lnΞ/N is, in
the thermodynamic limit, relatively straightforward (see Ref. [12] for more
details). The grand potential Ω can be subsequently used to calculate basic
thermodynamic quantities such as the specific heat

C = −T
(
∂2Ω/∂T 2

)
z
, (3)

where z = eβµ is the fugacity, or the electron density

ρ = −(∂Ω/∂µ)T (4)

as well as the isothermal electron compressibility

κT = (∂ρ/∂µ)T /ρ
2 . (5)

3. Results and discussion

In this section, we will discuss in detail the most interesting results ob-
tained for the investigated spin-electron linear chain. First, it should be
mentioned that one can consider a ferromagnetic Ising interaction J > 0 as
well as non-positive values µ ≤ 0 of the chemical potential throughout the
rest of the paper without loss of generality, because the investigated model
obeys in a zero field the time-reversal symmetry as well as the particle-hole
symmetry. Moreover, the exchange coupling J > 0 will be used for the
definition of three dimensionless parameters: the dimensionless temperature
T/J , the relative strength of the kinetic term t/J , and the reduced chemical
potential µ/J .

Let us explore in detail the ground-state phase diagram of the correlated
spin-electron chain, which is depicted in the t/J–µ/J plane in the upper
panel of Fig. 2. It can be seen from this figure that the ground state of the
studied spin-electron system consists of three different phases at which the
total number of mobile electrons per couple of decorating sites is constant.
Owing to the commutability of different bond Hamiltonians (1), the ground
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state of the whole spin-electron chain can be written as tensor product over
the lowest-energy eigenstates of the bond Hamiltonians (1). Spin arrange-
ment in the respective ground states is schematically depicted in the lower
panel of Fig. 2.
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Fig. 2. Ground-state phase diagram and schematic representation of the ground-
state phases of the studied spin-electron system. The lines correspond to the first-
order phase transitions between the relevant ground states.

The ground state of the system for the lowest values of the chemical
potential obeying the inequality µ/J < −1/4 − t/J is the paramagnetic
phase I

|I〉 =
N∏
i=1

|± 1/2〉σi |0, 0〉i (6)

with |0, 0〉i denoting the vacuum state for mobile electrons from ith bond
and the energy EI = 0 per unit cell. This phase is disordered due to the ab-
sence of mobile electrons on the decorating sites, which consequently splits
the investigated spin-electron chain into a set of non-interacting localized
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Ising spins spatially separated by empty decorating sites. A more spectac-
ular ground state can be detected for intermediate values of the chemical

potential 1/4+t/J−
√
1 + 16 (t/J)2/2 > µ/J > −1/4−t/J , which stabilize

the ferromagnetic phase II

|II〉 =
N∏
i=1

|1/2〉σi
1√
2

(
â†i,↑ + b̂†i,↑

)
|0, 0〉i , (7)

with energy EII = −(J − 4t)/4 per unit cell. Each pair of the decorat-
ing sites in the phase II is occupied by a single hopping electron, which is
ferromagnetically coupled to its nearest-neighbour nodal Ising spins. The
most remarkable ground state can be found for higher values of the chemi-

cal potential µ/J > 1/4 + t/J −
√

1 + 16 (t/J)2/2 in the antiferromagnetic
phase III

|III〉 =
N/2∏
i=1

|1/2,−1/2〉σ2i−1,σ2i
⊗ 1

2

[
R+â

†
2i−1,↑b̂

†
2i−1,↓ −R−â

†
2i−1,↓b̂

†
2i−1,↑

+
2t

P

(
â†2i−1,↑â

†
2i−1,↓ + b̂†2i−1,↑b̂

†
2i−1,↓

)]
|0, 0〉2i−1

⊗1

2

[
−R−â†2i,↑b̂

†
2i,↓ +R+â

†
2i,↓b̂

†
2i,↑ +

2t

P

(
â†2i,↑â

†
2i,↓ + b̂†2i,↑b̂

†
2i,↓

)]
|0, 0〉2i

(8)

with new parameters P =
√
J2 + (4t)2 and R± = 1

2(1±J/P ) and the energy
EIII = −P/2 per unit cell. Each pair of the decorating sites in the phase III
is occupied by two mobile electrons, which rest in a quantum superposi-
tion of two antiferromagnetic states â†i,↑b̂

