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Indices of heart rate variability are calculated twice: firstly from signals
with unperturbed normal RR-intervals, and subsequently from the same
signals edited according to either real patterns of disturbances or random
patterns of perturbations. Four methods of editing are applied: (I) dele-
tion of abnormal RR-intervals, (II) replacement of abnormal RR-intervals
by the median, (III) replacement of abnormal RR-intervals by a random
value from the surrounding RR-intervals, (IV) entering the values that re-
sult from the statistics of similar patterns. The fractality indices, such
as α1 and α2 from detrended fluctuation analysis (DFA), and a ratio of
RR-intervals greater than 50 ms, pNN50, are found to be the most sensi-
tive to editing, independently of the method of editing and the organization
of the disturbance pattern.
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1. Introduction

Since its discovery by Einthoven [1] in 1895, the electrocardiogram (ECG)
has become a very popular medical tool used for the evaluation of the heart
function. ECG is a noninvasive, easy to perform and cheap measurement.
Numerous methods have been designed to establish and then improve its
clinical significance [2]. Moreover, it is commonly accepted that heart rate
is driven by the autonomic nervous system to maintain the actual demands
of the organism for the nutrient supply [3–6]. Therefore, analysis of fluc-
tuations of time intervals between subsequent heart contractions, so-called
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heart rate variability (HRV), provides insight into controlling mechanisms
by which the autonomic nervous system mediates between the heart action
and the needs of the body. HRV analysis has been found to be a valuable
tool in the evaluation of different pathological [5, 6] and physiological [7, 8]
conditions.

Many methods have been devised to measure HRV from ECG recordings.
They are based on signals containing the intervals between successive so-
called QRS complexes with distinguished R-peaks. Various equipment is
commercially available for storing ECG for later automatic detection of these
R-peaks and then for assessment of the beat-to-beat time intervals. Such
series are called RR-signals.

Short-term ECG recordings, i.e., less than 30 minutes, which are per-
formed in ambulatory conditions, usually provide signals of adequate quality.
Moreover, the automatic extraction of time intervals can easily be visually
verified by the specialist. Holter systems such as e.g., Del Mar Reynolds
Medical, UK, or Schiller, Switzerland, are portable equipment designed for
long-term recording of ECG. Holter systems are also equipped with special
algorithms for automatic detection of QRS complexes and the extraction of
RR time intervals. However, it is often problematic to achieve a high quality
of RR-signals with them [9, 10]. Standard HRV analysis involves methods
based on RR-signals from three categories, i.e., time domain, frequency do-
main and nonlinear measures [5]. Table I contains definitions of the HRV
parameters studied by us.

There are two basic reasons for the imperfection of ECG recordings.
First of all, long signals contain beats that are different from normal heart
contractions, i.e. from contractions initiated by the sinus node — the heart’s
natural pacemaker. Especially ectopic beats, i.e. premature beats, which are
known to be commonly present in healthy subjects, influence strongly in-
dices of HRV [11]. Secondly, disturbances in ECG appear because of record-
ing artifacts and imperfect automatic algorithms of detecting R-peaks [10].
Recording artifacts may result from badly adhering electrodes or from move-
ment by the patient. The other source of misleading information present in
long signals can be related to the nonstationarity which appears as a result
of ordinary human activity. Many HRV estimators are established under the
assumption that the signal is stationary. Several studies have shown that
short-term measures of HRV quickly return to normal after gentle manipu-
lation of the patient’s condition. But there are few data on the stability of
the HRV measures derived from 24-hour ECG recordings [5].

Many methods of editing have been considered, see, e.g. [10, 12, 13] for
reviews. The deletion of wrong beats is the most popular method. However,
each deletion destroys the continuity of the time. Frequency analysis, in
particular, is known to be especially sensitive to the proper timing [14, 15].



Impact of the Editing of Patterns with Abnormal RR-intervals . . . 2105

TABLE I

List of 11 indices of HRV examined in this study, grouped into the two categories:
time domain and nonlinear, with computational details of their significance [5].

