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1. Introduction

Quantum chromodynamics (QCD) [1] is widely recognised as being the
correct fundamental theory of the strong nuclear interaction. Its fundamen-
tal degrees of freedom are quarks and gluons, and their interactions at high
energies are well described by perturbation theory because of asymptotic
freedom [2, 3]. There is, however, a substantial discrepancy between these
fundamental degrees of freedom and the asymptotic states of the theory,
which are hadrons and their bound states. Since hadrons are thought of
as strongly coupled bound states of quarks and gluons, it is obvious that a
classical perturbative treatment is not sufficient to describe them from first
principles.

Lattice gauge theory presents a framework in which to understand quan-
titatively this strongly coupled low energy sector of the theory from first
principles. There are two main motivations for this: On the one hand, we
would like to develop a full understanding of the dynamics of QCD itself
and on the other hand, we would like to reliably subtract QCD contribu-
tions from observables designed to probe other fundamental physics. In this
paper, I will explore the first of these two motives only. In Section 2, I will
introduce lattice QCD, and give an overview of the techniques used in lattice
QCD calculation in Section 3. In Section 4, I will discuss the determina-
tion of the ground state light hadron spectrum as an example of a lattice
QCD calculation and in Section 5, I will briefly introduce finite temperature
lattice QCD and highlight some important results.
∗ Invited talk presented at the LIV Cracow School of Theoretical Physics “QCD Meets
Experiment”, Zakopane, Poland, June 12–20, 2014.
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I would like to emphasize that this paper is not intended to be a complete
introduction to lattice QCD in any sense. The aim is rather to provide people
working in related areas with a rough overview of lattice techniques, what
they are able to provide today and what their limitations are. Consequently,
details and proofs are often omitted and I refer the interested reader to the
introductory literature on the subject for more in-depth coverage [4–12].

2. Formulation of lattice QCD

2.1. Continuum QCD

QCD is an SU(3) gauge theory with fermions in the fundamental repre-
sentation. The Lagrangian of QCD is

LQCD = −1
4G

a
µνG

aµν + ψ̄ (iDµγ
µ −m)ψ , (1)

where the field strength tensor Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν with cou-

pling g, the structure constants fabc of SU(3) and the covariant derivative
Dµ = ∂µ + gAaµ

λa

2i with λa denoting the Gell-Mann matrices. Both ψ̄ and
ψ carry an implicit flavour index and m is a N ×N matrix in flavour space
for N quark flavours.

A fundamental property of the QCD Lagrangian Eq. (1) is its invariance
under a local SU(3) symmetry

ψ(x) → G(x)ψ(x) ,

ψ̄(x) → ψ̄(x)G†(x) ,

Aµ(x) → G(x)Aµ(x)G†(x)− i

g
(∂µG(x))G†(x) (2)

with G(x) ∈ SU(3) an arbitrary local gauge transformation. Since any
physical quantity cannot depend on our arbitrary choice of a gauge, only
gauge invariant quantities can be physical.

In addition to gauge symmetry, the QCD Lagrangian Eq. (1) has a global
U(N) flavour symmetry

ψ(x) → eiτaφψ(x) ,

ψ̄(x) → ψ̄(x)e−iτaφ , (3)

where the τa are the N2 generators of U(N). In the case of vanishing quark
mass m = 0, there is an additional chiral symmetry

ψ(x) → eiτaγ5φψ(x) ,

ψ̄(x) → ψ̄(x)eiτaγ5φ (4)

whose diagonal part τa = 1 is anomalous [13, 14], leaving an SU(N) sym-
metry intact.
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We quantize QCD using the Feynman path integral formalism. We can
express the expectation value of a time ordered product of operators as

〈0|T
(
Ô1(x1) . . . Ôn(xn)

)
|0〉 =

∫
DAµDψDψ̄Ô1(x1) . . . Ôn(xn)eiŜ[Aµ,ψ,ψ̄ ]∫

DAµDψDψ̄e
iŜ[Aµ,ψ,ψ̄ ]

,

(5)
where we need to integrate over all fermion and gauge fields ψ, ψ̄ and Aµ.
The integral in Eq. (5) is not well defined unless we specify a regulator,
which we will provide by discretizing the theory on a finite space-time lattice.
Before we do so however, we perform another step: we analytically continue
the integral in Eq. (5) to imaginary time, which is possible as long as the
Hamiltonian of the theory is bounded from below. In the resulting Euclidean
path integral

〈0|T (O1(x1) . . .On(xn))|0〉 =

∫
DAµDψDψ̄O1(x1) . . .On(xn)e−S[Aµ,ψ,ψ̄ ]∫

DAµDψDψ̄e
−S[Aµ,ψ,ψ̄ ]

(6)
with the Euclidean QCD action

S =

∫
d4x

(
1
4G

a
µνG

aµν + ψ̄ (iDµγ
µ +m)ψ

)
(7)

the phase factor eiŜ is replaced by a real valued exponential e−S . Equa-
tion (6) can then be interpreted as the expectation value of the observable
with respect to the positive definite measure DAµDψDψ̄e−S . It is interest-
ing to note, that the r.h.s. of Eq. (6) can also be viewed as a thermodynamic
expectation value with respect to a Boltzmann factor e−S . It is, therefore,
customary to call the denominator of Eq. (6) the partition function

Z =

∫
DAµDψDψ̄e

−S[Aµ,ψ,ψ̄ ] . (8)

2.2. Lattice regularization

We now proceed to introduce a UV regularization of Euclidean QCD
by discretizing the theory on a finite space-time lattice [15]. The lattice
is hypercubic with a distance a between nearest neighbouring points (the
lattice spacing). We also provide an IR regularization of the theory by
a finite extent of the lattice in spatial L = Nxa and temporal T = Nta
directions and impose toroidal boundary conditions. As is the case for any
other regularizations, we have to remove them eventually in order to obtain
physical results. In lattice terminology, the process of removing the UV
cutoff is known as the continuum limit, whereas the removal of the IR cutoff
is the infinite volume limit.
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Fermion fields ψ(x) of the regularized theory are defined on the lattice
sites x with xi ∈ a{0, . . . , Nx − 1} and x4 ∈ a{0, . . . , Nt − 1}. In order to
preserve exact gauge invariance, gauge fields are treated differently however.
Instead of discretizing the gauge potential at each lattice site Aµ(x) directly,
we discretize the parallel transport between any site and its nearest neigh-
bours. In QCD, one typically uses the group element Uµ(x) directly, where
it is understood that this represents the continuum parallel transport

Uµ(x) = Peig
∫ x+eµ
x dzµAµ(z) , (9)

where P denotes the path ordered product and eµ is the vector of length a
in µ direction. The reverse parallel transport is then given by

U−µ(x) = Peig
∫ x−eµ
x dzµAµ(z) = U †µ(x− eµ) . (10)

With these definitions and the gauge transformations Eq. (2), we find that
the lattice fields transform as

ψ(x) → G(x)ψ(x) ,

ψ̄(x) → ψ̄(x)G†(x) ,

Uµ(x) → G(x)Uµ(x)G†(x+ eµ) . (11)

In order to proceed, we need to construct gauge invariant quantities
from our lattice fields. We will need them for two distinct purposes: First,
we want to construct a lattice action and second, we need to find gauge
invariant observables. In principle, we have two choices of constructing
gauge invariant objects (see Fig. 1). We can either take traces of closed
loops of parallel transports (gauge links) Tr(Uµ1(x)Uµ2(x+ eµ1) . . . U †µn(x))
or we can take a fermion–antifermion pair that is connected by gauge links
ψ̄(x)Uµ1 . . . U

†
µn(y)ψ(y).