†
i,↓|0, 0〉i, â

†
i,↓b̂
†
i,↑|0, 0〉i and two ionic

states â†i,↑â
†
i,↓|0, 0〉i, b̂

†
i,↑b̂
†
i,↓|0, 0〉i. It is quite evident that the hopping process

of the mobile electrons gives rise to a Néel order of the localized Ising spins
and consequently, the phase III has translationally broken symmetry. Let
us point out here that the consideration of the antiferromagnetic coupling
J < 0 would not change the overall structure of the ground-state phase dia-
gram. This change would just cause a trivial spin reversal of all nodal Ising
spins in the respective ground-state phases (6)–(8), but all basic characteris-
tics (thermodynamic quantities like electron density, entropy, specific heat,
compressibility) will remain invariant under this transformation.

Thermodynamic properties of the hybrid spin-electron model will be il-
lustrated by considering particular cases with fixed value of the reduced
chemical potential µ/J and the value of kinetic term t/J = 1.0. First, the
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thermal variations of electron density are depicted in Fig. 3. It can be seen
from this figure that the low-temperature limits of the electron density are
in agreement with the number of electrons per unit cell, as discussed previ-
ously by the ground-state analysis in dependence on the selected value of the
chemical potential. Obviously, the most remarkable thermal dependences
with a sudden increase (decrease) can be observed near the critical values of
the chemical potential, which determine the phase boundaries between the
phases I–II and II–III, respectively.
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Fig. 3. Thermal dependences of the electron density for fixed value of the kinetic
term t/J = 1.0 and various values of the chemical potential µ/J .

Next, thermal dependences of the isothermal compressibility κT are de-
picted in Fig. 4. Figure 4 (a) depicts thermal variations of isothermal com-
pressibility for the values of the chemical potential µ/J = −2.0,−1.0 and
−0.5, which display quite typical thermal dependences of the isothermal
compressibility provided that the ground state is formed by the phases I, II
and III, respectively. On the other hand, as one can see from Fig. 4 (b),
the reduced isothermal compressibility κT starts from zero, then it shows a
round maximum at relatively low temperatures before it repeatedly tends to
zero at high enough temperatures whenever the chemical potential µ/J is se-
lected in a vicinity of the ground-state boundary between the ferromagnetic
phase II and antiferromagnetic phase III.

Finally, the thermal dependences of the specific heat are displayed in
Fig. 5. The double-peak structure of the specific-heat curves can be observed
in Fig. 5 (a), which shows typical temperature dependences when the chem-
ical potential µ/J = −1.0 and 0.0 drives the ground state either towards the
ferromagnetic phase II or the antiferromagnetic phase III, respectively. The
most interesting thermal dependences can be seen in Fig. 5 (b) for the values



Exact Solution of a Linear Spin-electron Chain Composed of Localized . . . 2099

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

1E-3 0.01 0.1 1
1E-3

0.01

0.1

1

10

100

(b)

(a)

 κ
Τ
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
κ

Τ
 

  T / J

  T / J

t / J = 1.0

t / J = 1.0

-2.0

µ / J = -1.0

-0.5

0.0

 µ / J = -0.81155

 -0.82

 -0.8

Fig. 4. Thermal dependences of the isothermal compressibility for the fixed value
of the reduced kinetic term t/J = 1.0 and several values of the chemical potential
µ/J . Figure 4 (b) shows dependences near the ground-state boundary between the
phases II and III in a logarithmic scale.

of the chemical potential µ/J , which are close enough to the ground-state
phase boundary between the phases II and III. As one can see, temperature
dependences with up to four distinct peaks can be observed.

In conclusion, the exact solution for the coupled spin-electron system
on a linear chain with localized Ising spins and mobile electrons was found
with the use of the transfer-matrix method. The ground state of this model
comprises of one paramagnetic, one ferromagnetic and one antiferromag-
netic phase, which differ in the number of mobile electrons per unit cell as
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Fig. 5. Semilogarithmic thermal dependences of the specific heat for the fixed value
of the kinetic term t/J = 1.0 and various values of the chemical potential µ/J .

well as respective spin arrangement of the localized Ising spins. Thermody-
namic properties of the model were studied, whereas the most interesting
thermal dependences of the isothermal compressibility and specific heat can
be observed when the chemical potential drives the investigated correlated
system close to the ground-state boundary between the ferromagnetic and
antiferromagnetic phase.
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