Time domain

Measure Description [units]

RR The mean of normal RR-intervals [ms]
SDNN Standard deviation of normal RR-intervals [ms]
RMSSD Square root of the mean of the sum of the squares of

differences between normal successive RR-intervals [ms]
pNN50 Percentage of pairs of normal successive RR-intervals that

differ more than 50 ms in the entire recording [%]

Nonlinear

Measure Description [units]

α1 Scaling exponent of detrended fluctuation analysis [16]
for short-term fluctuations, i.e. 4 ≤ n ≤ 16

α2 Scaling exponent of detrended fluctuation analysis [16]
for long-term fluctuations, i.e. 16 ≤ n ≤ 64

SD1 Standard deviation of distances of points in the Poincaré
plot (RRi, RRi+1) to the line-of-identity [ms]

SD2 Standard deviation of distances of points in the Poincaré
plot (RRi, RRi+1) along the line-of-identity [ms]

ApEn Approximate entropy [17] — the measure of repetitive
m-patterns of fluctuations with r accuracy
Our setting is m = 2, r = 0.2 SDNN

SampEn Sample entropy — the negative logarithm of the conditional
probability that two sequences of m successive RR-intervals
matching with accuracy r will also match after including
the m+ 1st RR-interval
Our setting is m = 2, r = 0.2 SDNN

ShEn Shannon entropy of probability distribution of the line length
in recurrence plot

For this reason, many methods of interpolation have been designed. Among
them the insertion of the median (zero-line interpolation), linear interpola-
tion, or cubic spline interpolation, as well as more sophisticated numerical
methods like piecewise cubic Hermite interpolation [15] or statistical meth-
ods based on bootstrapping [18] are used. After experiments with many
methods, the HRV indices in the time domain were found to be more robust
to editing than those in the frequency domain [10]. The same has been found
in the case of nonlinear indices [18].
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Following these observations, we also consider that it is crucial to main-
tain the segment of time which is perturbed independently of the origin
of perturbations: physiological or technical. Therefore, in our proposed
methods, we make an effort to retain the equality between the length of
disturbance and the length of substituted intervals. Moreover, the two new
methods proposed by us are motivated by our present knowledge about the
short-term dynamics of heart contractions rather than numerical analysis of
the curve shape. We propose to replace abnormal RR-intervals by a value
chosen at random from the nearby proper intervals (thermal approach), or
from a set of similar situations that are found in the whole signal (dynamical
approach).

Furthermore, abnormal events might occur in specific patterns, groups
of abnormal RR-intervals. Therefore, we also investigate the role of these
patterns. The effect of editing them on the popular time-domain and non-
linear HRV indices is investigated through Monte Carlo simulations. In
these simulations, signals which are originally free of any disturbances are
changed — edited following some real patterns of abnormal beats. Since
frequency-domain indices demand very specific methods of preprocessing,
different from those proposed in this paper, they are not considered here.

The paper is organized as follows. In Sec. 2, we give the motivation for
editing and provide an analysis of patterns of disturbances that have been
observed in the ECG signals analyzed. Then in Sec. 3, we define four meth-
ods for dealing with these abnormal RR-intervals. The two editing methods
are well-known and widely used, i.e. deletion of abnormal RR-intervals and
replacement of disturbance by the median of the surrounding normal values.
In Sec. 4, we describe a Monte Carlo experiment which allows us to study
the effects of editing when specific patterns of abnormal sequences are ap-
plied. The results of the simulations are presented in Sec. 5. The last section
briefly concludes our investigations.

2. Patterns of artifacts

2.1. Motivation for signal editing

Perturbations in ECG, and then, in consequence, in time intervals be-
tween subsequent R-peaks, can change the values of indices of HRV, as
exemplified in Fig. 1 and Table II. Figure 1 contains two tachograms with
ECG signals. The top tachogram shows a signal consisting of 300 beats.
The abnormal beats are labeled (annotated) as A. All proper heart contrac-
tions are marked by N. Since for HRV analysis only normal-to-normal time
intervals can be considered (so-called NN-intervals), the first N-interval after
the sequence of abnormal beats must also be excluded from further analysis.
This first N value, after an ectopic beat, is called a compensatory pause [5].
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Similarly, the first N is skipped in the case of technical artifacts. Because of
these rules, 6 beats of the 300 beats considered (i.e., 2%) have to be edited.
The bottom tachogram shows the same RR-signal with the abnormal beats
removed. Table II presents values of parameters of HRV for both RR-signals.