Ψ

x

y
Ψ

Fig. 1. Two possibilities of constructing a gauge invariant object in a lattice gauge
theory. Left: A closed loop of parallel transports (gauge links). Right: A fermion
and an antifermion connected by gauge links.
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The simplest1 object we can construct of gauge links alone is called the
plaquette (see Fig. 2). It is defined as the trace of the path ordered product
of gauge links around an elementary square in the µ–ν plane

Pµν(x) = Tr
(
Uµ(x)Uν(x+ eµ)U †µ(x+ eν)U †ν (x)

)
. (12)

Using Eq. (9), we can express the plaquette in terms of continuum gauge
potentials. Taylor expanding in the lattice spacing a results in

Pµν(x) = Tr

(
1 + iga2Gµν(x)− g2a4

2
G2
µν(x)

)
+O

(
g6
)
. (13)

We can use this result to construct a gauge action

SG = β
∑
x,µ>ν

(
1− 1

6

(
Pµν(x) + P †µν(x)

))
(14)

with β = 6/g2 that has the correct form in the continuum limit

SG
a→0−→ 1

4

∫
d4xGaµν(x)Gaµν(x) . (15)

μνP (x)

x

x+e

x+e

x+e +e

μ

ν μ ν

μνP (x)
1×2

x

x+e

x+2e

x+2e +e

μ

ν μ ν

Fig. 2. An elementary plaquette (left) and an extended 2× 1 Wilson loop (right).

The gauge action Eq. (14) is known as the Wilson plaquette action. It
has the correct continuum limit with leading corrections of O(a2). It is
not the only possible discretization of the continuum gauge action Eq. (7)
though. One could equally well take e.g. a trace W 2×1

µν over a closed loop
of gauge links around a 2× 1 rectangle (see Fig. 2). This object, known as

1 Since the lattice has a torus topology, it is possible to construct closed gauge loops
that wind around any direction. This object is called Wilson line or Polyakov loop.
Therefore, it is possible on lattices with an extent of 3 or fewer lattice spacings in
one direction to construct a gauge invariant object entirely consisting of even fewer
gauge links.
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the Wilson loop of size 2 × 1, has the same leading continuum behaviour
as the plaquette up to a trivial numerical factor. One could therefore, in
principle, use it instead of the plaquette for defining a lattice gauge action,
which, however, is not particularly useful. What is useful, however, is taking
a linear combination of the elementary plaquette and the 2× 1 Wilson loop
[16–18]. Choosing the relative weights such that the leading order term
in the continuum limit remains unchanged, while the leading corrections of
O(a2) (which have the same form for both terms) cancel, we obtain an action
that has leading corrections of O(a4) only. Classically, these coefficients are
easy to find. They can be read off from a Taylor expansion of the lattice
operators in terms of continuum operators. The resulting action

SG = β
∑
x,µ>ν

(
1− 1

6

(
5
3Pµν(x)− 1

12W
2×1
µν (x)

)
+ h.c.

)
(16)

is known as the tree-level Lüscher–Weisz action. In a quantum theory, there
are radiative corrections and one can, in principle, determine the relative
weights by either computing them in perturbation theory or finding them
nonperturbatively [19–22].

This construction of a gauge action that has higher order cutoff terms is a
special case of the Symanzik improvement program [23, 24]. Generically, the
idea behind it is that the lattice theory, as an effective theory with a finite
cutoff, may contain continuum irrelevant, nonrenormalizable terms without
altering the continuum limit. One can thus perform an expansion of the
continuum action in terms of lattice operators. The nontrivial part of this
expansion are the kinetic terms where continuum derivative operators are
expanded in discrete difference operators. As an illustrative example, let us
consider the classical expansion of the simple derivative operator

d

dx
f(x) = f ′(x) . (17)

On a discrete set of points with uniform spacing a, we can define a sequence
of finite difference operators

∆nf(x) :=
f(x+ na)− f(x− na)

2na
. (18)

Taylor expanding this expression around x one obtains

∆nf(x) =
∞∑
i=0

(na)2i

(2i+ 1)!
f (2i+1)(x) = f ′(x) +

1

6
(na)2f ′′′(x) +O

(
a4
)

(19)

and thus the finite difference operator

∆f(x) :=
(

4
3∆1 − 1

3∆2

)
f(x) (20)
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has classical discretization errors

∆f(x) = f ′(x) +O
(
a4
)
. (21)

2.3. Fermion discretization

In the Euclidean continuum theory, the free fermion action reads

SF =

∫
d4xψ̄(x) (γµ∂µ +m)ψ(x) . (22)

The most straightforward discretization of this action is

SNF = a4
∑
x

ψ̄(x) (γµ∆µ +m)ψ(x) (23)

with the simple difference operator

∆µf(x) :=
f(x+ eµ)− f(x− eµ)

2a
. (24)

We can diagonalize this operator in Fourier space. The resulting inverse
propagator has the form

G−1
N (p) = iγµ

sin apµ
a

+m. (25)

Performing the continuum limit a → 0 for a fixed physical momentum pµ,
we recover the continuum inverse propagator

G−1
N (p)

a→0−→ iγµpµ +m (26)

which has the correct physical poles at p2 = −m2. Lattice periodicity re-
quires that these poles are repeated for pµ → pµ + 2π/a, but Eq. (26) has
additional poles within the Brillouin zone for pµ → pµ + π/a. In addition
to the physical pole, there are 2D − 1 of these doubler fermion poles within
the Brillouin zone, so in 4D the naive fermion action Eq. (23) does, in fact,
describe 16 species of fermions instead of one.

This feature is known as the fermion doubling problem. It is not specific
to the naive fermion action, as can be seen from the following heuristic argu-
ment. Let us try to generalize the action and, therefore, the inverse propaga-
tor Eq. (25). We may replace sin(apµ)/a with a generic function Pµ(apµ)/a.
Around apµ = 0, Pµ(apµ) = apµ + O(a2) is dictated by the requirement
of correct behaviour of physical modes in the continuum limit (Eq. (26)).
Similarly, lattice periodicity requires that Pµ(apµ+ 2π) = apµ+O(a2). One
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2π/a
pμ

Pμ

doubler fermion

nonlocality

Fig. 3. Illustration of the possible behaviours of Pµ(apµ).

can, therefore, have an additional zero crossing of Pµ(apµ) within the Bril-
louin zone or a discontinuity of the function. The former corresponds to a
doubler mode while the later, in coordinate space, corresponds to a nonlocal
operator. This situation is depicted in Fig. 3.