Fig. 1. Example of tachograms withRR-signals: the top signal — with artifacts, the
bottom signal — edited. The top signal has three pairs of perturbations consisting
of intervals annotated as A and the first following N-interval. The bottom signal
has these six intervals removed, which results in a change in timing of subsequent
NN-intervals, shortening the bottom signal.

TABLE II

Measures of HRV for both RR-signals from Fig. 1.

Time domain RR SDNN RMSSD pNN50

Top signal 789.29 127.19 63.51 7.69%
Bottom signal 795.60 113.88 27.17 5.12%

Nonlinear α∗
1 α∗

2 SD1 SD2 ApEn∗ SampEn ShEn

Top signal 1.07 1.12 44.98 174.17 0.74 0.71 3.44
Bottom signal 1.44 1.27 19.24 159.84 0.73 0.69 4.03

∗Remark: index does not provide relevant information for short data.
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The huge differences observed between values obtained for the top signal
and values calculated for the bottom signal provide convincing evidence that
abnormal beats change the HRV message substantially.

2.2. Patterns of artifacts

We studied ECG signals recorded from 196 healthy volunteers. These
persons were adults, of different ages (from 18 to 94 years) and both gen-
ders. None of them suffered from chronic or acute diseases. All the subjects
underwent 24-hour Holter monitoring during a normal sleep–wake rhythm.
The Holter recordings were preliminarily analyzed by Del Mar Reynolds
Impresario software for premature, supraventricular and ventricular beats,
missed beats and pauses. The QRS complexes were detected and classified
automatically by the software. In all the signals, the sampling rate was
128 Hz, which enabled the detection of R-peaks with an approximately 8 ms
accuracy. The first part (1000 beats) and the last part (1000 beats) of each
of the 196 recordings were not included in the considerations. These parts
were assumed to correspond to the transient stage of each subject. Namely,
a person is always aroused after the equipment is put on the body, and also
when waiting for the equipment to be removed from the body. This arousal
often results in perturbations in ECG recordings.

Since normal heart rhythm is defined by the rate of the sinus node depo-
larization, represented by the onset of the P -wave rather than the R-peak,
each signal was inspected visually by an experienced cardiologist to verify
the normality of the heart contraction. Finally, we obtained series of time
intervals between subsequent R-peaks, together with their annotations as
normal (N), ventricular (V), supraventricular (S), unspecified (U), or artifact
(A). These signals are called RR-intervals. Figure 2 shows mean numbers
of technical and cardiac abnormal RR-intervals in one RR-signal. Figure 2
demonstrates the quality of our recordings and their structure. We see that
the number of arrhythmias increases with age and the recordings contain
many more technical artifacts than the arrhythmias. In the following, we
distinguish only normal beats from all the other beats. Each beat which is
not normal is called abnormal and is annotated as A. Based on two-line in-
formation from ECG signal: the RR-interval and its annotation, the signals
of NN-intervals are constructed by four methods of editing.

The abnormal events occur in specific patterns, groups of abnormal
RR-intervals. Let us call a sequence of RR-intervals K-isolated if there
are at least K + 1 normal R-peaks prior and K normal R-peaks after the
given sequence.

For our editing purposes, three types of abnormal groups of RR-intervals
have been identified in the signals studied. They are as follows:
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Fig. 2. Mean numbers of abnormal RR-intervals (arrhythmias and technical arti-
facts) in one 24 h Holter signal. The data are presented in 12 groups: All — all
the signals (196), W — signals from women (97), M — signals from men (99),
All ≤ 25, W ≤ 25, M ≤ 25 — signals from all (36), women (21), men (15) at the
age at least 25 years, 25 < All < 60, 25 < W < 60, 25 < M < 60 — signal from
all (99), women (39), men (60) between 25 and 60 years, All ≥ 60, W ≥ 60, M ≥ 60

— signal from all (61), women (37), men (24) over the age of 60.

— Type 1: K-isolated abnormal beats
A sequence of abnormal beats of any length is isolated.
In the following, we assume that K = 4. Hence the annotation se-
quence corresponding to type 4-isolated artifact of type 1 is (the group
of beats that need editing in gray/red)

. . . NNNNNA . . . ANNNN . . .

— Type 2: K-isolated group of two sequences with abnormal beats
A pattern contains two sequences with abnormal R-peaks. These se-
quences are separated by at mostK normal R-peaks. For each possible
number of beats annotated as N which are present between the two
regions of artifacts, further subtypes can be considered.
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In the case of K = 4, we have four (a)–(d) possible subtypes (with the
beats that have to be edited in gray/red):

(a) : . . . NNNNNA . . . ANA . . . ANNNN . . .

(b) : . . . NNNNNA . . . ANNA . . . ANNNN . . .

(c) : . . . NNNNNA . . . ANNNA . . . ANNNN . . .

(d) : . . . NNNNNA . . . ANNNNA . . . ANNNN . . .

Note that this classification allows us to use the whole correct infor-
mation from the original data.

— Type 3: Other patterns of abnormal beats
This type covers all other patterns of disturbance that we encounter
in the series studied.

Figure 3 presents the total numbers of patterns with disorders classified
according to the types listed above in an average recording. In the same
figure, we provide information about the origin of the abnormalities, i.e.
whether they are technical artifacts, or arrhythmias, or a mixture of both.

Fig. 3. Types of patterns of disorders with their origins.

We can see that patterns of type 3 dominate in the signals considered.
These statistics strongly depend on the K value. If K is a large number,
sequences of type 3 are more likely to occur. We decided to use K = 4 to
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balance in an optimal way the number of disturbances which is possible to
treat in a systematic way and the size of the neighborhood acceptable for the
editing purposes. The complicated structure of patterns of type 3 prevents
us from automatic editing. The effective algorithm for the substitution is
difficult to design. However, deletion of the whole disturbance pattern is
always possible.

3. Editing methods

3.1. Editing of patterns of type 1

Let us assume that we have a K-isolated sequence of abnormal beats,
i.e. we edit disturbance of type 1. Let this disturbance start at RRi interval
and consist of k abnormal RR-intervals.

Method I: Deletion of abnormal RR-intervals

Together with the deletion of abnormal intervals, the first N-interval is
deleted. After the deletion, the two parts of the signal are concatenated.

Advantages: This is an easier method for implementation. It can be
performed without any numerical instabilities.

Drawbacks: It strongly affects the temporal sequence. Consequently, a
shorter signal is obtained.

Method II: Replacement of abnormal RR-intervals by the median estimated
from neighboring NN-intervals

K subsequent NN-intervals prior to perturbation and K−1 NN-intervals
after the disturbance are chosen in the calculation of the median. Each
abnormal RR-interval is replaced by the median, however with the following
constraint on the number of substitutions allowed: the length of all the
abnormal RR-intervals must match the length of the substituted intervals,
i.e., k abnormal beats will be replaced by k′ beats with median value me
with me/2 accuracy, see Fig. 4,

k∑
j=0

RRi+j −
me

2
< k′ ·me <

k∑
j=0

RRi+j +
me

2
.

Figure 4 shows the application of the second editing method in the case of
K = 4.

Advantages: Replacement of abnormalRR-intervals by the median main-
tains the temporal order. The NN-signal does not obtain new values, which
might happen if the median were replaced by the mean of neighboring
NN-intervals.

Drawbacks: The NN-signal is set to constant in edited fragments. The
short-term correlations in the NN-signal might be affected.
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Fig. 4. The second editing method — replacing abnormal RR-intervals by the
median.

Method III: Replacement of abnormal RR-intervals by values randomly cho-
sen from neighboring NN-intervals

As before, K subsequent NN-intervals prior the perturbation and K − 1
NN-intervals after the disturbance are used to form a set of intervals from
which values are drawn. We assume equal probability for each value. Again,
the constraint about the number of possible k′ replacements is applied as
follows, see Fig. 5,

k∑
j=0

RRi+j −
m

2
<

k′∑
i=1

vi <
k∑

j=0

RRi+j +
m

2
,

where m is the mean of random values, vi — random value drawn from
the set of 2K − 1 values with neighboring NN-intervals, k′ — number of
substituted intervals. Figure 5 explains the algorithm described in the case
of K = 4.