Of course, replacing sin(apµ)/a by Pµ(apµ)/a in Eq. (25) is not the most
generic ansatz. One could try to add a term to the action that vanishes at
apµ = 0 but gives a large contribution at the doubler momenta. If we re-
quire, in addition, that the chiral symmetry of the continuum action Eq. (4)
is respected by the lattice action, our choices are severely restricted. Contin-
uum chiral symmetry requires the additional term to anticommute with γ5,
so the only other term we may add has the form γµγ5Rµ(apµ). For a correct
continuum limit, this term has to vanish at apµ = 2πn, too. A possible
action along these lines would be

SF = a4
∑
x

ψ̄(x) (γµ∆µ + aγµγ52µ +m)ψ(x) (27)

with
2µf(x) :=

f(x+ eµ)− 2f(x) + f(x− eµ)

2a2
(28)

which would lead to an inverse propagator

G−1(p) = iγµ
sin apµ
a

+ γµγ5
1− cos apµ

a
+m. (29)

One can check that the effect of the additional term in Eq. (29) is just to
shift the doubler poles within the Brillouin zone. The only other possibility
that is left, namely adding cross-terms, will have a similar effect of shifting
the doubler poles within the multidimensional Brillouin zone. There is, in
fact, a no-go theorem by Nielsen and Ninomiya [25–27] that states the im-
possibility of a fermion discretization that simultaneously fulfils all of the
following requirements:
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1. The absence of doubler modes.

2. Invariance under continuum chiral symmetry.

3. Locality of the fermion operator.

4. The correct continuum limit.

It was also pointed out by Karsten and Smit [28] that the emergence of
doubler modes for lattice fermions is a natural consequence of the general
feature that a regulated theory is anomaly free. The chiral anomaly of the
physical mode is cancelled by the anomaly of the doubler modes2.

In order to proceed, we therefore need to throw one of the desired features
of our fermion action overboard. Since we cannot really sacrifice the correct
continuum limit or the locality of the operator, the choices are to either
violate continuum chiral symmetry or to live with some doubler fermions.
The former is most easily accomplished by adding a term to the action that
is very similar in spirit to Eq. (27) but violates chiral symmetry (Eq. (4)).
The resulting action [31]

SW
F = a4

∑
x

ψ̄(x) (γµ∆µ + ra2 +m)ψ(x) (30)

is known as the Wilson fermion action, where we have used 2 =
∑

µ2µ.
The Wilson parameter r is usually set to r = 1. Fourier transforming to
momentum space, we can read off the inverse propagator as

G−1(p) = iγµ
sin apµ
a

+
∑
µ

1− cos apµ
a

+m. (31)

We can see that although the Wilson term in Eq. (30) is formally suppressed
by a in the continuum limit, it does very different things to physical and dou-
bler modes. At fixed physical momentum p, the additional term in Eq. (31)
vanishes indeed ∝ a, while at fixed lattice momentum ap it gives a divergent
contribution ∝ 1/a. Notice also that while the naive term spreads the mo-
menta into the imaginary direction, the Wilson term spreads them into the
real one (cf. Fig. 4).

Introducing gluon fields in a gauge invariant manner is straightforward.
We replace the finite difference operator by the covariant one

∆µf(x) :=
Uµ(x)f(x+ eµ)− U †µ(x− eµ)f(x− eµ)

2a
(32)

2 See also [29, 30].
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Fig. 4. Eigenvalue spectra of the free naive fermion operator (Eq. (26), along the
imaginary axis) and the free Wilson fermion operator (Eq. (31), spread into the real
direction) for m = 0 on a 324 lattice. The naive operator has a 16-fold degeneracy
in each mode. Note that the spectrum of the free staggered fermion operator
Eq. (42) is identical to the naive one except for the degeneracy, which is reduced
by a factor of 4.

and the discretized second derivative by the covariant

2µf(x) :=
Uµ(x)f(x+ eµ)− 2f(x) + U †µ(x− eµ)f(x− eµ)

2a2
. (33)

Unlike the operator of the naive fermion action Eq. (23), the operator

DW(m) = γµ∆µ + ra2 +m (34)

of the Wilson action Eq. (30) is no more antihermitian at m = 0. It does,
however, fulfil the property

γ5DW(m) = D†W(m)γ5 (35)

which is known as γ5-hermiticity. It implies that the eigenvalues of DW(m)
are either real or appear in complex conjugate pairs. This property renders
the determinant of the operator real, which will be important for its numer-
ical treatment. In addition, Eq. (35) implies that the left eigenvector of a
complex mode |i〉 is related to the right eigenvector of the complex conjugate
mode |̂i∗〉 by |̂i∗〉 = γ5|i〉 and the left and right eigenvectors |j〉 and |ĵ〉 of
a real mode are related by |ĵ〉 = γ5|j〉. The latter property is the remnant
of the chirality of zero modes of the continuum operator [32]. For a normal
operator (i.e. when |ĵ〉 = |j〉), it reads |j〉 = γ5|j〉.
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Because of the explicit breaking of chiral symmetry, some additional
operator mixing occurs in Wilson fermions that is absent in fermion formu-
lations which respect chiral symmetry. As a consequence, Wilson fermions
show some deficiencies, most notably an additive mass renormalization and
a bad O(a) scaling behaviour. As in the case of gauge actions, these defi-
ciencies can be ameliorated by following a Symanzik improvement program.

The most straightforward idea of constructing a Wilson-like operator
with an improved continuum behaviour is including next-to-nearest neigh-
bour points into the derivative terms similar to Eq. (20). Such an operator
has been proposed by Hamber and Wu [33], but it is not used because a
simpler alternative exists. Sheikholeslami and Wohlert [34] demonstrated
that O(a) improvement can also be achieved by adding a Pauli term to the
Wilson operator (Eq. (34))

DSW = DW(m)− arcSW

2
σµνGµν . (36)

From Eq. (13), we see that the value of the gluon field at the center of
the plaquette can be obtained simply by taking the imaginary part of Pµν .
In order to obtain it at a lattice site, the average over the four adjacent
plaquettes is usually taken and the term is often referred to as the clover
term.

The clover term in Eq. (36) comes with a coefficient cSW. For classical
or tree-level improvement, cSW = 1 and the resulting action has discretiza-
tion effects of O(a2) classically and O(αsa) through quantum corrections.
One can compute the quantum corrections either perturbatively [35, 36] or
nonperturbatively [37], but the combination of tree-level clover improvement
with UV-filtering (or smearing) techniques that will be discussed in Sect. 2.5
provides for a very efficient reduction of the O(αsa) effects [38].

We now turn towards the second option for evading the Nielsen–Ninomiya
theorem: living with doubler fermions. We saw that the naive fermion ac-
tion Eq. (23) describes a theory with 2D = 16 poles in the fermion prop-
agator. The poles are located such that one can reach another pole by
adding/subtracting a momentum π/a to any momentum component pµ. If
one then starts from the pole at p = 0 and defines p′µ = −(pµ ± π/a), it is
evident that the pole at pµ = ±π/a can be reinterpreted as the physical one
in the new momenta. Note that due to the sign flip between the momenta
definitions, chirality will be reversed when going to an adjacent pole.