Fig. 5. The third editing method — replacement of abnormal RR-intervals by
values randomly chosen from neighboring normal RR-intervals.

Advantages: The temporal order in this method is retained and there
are no new values in the NN-signal after editing. The edited parts of the
signal are not set to constant.

Drawbacks: This method destroys correlations in the edited part of
NN-signal.
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Method IV: Replacement of abnormal RR-intervals by NN-intervals found in
the set of the most similar patterns

We use 500 NN-intervals before the disturbance and 500 NN-intervals
after the disturbance in the search for NN-intervals similar to the last two
normal RR-intervals prior to the abnormal beat, see Fig. 6.

Fig. 6. The fourth editing method — entering values from the past and the future
that occurred in a similar sequence.

We assume that the vector vr = [RRr−1, RRr−2] is similar to the vector
v0 = [RRi−1, RRi−2] with p ∈ [0, 0.05) accuracy if

(1− p)RRi−1 < RRr−1 < (1 + p)RRi−1 ,

(1− p)RRi−2 < RRr−2 < (1 + p)RRi−2 .

All vectors similar to a given v0 which are found in the described set of
1000 surrounding NN-intervals are selected to form a set of possible similar
patterns. One of these patterns is chosen at random. The abnormal interval
RRi is replaced by RRr and its annotation is set to N .

We set the size of the search sequence to 1000 RR-intervals around the
disturbance, because we checked that this size is a minimal neighborhood in
which we can find at least one proper sequence for each edited perturbation.
Specifically, in the case of signals considered with p = 0.01, the set with
the most similar patterns was usually found not to be empty (in 90% of the
edited signals). However, if this set was empty, the p-value was increased by
0.01 until a vector similar to a given one was found. With our signals, only
3% of recordings needed p ≥ 0.03.

After replacing the first abnormal interval, we repeat the algorithm for
the next abnormal RR-interval from the pattern, i.e. we move to v0 =

[R̃Ri, RRi−1], where R̃Ri denotes the corrected RRi interval.
Remembering the temporal sequence order, we again impose a similar

constraint on the number k′ of intervals entered
k∑

j=0

RRi+j −
m

2
<

k′∑
i=1

pi <

k∑
j=0

RRi+j +
m

2
,

where m — mean of value from the new NN-intervals entered, pi — subse-
quent new NN-interval. Figure 6 presents the usage of method IV.
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Advantages: The correlations and the temporal order are retained. There
are no new values in the NN-signal after editing.

Drawbacks: This method is the most complicated of the methods pre-
sented. It uses additional parameters: the size of the interval scanned with
NN-intervals and the accuracy of matching.

3.2. Editing of patterns of type 2

Direct application of the methods described above to a pattern of type 2,
namely a K-isolated group of two sequences with abnormal beats, is not
straightforward. Modifications are needed which allow the inclusion of all
normal RR-intervals present between the groups of abnormal beats.

Method I — deletion can be applied without any correction. It is easy
to see that any disturbance of type 2 (a) can be edited in the same way as
the pattern of type 1. In the case of the last subtype on the list of possible
disturbances of type 2 (in our case, this means type 2 (d)), the length of
normal intervals between abnormal RR-intervals is large enough to apply
any editing method considered for the first sequence of abnormal beats. So
we edit the first sequence as it is a K-isolated disturbance, and then use the
edited sequence in repairing the second sequence.

For all other subtypes, we adopt the following strategy. The set consist-
ing of K NN-intervals prior to the whole disturbance and K−1 NN-intervals
after the disturbance is enlarged by normal values extracted from the range
between the two sequences with abnormal beats. In this way, the median
of method II, as well as accessible NN-intervals in method III, is calculated
in larger sets, though for each abnormal sequence the timing is treated sep-
arately. In particular in the case of K = 4, this means that the median is
calculated/values are drawn (2nd/3rd methods, respectively) from a set of
8 (type 2 (b)) or 9 (type 2 (c)) NN-intervals.