In the free theory, there is an exact degeneracy between the fermions
described by each of the 16 poles. In the interacting theory, high momentum
gluons with momentum ∼ π/a will couple the different species. As the
necessary momentum diverges for a→ 0, one can expect these mixing effects
to disappear in the continuum limit. We will see later that there can be
subtle order of limits effects however.
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The general strategy of living with doubler fermions is now to project
to one of the fermion species and suppress the effect of the others as much
as possible. It has been noted very early on in the development of lattice
gauge theory [39–41] that the naive fermion operator has an exact fourfold
degeneracy even in the interacting case that can be exposed and lifted by a
simple transformation. We start with the explicit form of the naive fermion
action Eq. (23) in the interacting case

SN = a4
∑
x

ψ̄(x)γµ
Uµ(x)ψ(x+ eµ)− U †µ(x− eµ)ψ(x− eµ)

2a
+mψ̄(x)ψ(x) .

(37)
Substituting for the fermion fields

ψ(x) = γ
x0
a

0 γ
x1
a

1 γ
x2
a

2 γ
x3
a

3 χ(x) , (38)

ψ̄(x) = χ̄(x)γ
x3
a

3 γ
x2
a

2 γ
x1
a

1 γ
x0
a

0 , (39)

we obtain

Sst=a4
∑
x

χ̄(x)ηµ(x)
Uµ(x)χ(x+ eµ)− U †µ(x− eµ)χ(x− eµ)

2a
+mχ̄(x)χ(x) ,

(40)
where ηµ(x) is a purely numerical factor

ηµ(x) = (−1)
∑
ν<µ xν . (41)

The corresponding staggered fermion operator reads

Dst(m) = ηµ∆µ +m. (42)

We can, therefore, take χ̄ and χ to be single component fields, which lifts a
fourfold exact degeneracy. The individual spinor components of the fermion
field are not all present at each lattice site anymore. We can, however, infer
from the transformation Eqs. (38)–(39) how to combine the 16 components
present in an elementary hypercube into 4 species (or tastes) of 4-component
fermion spinors. As the components of the fermion field are staggered across
the lattice, the action is referred to as staggered fermions.

Staggered fermions satisfy an equivalent of γ5-hermiticity Eq. (35)

η5Dst(m) = D†st(m)η5 (43)

with
η5(x) = (−1)x0+x1+x2+x3 . (44)
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They also retain a remnant of chiral symmetry at zero mass

{Dst(0), η5} = 0 (45)

which implies cutoff terms of O(a2) and the absence of additive mass renor-
malization. The symmetry Eq. (45) is, however, very different from the full
continuum chiral symmetry. It is a U(1) and will be present, even if we want
to describe a single fermion flavour which in the continuum does not have
a chiral symmetry. The implications of this are discussed extensively in the
literature [42–68] and while no definitive conclusion has been reached, there
are many indications that staggered fermions do correctly reproduce the
chiral symmetry pattern including the anomaly if an appropriate continuum
limit is taken before going to the chiral limit.

A great number of additional fermion discretizations have been suggested
in the literature and are used to some degree in recent lattice calculations.
Among those are twisted mass fermions [69], which feature an improved
scaling behaviour at the expense of flavour breaking, minimally doubled
fermions [70–73] with only a single doubler pole that comes at the expense
of breaking the lattice rotational symmetry or staggered fermions with an
additional Wilson term to remove doubler modes from the physical spectrum
[74–76]. The most numerous group, however, are fermion formulations that
to some degree build upon the advances in understanding of chiral symmetry
on the lattice.

2.4. Lattice chiral symmetry

The Nielsen–Ninomiya theorem seems to forbid the existence of an oth-
erwise well-behaved lattice fermion with chiral symmetry. Its definition of
chiral symmetry, however, is the continuum form. It demands that the
fermion operator D anticommutes with γ5, so γ5D + Dγ5 = 0. It has been
realized very early on by Ginsparg and Wilson [77] that upon blocking from
the continuum, the continuum chiral symmetry is replaced by the relation

γ5D +Dγ5 =
a

ρ
Dγ5D . (46)

Independently of this work, a class of lattice actions was constructed
[78–80] by blocking transformations and it was realized that they fulfil the
Ginsparg–Wilson relation Eq. (46) [81]. Another lattice fermion formula-
tion was inspired by the discovery that in a 5-dimensional theory,S chiral
fermions naturally arise along a 4-dimensional defect [82, 83] even on a lat-
tice with finite cutoff [84]. The resulting domain wall fermion action [85]
is still widely used today. Along similar lines, Narayanan and Neuberger
developed the overlap fermion action [86–89], which was condensed into a
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4-dimensional fermion operator by Neuberger [90]. This operator fulfils the
Ginsparg–Wilson relation (Eq. (46)) [91] and in the massless case is given by

Dov =
ρ

a

1 +
DW(−ρ/a)√

D†W(−ρ/a)DW(−ρ/a)

 , (47)

where DW(−ρ/a) is the Wilson operator (Eq. (34)) at a negative bare mass
−ρ/a. Note that the overlap operator also fulfils γ5-hermiticity γ5Dov =

D†ovγ5.
Although the Ginsparg–Wilson relation is sometimes referred to as a

minimal way of breaking chiral symmetry, it is, in fact, the correct chiral
symmetry relation of the regulated theory [92]. This is somewhat more
apparent after a trivial rewriting of Eq. (46)

γ5D +Dγ̂5 = 0 , γ̂5 = γ5

(
1− a

ρ
D

)
. (48)

It implies that the fermion action

S = ψ̄Dψ (49)

is invariant under an infinitesimal chiral transformation

ψ̄ → ψ̄(1 + iεγ5) , ψ → (1 + iεγ̂5)ψ (50)

which acts differently on the fermion and antifermion fields. Note, however,
that Eq. (48) implies that in the continuum limit, the continuum form of
chiral symmetry is restored

γ̂5 = γ5

(
1− a

ρ
D

)
a→0−→ γ5 . (51)

Together with γ5 hermiticity, Dγ5 = γ5D the Ginsparg–Wilson relation
Eq. (46) implies

D† +D =
a

ρ
DD† (52)

which means that a
ρD − 1 is a unitary operator and the eigenvalues of D

lie on a circle of radius ρ/a touching the imaginary axis at the origin (see
Fig. 5). The real modes of D are, therefore, located at either 0 or 2ρ/a and
it can easily be shown that they are chiral. The modes at 2ρ/a correspond
to all unphysical doubler branches and they can, in fact, be removed by a
simple transformation of the fermion fields

ψ̃ = 1̃ψ , 1̃ = 1− a

2ρ
D . (53)
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Fig. 5. Eigenvalue spectrum of the free overlap operator with ρ = 1 (Eq. (47),
circle) compared to the free Wilson (Eq. (31), spread into the real direction) and
staggered (Eq. (42), along the imaginary axis) operators on a 324 lattice.