Since method IV is applied iteratively and one beat is corrected after
another, in this case only the timing must be controlled. We assume that
each sequence of abnormal beats in the pattern is edited independently with
its individual timeline.

4. Monte Carlo experiment on inserting abnormal beats

We thoroughly analyzed the 196 Holter signals to find the parts which
were free of any disturbances. Moreover, because HRV during the night is
known to be especially complex [19], we additionally assumed that these
clean parts would correspond to the nocturnal rest of a subject. We found
only 21 recordings which met our expectations. All these ECG recordings
were obtained from healthy, young people (11 females, 10 men; mean age
22.4± 1.6).



Impact of the Editing of Patterns with Abnormal RR-intervals . . . 2115

Each accepted signal consisted of 3500 RR-intervals classified as normal
and related to sleeping time, namely corresponding to 2 a.m.–4 a.m. The
first 500 RR-intervals and the last 500 RR-intervals were used only for the
proper execution of method IV, and were not included in the calculation of
HRV parameters.

We scanned our ECG resources again to find natural patterns of distur-
bances that might occur during nocturnal rest. Our interest was focused
on patterns satisfying the following criteria: all disturbances in a sequence
of 2500 RR-intervals were of type 1 or type 2, and the total number of ab-
normal beats was approximately 2%. Only five signals were found which
fulfilled these demands.

Annotations of these five patterns were applied to originally perfectly
clean signals. Then we cyclically attached the annotations starting at a
randomly chosen place in the clean signal, see Fig. 7.

Fig. 7. Cyclical attachment of a pattern with disorders to a clean signal at a
random location. The top line describes the original signal with all annotations set
to N . The bottom line shows the same RR-intervals but annotated according to a
pattern P cyclically shifted to a randomly chosen position k.

For comparison, we edited signals for which patterns of annotations were
constructed at random. Fifty random patterns with 2% abnormal beats in
total, arranged in type 1 or 2 disturbances, were generated for each of 21
clean signals.

In this way, we obtained two groups of synthetic signals with disturbances
for which the effects of editing could be tested. Each group considered
consisted of 1050 files. The main group provided the opportunity to study
the influence of editing if the perturbation was of natural origin, while the
second group allowed the verification of whether natural disturbances did
have specific patterns and because of them, the editing provided significantly
different results.
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5. Results

Every synthetic signal was edited by each of the methods described ear-
lier. Then, all the HRV parameters listed in Table I were calculated for
each edited signal. For each value of the HRV index calculated, we found
its percentage error, i.e.

PEX =
|X0 −Xed|

X0
× 100% ,

where X0 is the value of the HRV parameter of the original signal, and Xed

is the value of the same parameter obtained from the synthetic signal after
editing.

The values of PEX obtained were collected in groups corresponding to
the HRV index (described in Table I), method of editing (I–IV), and origin
of disturbances (natural or random). In each group the distribution of PEX

values was investigated by counting the number of values which fell in the
following intervals:

0 ≤ PEX ≤ 1 , 1 < PEX ≤ 3 , 3 < PEX ≤ 5 , 5 < PEX ≤ 10 ,

10 < PEX ≤ 30 , 30 < PEX ≤ 50 , 50 < PEX ≤ 100 .

If a given method of editing signals provides results falling into the first
interval, we can say that the method correctly reconstructs the signal prop-
erties. If the values are found within the second interval, we should see that
the method corresponds approximately linearly to 2% changes of the basic
signal. Results that are obtained with errors larger than 5% measure how
divergent the given editing procedure could be for a given HRV index.

The stacked bar charts in Figs. 8 and 9 present distributions of PEX

values (in percentage) for the subsequent HRV parameters and the given
method of editing. The acceptable results, i.e., when PEX ≤ 3% with
probability greater than 0.95, and not acceptable, divergent results, when
PEX > 5%, were obtained with the probabilities enumerated in Table III.

Thus, we see that

— there is a HRV parameter, namely the mean value of RR, which is
insensitive to the method of editing. Also standard deviation of the
mean, SDNN, provides values close to the original values in unedited
signals1;

1 These observations do not contradict the results in Table II, because here we compare
indices of edited synthetic signals to an unperturbed real signal, whereas, in the
introductory example, the comparison is made between a signal with perturbations
and an edited signal.
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I II

III IV

Fig. 8. Results of editing for the group of signals with random patterns of distur-
bances.

— the following two nonlinear indices: SD2 index of Poincaré plot and
Shannon entropy can be considered not to be dependent on the editing
method;

— pNN50 and the nonlinear parameters of fractality α1 and α2 are the
most sensitive to editing, independently of the method applied;

— the best stability of our results was achieved with the second editing
method, by replacing abnormal RR-intervals by the median from the
close neighborhood (similar results were obtained in [20] and [18]);
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I II

III IV

Fig. 9. Results of editing for the group of signals with random patterns of distur-
bances.

— editing of random patterns of perturbations, in general, provides sim-
ilar results to those obtained from natural patterns. Only for α2, we
observed significantly larger number of strongly different results;

— a comparison of effects of editing by methods III and IV shows us that
some indices responsible for the short-term variability (RMSSD, SD1)
more frequently produce correct values when method IV is applied,
although, to our surprise, neither ApEn nor SampEn are sensitive to
these methods.
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TABLE III

Lists of acceptable editing methods for a given index, namely, methods giving errors
less than 3% at Prob > 0.95, together with lists of editing methods providing results
with values significantly different from the original. In brackets, the corresponding
characterization is given for the random patterns with disturbances.

HRV Methods providing Methods providing Probality to
index name PEX ≤ 3% PEX > 5% get PEX > 5%

RR I, II, III, IV (I, II, III, IV)
SDNN I, II, III, IV I 0.5% (0.1%)

(I, II, III, IV) II 0.3% (0.1%)
III, IV 0.2% (0.3%)

RMSSD I, II, IV I, 0.2% (0.4%)
(I, II, IV) II 0.2% (0.1%)

III 2.3% (1.1%)
IV 0.5%

pNN50 I, II I 1.3% (1.2%)
(I, II) II 1.0% (2.1%)

III 5.4% (6.5%)
IV 3.5% (4.5%)

α1 none I 14.2% (13.5%)
(II) II 1.1% (0.4%)

III, IV 19% (13%)
α2 II I 9.0% (7.8%)

(II) II 1.0% (0.2%)
III 6.9% (13%)
IV 6.9% (15%)

SD1 I, II, IV I 0.2% (0.4%)
(I, II, IV) II 0.2% (0.1%)

III 2.3% (1.1%)
IV 0.5% (0.6%)

SD2 I, II, III, IV I 0.6% (0.1%)
(I, II, III, IV) II 1.0%

(III) (0.1%)
IV 0.2%

ApEn II, III, IV I 0.8% (0.1%)
(I, II, III, IV) II, III 0.1%

SampEn II, III, IV I 0.9% (0.1%)
(I, II, III, IV) II 0.7% (0.1%)

III, IV 0.2% (0.2%)
ShEn I, II, III, IV I 0.1%

(I, II, III, IV) (IV) (0.1%)
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6. Summary

Deleting improper contents is the most straightforward approach to cor-
recting missing or wrong beats. Replacing these beats by the median is in
agreement with the idea of homeostatic equilibrium, which, if properly main-
tained, allows the cardiovascular system, controlled by the autonomic ner-
vous system, to deliver blood to the organs most adequately and efficiently.
Our proposition of editing expressed in method III, namely, entering a kind
of thermal noise around the median, instead of a single median value, follows
the idea of the thermal equilibrium. In contrast to the thermal noise, method
IV tests the existence of a possible dynamical dependence in the short term
dynamics. The almost negligible differences in results provided by the third
and fourth methods give a further indication that our understanding of the
regulation of the cardiovascular system is still unsatisfactory.

Our considerations have been limited to patterns of disturbances of spe-
cific types. Moreover, we do not discuss the problem of the stationarity of
a signal. However, since method II of editing proved to be the most stable
when compared to other methods under analysis, its usage is recommended
in preprocessing of ECG recordings for HRV analysis.

We thank the Polish National Science Center for financial support: UMO:
2012/06/M/ST2/00480.
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