The (massless) fermion action can now be written as

S = ψ̄
D

1− a
2ρD

ψ̃ (54)

which is an antihermitian operator. The chiral modes are at the origin and
the doublers have been removed off to infinity. In fact, in the new field
variables, the action now obeys the continuum form of chiral symmetry, i.e.
it is invariant under

ψ̄ → ψ̄(1 + iεγ5) , ψ̃ → (1 + iεγ5)ψ̃ . (55)

All consequences of chiral symmetry, such as conserved axial currents, the
correct anomaly, the absence of additive mass renormalization and discre-
tization effects that start at O(a2) are only, therefore, present for Ginsparg–
Wilson fermions provided that the correctly rotated field variables are used
for constructing the observables. One can now also add a mass term to
Ginsparg–Wilson fermions that behaves exactly like a continuum mass term

D(m) = D + 1̃m. (56)

The main disadvantage of chirally symmetric fermions for numerical com-
putations is their cost. Simple fermion discretizations, such as the Wilson
or staggered ones, typically have fermion operators with a limited number
of couplings to neighbour sites. Numerically, this translates into them being
sparse matrices. In contrast, chirally symmetric operators, such as e.g. the
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overlap operator Eq. (47), tend to be full matrices which are much more de-
manding computationally. In fact, there is a theorem [93, 94] that chirally
symmetric operators cannot be realized with a finite number of couplings to
their nearest neighbours in four dimensions, a property that is referred to as
ultralocality in the lattice literature. One can still have an ultralocal chiral
fermion operator if one includes an extra fifth dimension as is done in the
case of domain wall fermions. The price to pay there, however, is that the
extent of the fifth dimension has to be made infinitely large, in principle, to
have exact chiral symmetry. Obviously, this strategy implies considerable
additional computational effort, too.

2.5. Effects of UV modes

It is evident from Fig. 5 that the physical modes of a lattice fermion
operator which are located around the origin are by far outnumbered by UV
modes. Modes that are close to the cutoff do not carry a lot of physical infor-
mation in the interacting case though. With increasing cutoff, these modes
are ever deeper in the perturbative regime that is dominated by asymptotic
freedom and their fluctuations mainly contribute towards enlarging cutoff
effects.

It is possible to eliminate a large part of these fluctuations by a simple
modification of the fermion operator. Remember that gauge interactions
were introduced into the lattice theory by the covariant derivative (Eq. (32))
which contains the parallel transport Uµ(x) between the lattice points x and
x + eµ. Note that we have chosen the gauge connection Uµ(x) along the
minimal path connecting the two neighbouring points. Although this choice
seems reasonable, it is not unique. In principle, one can choose any path
connecting the two sites (see Fig. 6).

Ψ

x
y

Ψ

Fig. 6. Illustration of two different lattice paths, one of them minimal, between
neighbouring points x and y.
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This ambiguity can be used to effectively damp the coupling of gluons
with momenta close to the cutoff to the fermions. The procedure is generi-
cally termed smearing, link fattening or UV-filtering and the first instance
was proposed by the APE Collaboration [95]. In the APE smearing recipe, a
fat or smeared gauge link U (APE)

µ (x) inD dimensions is defined as a weighted
average

U (APE)
µ (x) = (α− 1)Uµ(x) +

α

2(D − 1)
Ωµ(x) , (57)

where

Ωµ(x) =
∑
µ6=µ

Uν(x)Uµ(x+eν)U †ν (x+eµ)+U †ν (x−eν)Uµ(x−eν)Uν(x−eν+eµ)

(58)
is the sum over staples (see Fig. 7) with the smearing parameter α typically
chosen to be α ∼ 0.6. The smeared link U (APE)

µ (x) can then be used in the
fermion operator instead of the original “thin link” Uµ(x). For sufficiently
smooth gauge configurations, i.e. for gauge configurations where the gluonic
fields do not carry substantial momenta components at the cutoff scale, the
difference between thin links and staples is irrelevant in the continuum limit.
Consequently, the continuum limit is not affected by replacing thin links with
smeared ones in the fermionic operator.

+(1-α) α
2
–

Fig. 7. Illustration of the APE smearing procedure [95] in the 2-dimensional case.
The link connecting nearest neighbouring sites in the fermion operator is replaced
by a weighted average of the “thin link” (weight 1 − α) and the “staple” (weight
α/2(D − 1)).

This simple recipe has a shortcoming though. The new link variable
U

(APE)
µ (x) was obtained by averaging elements of the gauge group and,

therefore, is not, in general, an element of the gauge group itself. This
can be remedied by a simple unitary backprojection

U ′ =
U (APE)√

U (APE)†U (APE)
(59)

followed by dividing out the phase of the determinant

Û =
U ′

(det(U ′))1/3
. (60)
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This procedure is continuum irrelevant on sufficiently smooth gauge fields,
too. One can, therefore, replace the thin links U in the fermion action
with Û .

While the backprojection (Eqs. (59), (60)) produces an element of the
gauge group, it is, however, not differentiable. This turns out to be an
obstacle for dynamical fermion algorithms as they require the derivative of
the fermionic action with respect to the original gauge field U . Morningstar
and Peardon have suggested a modification of the APE smearing procedure
[96] that is both differentiable and equivalent to APE smearing for small
smearing parameters α. They start by constructing the antihermitian part
of the plaquettes spanned by the staples

Aµ(x) =
Ωµ(x)U †µ(x)− Uµ(x)Ω†µ(x)

2
(61)

and making it traceless

Sµ(x) = Aµ(x)− 1
3 TrAµ(x) . (62)

Exponentiating the result with a smearing parameter ρ and multiplying it
on the original link

Vµ(x) = eρSµ(x)Uµ(x) (63)

gives the so-called stout link Vµ(x). For small smearing parameters, stout
link smearing with a smearing parameter ρ = α/2(D − 1) is equivalent to
APE smearing.

There are many variants of the smearing procedure that are commonly
used. The simplest one is the repeated application of the smearing proce-
dure. One can e.g. use the Vµ(x) from Eq. (63) as an input to Eq. (61)
instead of the original thin link Uµ(x). If the number of steps is kept fi-
nite, the procedure still amounts to a continuum irrelevant redefinition of
the fermion action.

Instead of repeating the entire smearing procedure n times, it is also
possible to change the staples used and the smearing parameter upon each
application. Hasenfratz and Kenchtli [97] suggested a smearing procedure
along these lines consisting of D−1 steps. They construct an APE-smeared
link out of staples that are smeared themselves. This nested smearing is a
variant of the APE smearing leaving out all directions that would cause a
link to be outside the adjacent elementary hypercubes of the original target
link. This nesting is then repeated until thin links are used in the (D− 1)st

step. This smearing procedure is, therefore, known as hypercubic or HYP
smearing. An analytic variant of this procedure, the hypercubic exponential
(HEX) smearing [38] is also in use today.
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To illustrate the effect that smearing has on the eigenmode spectrum
of the Wilson operator, Fig. 8 is plotting the entire spectrum of massless
Wilson operators on a single gauge configuration of topological charge 1.
Remember that the physically relevant low momentum modes are in the
vicinity of the origin and that for the free case and for Ginsparg–Wilson, and
staggered fermions the physical eigenmodes spread from the origin along the
imaginary axis resp. a circle touching it (cf. Fig. 5). For the interacting
case, we see that the eigenmodes of the Wilson operator do not touch the
imaginary axis at all indicating a large additive mass renormalization. In
addition, the would-be chiral mode on the real axis is far away from the low
lying complex modes indicating a large mixing with doubler modes.

−1

−0.5

0

0.5

1

1.5

−1.5

Wilson    Clover    Wilson-HYP    Clover-HYP

Fig. 8. Eigenvalue spectrum of Wilson-type operators on one single gauge field
background on a 64 lattice. Data by courtesy of Dürr [98, 99].

Adding a clover term (Eq. (36)) with the tree-level cSW = 1 does miti-
gate both these effects somewhat as does one step of HYP-smearing. The
combined effect of clover improvement and smearing, however, does result
in a significantly improved operator spectrum in the relevant region.

Similarly, beneficial effects of smearing can be observed for staggered
fermions. In their case, a gluon field with a momentum component ∼ π/a
near the cutoff can transform between the staggered “tastes”. A suppression
of these spurious interactions that are absent in the continuum, therefore, im-
proves the degeneracy between the physical and remaining doubler branches
and leads to a smaller breaking of the taste symmetry.

One might be worried about the effect of iterated smearing on the lo-
cality of the fermion operator. In fact, the locality of the fermion operator
itself is not affected by the smearing at all. Changing the link variables in
the fermion operator does not alter the sites connected to each other via
these links. What is affected by link smearing is the fermion to gauge field
coupling: it acquires a momentum dependent form factor. For small α, per-
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turbation theory tells us that the gauge field coupling is smeared out after
N steps over an effective radius squared of [100]

〈
r2
〉
eff =

a2Nα

D − 1
. (64)

For fixed α and N , therefore, the coupling should be local in the continuum
limit. This assertion has been tested numerically for the case of 6-step stout
smearing [101]. As one can see in Fig. 9, the sensitivity of the fermion
operator towards a variation of the gauge field is bounded from above by an
exponential in lattice units. On top of that, the coupling is still ultralocal.
It is exactly 0 outside of the smearing radius.
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Fig. 9. Locality of the gauge field to fermion coupling for a 6-step stout smeared
action. As one can clearly see, the exponential decay of the coupling with distance
in lattice units has an envelope that is independent of lattice spacing. Results and
figure from [101].

3. Computing the path integral

3.1. Fermion fields and observables

Until now, we have discussed how to discretize both gauge field and
fermion actions on a lattice. As a next step, we would like to compute the
expectation values of fermionic and gauge field observables. For the gauge
fields, this seems straightforward, but the classical limit of fermions are
anticommuting Grassmann fields. Assuming that we have a single staggered
fermion field (with one component per lattice site) on a lattice withN points,
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the implementation of the full Grassmann algebra would require an object
with 2N components. As N ∼ 106 for a 324 lattice, which is not large by
today standards, this is absolutely prohibitive.

In order to proceed, we note that, in general, the fermion action is bilinear
in the fermion fields

SF = ψ̄Dψ . (65)

Denoting the gauge action by SG, the partition function Eq. (8) takes the
form

Z =

∫ ∏
x,µ

[dUµ(x)][dψ̄(x)][dψ(x)]e−SG−ψ̄Dψ . (66)

Using the rules of Gassman integration, we can formally integrate out the
ψ̄ and ψ fields in Eq. (66) to obtain

Z =

∫ ∏
x,µ

[dUµ(x)] detD[U ]e−SG . (67)

In order to obtain expectation values of observables, we also need to integrate
out the fermion fields in the numerator of Eq. (6). For gluonic observables,
this is straightforward. For fermionic observables, we take as an example
the generic fermion bilinear ψα(x)ψ̄β(y), where α and β generically denote
all spinor and flavour indices. We obtain∫ ∏

x,µ

[dUµ(x)][dψ̄(x)][dψ(x)]ψα(x)ψ̄β(y)e−SG−ψ̄Dψ

=

∫ ∏
x,µ

[dUµ(x)] detD[U ]D−1
α,β(x, y)e−SG

(68)

so, here too, the path integral over the fermionic fields may be replaced by
a simple factor detD[U ] in the gluonic path integral or, said differently, by
adding an effective gluonic action of the form − ln detD[U ] to SG. We now
introduce the shorthand notation

〈O[U ]〉 :=
1

Z

∫ ∏
x,µ

[dUµ(x)]O[U ]e−(SG−ln detD[U ]) . (69)

For more complex fermionic observables, one can show that the Wick theo-
rem is reobtained with the contractions given by the corresponding inverse
of the fermion matrix. We can e.g. obtain

〈0|T
((
ψ̄uγ5ψd

)
x

(
ψ̄dγ5ψu

)
y

)
|0〉 =

〈
Tr
(
D−1
u (x, y)γ5D

−1
d (y, x)γ5

)〉
(70)
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which, by using γ5-hermiticity (Eq. (35)), can be rewritten into

〈0|T
((
ψ̄uγ5ψd

)
x

(
ψ̄dγ5ψu

)
y

)
|0〉 =

〈
Tr
(
D−1
u (x, y)D−1

d

†
(x, y)

)〉
, (71)

where u and d denote the quark flavours and the trace is taken over colour
and spin indices. The observable Eq. (70) can be diagrammatically repre-
sented as shown in the left-hand panel of Fig. 10.
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Fig. 10. Diagrammatic representation of the Wick contraction of a flavour non-
singlet propagator (left) and the two contractions of a flavour singlet propagator
(right).

Similarly, for a flavour-singlet observable, we obtain

〈0|T
((
ψ̄γ5ψ

)
x

(
ψ̄γ5ψ

)
y

)
|0〉=

〈
Tr
(
D−1(x, y)γ5D

−1(y, x)γ5

)〉
+
〈
Tr
(
D−1(x, x)γ5

)
Tr
(
D−1(y, y)γ5

)〉
(72)

which has a disconnected contribution with a double trace in addition to
the single-trace connected contribution. The diagrammatic representation
is shown in the right-hand panel of Fig. 10.

3.2. Stochastic evaluation of the path integral

Having set up the framework of lattice QCD, we can now proceed to
stochastically evaluate the path integral Eq. (69), computing expectation
values of target observables. It is clear from Eq. (69) that the expecta-
tion value of the target observable O is just a weighted average over the
observable computed on all possible gauge field backgrounds O[U ] with a
weight exp(−SU ) and the effective action SU = SG− ln detD[U ]. The most
straightforward stochastic evaluation of the path integral would, therefore,
consist of producing random gauge configurations, computing the effective
action SU on them and taking the weighted average. This procedure is very
inefficient though because most of the configurations will be exponentially
suppressed.

A more promising approach is known as importance sampling. Instead
of generating the gauge fields with a uniform random weight, we can pro-
duce them with a weight ∝ exp(−SU ). It is important to note that this is
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only possible if SU is real which, in turn, requires the fermion determinant
detD[U ] to be real and positive. We have seen in Sect. 2.3 that γ5-her-
miticity implies a real fermion determinant. In addition, the eigenmodes of
all massless fermion operators we have covered possess a nonnegative real
part and consequently detD[U ] is positive definite for any positive bare
mass. For all fermions retaining a remnant of chiral symmetry, i.e. naive,
staggered and Ginsparg–Wilson fermions, there is no further subtlety. For
fermions that explicitly break chiral symmetry however, like Wilson-type
fermions do, an additive mass renormalization is required that typically ren-
ders the bare mass negative. The positivity of the fermion determinant has
then to be ensured a posteriori and we will discuss in Sect. 3.4 how to check
this important property in the numerical treatment.

Assuming that we may use an importance sampling technique, we label
the gauge fields obtained with a weight ∝ exp(−SU ) as Ui. The expectation
value of an observable is then given by a straight, unweighted average

〈O〉 = lim
N→∞

1

N

N∑
i=1

O[Ui] . (73)

Truncating the sum after a finite number of gauge configurations, we obtain
an estimate of the observable

Ô =
1

N

N∑
i=1

O[Ui] = 〈O〉+O
(

1√
N

)
(74)

which is affected by a standard statistical error of the order of 1/
√
N . In-

terpreting exp(−SU ) as a Boltzmann weight, the importance sampling tech-
nique might also be viewed as generating microstates of a thermodynamic
system with the correct equilibrium distribution.

Except for simple cases of noninteracting theories however, it is usually
not straightforward to generate gauge configurations with a weight propor-
tional to ∝ exp(−SU ). Typically, update algorithms are used that generate
a gauge configuration based on a previous one using a stochastic technique.
The simplest of these, the Metropolis algorithm [102], proceeds in several
steps. Starting with an initial gauge configuration U0, one iterates through
the following steps:

1. Generate Uk from Uk−1 by a small random change.

2. Measure the change in the action ∆S = SU [Uk]− SU [Uk−1].

3. Accept the change if ∆S ≤ 0.

4. Accept the change with a probability e−∆S if ∆S > 0.
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The resulting Markov chain of gauge configurations Ui will asymptotically
(for large i) contain gauge configurations with the correct weight distribu-
tion3. There are some caveats, however, that need to be realized. First,
consecutive gauge configurations are not independent. The “time”-series Ui
will, therefore, have some autocorrelation, which has to be taken into ac-
count. As a consequence, the system will also not reach thermal equilibrium
instantly and a number of initial configurations will have to be discarded be-
cause they suffer from thermalization effects. Finally, one not only needs to
make sure that the configurations produced have the correct relative weight,
but also that any possible configuration can be reached by the algorithm
with a finite probability. This property is known as ergodicity. In practice,
some critical observables are typically monitored to ensure the system has
sensible autocorrelation times, is thermalized and ergodic. We will come
back to this point in Sect. 3.4.

The algorithm most widely used today for evaluating the partition func-
tion of lattice QCD is the hybrid Monte-Carlo (HMC) algorithm [103–110].
It is an essential extension of the Metropolis algorithm that replaces the
small random change of the first step, which is very inefficient in full QCD,
by a more global modification of the gauge field. This global modifica-
tion proceeds through first reinterpreting the fermion determinant detD[U ]
as the contribution to the partition function of an auxiliary scalar pseud-
ofermion field Φ via [111]

detD[U ] =

∫ ∏
x

[dΦ†(x)] [dΦ(x)] e−Φ
†(D†[U ]D[U ])

−1/2
Φ (75)

and then evolving the resulting system classically in a fictitious time with a
Hamiltonian

H = 1
2Π

2 + S , S = SG + Φ†
(
D†[U ]D[U ]

)−1/2
Φ , (76)

where Π are randomly initialized conjugate momenta. This procedure guar-
antees that as long as the classical evolution part was carried out with suf-
ficient accuracy, the change in the action ∆S will be moderate despite the
global nature of the change in the gauge field. It will also provide the value
of ∆S, which might otherwise require substantial effort to determine. For
further details on the HMC algorithm, the reader is referred to the intro-
ductory literature [5–9, 11, 12].

In more general terms however, it should be clear at this point that
independent of the specifics of the update algorithm, the numerically difficult
part of lattice QCD, are the fermion fields. The change in the gauge action

3 For more details and a proof of this statement, see e.g. [12].
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upon modification of a single link e.g. is easy to compute. One only needs
to compute the adjacent plaquettes i.e. take some products and traces of
3×3 matrices. Even the gauge action of the entire system can be computed
by O(N) such operations, where N is the number of lattice points. Typical
values of N used today range from N ∼ 106 for a 324 lattice to N ∼ 108 for
a 964 lattice, which results in a manageable computational effort.

For the fermion fields, on the other hand, one needs to compute determi-
nants or functions like inverse square roots (see Eq. (75)) of matrices that in
the case of staggered fermions are 3N×3N and 12N×12N for other fermion
formulations. It is not possible to significantly reduce the number of lattice
points N either. Lattices have to be large enough in size to accommodate
the relevant physics — typically at least a few fm in each direction. They
have to be fine enough, on the other hand, that the lattice spacing itself is
firmly within the perturbative regime so that the nonperturbative physics is
reliably captured. Additionally, carrying out the continuum limit requires
having a range of lattice spacings. Typically, they are chosen to be in a
range of a ∼ 0.05–0.1 fm.

As a result, the computational cost of generating lattice QCD ensembles
arises almost entirely from the fermions. It has, therefore, been customary
in the early days of lattice QCD to eliminate this cost entirely by a mean
field approximation. This can be achieved by simply ignoring the fermion
determinant detD[U ] in the path integral Eq. (68). In the lattice literature,
this is referred to as the quenched approximation. Although it has worked
surprisingly well in some cases, it has been largely phased out nowadays due
to its uncontrolled nature.

3.3. Staggered rooting

For staggered fermions, the numerical evaluation of the path integral
poses one additional problem. Since doubler fermions were not entirely elim-
inated but merely the fermion multiplicity reduced to 2D/2 or 4 in 4 dimen-
sions, the effective action term − ln detD[U ] describes four fermion species
instead of one. Very early on, it was suggested by Marinari, Parisi and
Rebbi [112] that one could just divide this effective action by 2D/2, which
corresponds to taking the 2D/2

th root of the fermion determinant. Whether
this is a valid procedure has been widely discussed in the literature since.
For the free case, Adams [43] has proven that the procedure is valid for any
m > 0. He could show that the free staggered operator can be decomposed
into 4 single flavour operators that have an identical spectrum.

In the interacting case, it is instructive to again look at the eigenmode
spectrum of the Dirac operator. In Fig. 11, the physically relevant part
of the eigenmode spectrum of the staggered operator is plotted on a single
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gauge configuration and for different smearing levels. As a comparison, the
corresponding eigenmodes of the fully chirally symmetric overlap operators
are plotted, where the field transformation Eq. (53) to continuum chirality
has already been performed so that the eigenmodes lie along the imaginary
axis. While at low smearing level, there seems to be no resemblance what-
soever between the spectra, one can see at high smearing levels that an
approximate 4-to-1 correspondence pattern emerges between staggered and
overlap eigenmodes (up to a renormalization factor). This seems to suggest
that in the continuum limit, the staggered fermion determinant may indeed
decompose into 4 degenerate single flavour determinants and that there are
only small corrections at finite lattice spacing if one properly suppresses
the coupling between the flavours. More evidence for this point of view is
presented in [44, 48].

orig 1 APE 3 APE 1 HYP 3 HYP
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Fig. 11. Comparison of low lying eigenmodes of the staggered and overlap opera-
tors (after chiral rotation Eq. (53)) with different smearing levels on a single gauge
configuration according to [48]. As one can see, after sufficient smearing the eigen-
modes of the staggered operator form approximate quadruples that correspond to
a single overlap eigenmode up to a renormalization factor.

There is one caveat to this argument however. While the near-degeneracy
may be good, it is not exact at finite lattice spacing in the interacting theory.
And since fermionic lattice observables generically involve the inverse of the
fermion matrix (cf. Eq. 68), there is potentially a huge difference between
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an approximate and a true zero mode if the mass is small. An observable
that is especially sensitive to this effect, the one flavour chiral condensate
in the Schwinger model, is plotted in Fig. 12. As one can clearly see, the
behaviour of staggered and overlap fermions, while similar at high masses, is
dramatically different at low masses. Specifically, the continuum limit at zero
mass of the staggered theory is wrong. One does, however, obtain the correct
m = 0 result with staggered fermions when the continuum limit is first taken
at finite mass and the chiral limit afterwards. This subtle behaviour has to
be kept in mind when dealing with staggered fermions. When one avoids
this dangerous region however, there is substantial evidence that rooted
staggered fermions produce correct results [45–61] although there are some
dissenting opinions [62, 65].
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Fig. 12. Chiral condensate of the 1-flavour Schwinger model for overlap and rooted
staggered fermions versus fermion mass for different lattice spacings from [44].
While for overlap fermions the continuum and chiral limits commute, one has to
first perform the continuum limit at large enough mass for staggered fermions
before going to the chiral limit.

3.4. Some important crosschecks

As already mentioned in Sect. 3.2, it is important to monitor the be-
haviour of the update algorithm to ensure a correct sampling of configu-
ration space. The most straightforward technique is to monitor a simple
observable such as e.g. the plaquette. Figure 13 shows a simple example
where the initial thermalization is clearly visible.

The plaquette, however, is a rather well behaved observable that ther-
malizes and decorrelates relatively quickly. This property is connected with
the plaquette being a very local observable and one might underestimate
the true autocorrelation and thermalization time of the system by looking
at it exclusively. It has, therefore, become customary to monitor other, more
global observables of the system, too. One example of such an observable
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Fig. 13. Illustration of the evolution of the plaquette in simulation time.

that is in wide use today is the topological charge. It is a global property
of the gauge field and the fermion operator that can only change in integer
steps on typical hypertoroidal geometries. In the continuum, the topological
charge is defined as

Q =
g2

32π

∫
d4xG∗µνGµν (77)

which can be easily generalized on the lattice [113]. Its relation via the
index theorem [32] to the zero modes of a chiral fermion operator allows for
an alternative extraction method which, however, is much more demanding
computationally. An example from a recent work is displayed in Fig. 14.

Topological charge β=3.8, mud=-0.02, ms=0
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Fig. 14. History and histogram of topological charge from a recent large scale
simulation [114]. The relevant autocorrelation time of |Q| in this instance was
determined to be 27.3± 7.4.
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Studying the topological charge autocorrelation as one goes to the con-
tinuum limit, Schaefer, Sommer and Virotta [115] have pointed out a po-
tentially severe problem. Their results are displayed in Fig. 15. As one can
clearly see, the topological charge does not tunnel anymore at the finest
lattice investigated for the entire Markov chain but, instead, remains frozen
at a certain value. The details of this behaviour are, of course, dependent
on the specific action and algorithm used, but there is a physical cause for
it which is again maid clear by looking at the eigenmode spectrum of the
fermion operator.
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Fig. 15. History of topological charge for for different lattice spacings from [115].

Remember that for Wilson-type operators topological modes lie along
the real axis. The number of modes in the physical branch determines the
topological sector (cf. Fig. 8). To change topological sector, these modes
therefore need to either appear or disappear. The only possibility for this
to happen is, however, that either a pair of complex conjugate modes ap-
proaches the real axis, mix and split into a physical, and doubler chiral mode
or the other way round. As one approaches the continuum however, this is
not easily possible in a continuous manner. Chiral symmetry is restored and
there is a gap developing between the physical and the doubler branches.
The fermion operator will, therefore, have to develop a discontinuity in the
underlying gauge field at the boundary of a topological sector.

This behaviour should, therefore, be more pronounced the better the
fermions discretization realizes chiral symmetry. In fact, it has been observed
earlier that for Ginsparg–Wilson fermions changing the topology is a far
greater challenge already on relatively coarse lattices [116–118].

Several suggestions have been made over the years on how to deal with
this problem. For Ginsparg–Wilson fermions, special update algorithms
have been proposed [119]. An alternative point of view is that fixing a topo-
logical sector is only a finite volume effect that can be corrected for [120].
Ultimately, for large enough volumes, subvolumes will decorrelate and re-
produce the correct fluctuation pattern even if the overall topological charge
is fixed. Along similar lines, it was suggested to use open boundary condi-
tions [121] for which topological charge is not an integer. Here too, the open
boundary results in additional finite volume effects that can ultimately be



2172 Ch. Hoelbling

eliminated by a proper infinite volume limit. For current lattice calculations
however, the potentially long autocorrelation times in the continuum limit
are not a limiting factor yet. For fermion discretizations that do not have
exact chiral symmetry, these effects become relevant only for lattices finer
than a ∼ 0.05 fm.

For Wilson-type fermions, one needs to perform another crucial check.
Because of the additive mass renormalization, the fermion determinant was
not guaranteed to be positive definite. In terms of the eigenmode spectrum,
a negative fermion determinant can only appear when an odd number of real
modes is negative after the additive mass renormalization has been applied
(cf. Fig. 8). In principle, one should therefore monitor the real modes of the
fermion operator. Since this is computationally expensive, another quantity
is typically monitored that is closely related but also directly obtainable
from the simulation itself. Remember that in every update step, a fermion
matrix has to be inverted (on a source vector) in order to construct the
pseudofermion action Eq. (75). This inversion is performed iteratively and
the number of iterations is very sensitive to the condition number of the
matrix, i.e., the ratio of its largest to smallest eigenvalue. If during the
classical evolution in the pseudo-time a real mode would come close to the
origin, it would immediately be recognizable as an increase in the iteration
count of the inverter. In the limiting case of a zero mode, the inverter would

Inverse iteration count (1000/Ncg)

β=3.31, Mπ≈135 MeV

 0  0.04  0.08  0.12
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β=3.61, Mπ≈120 MeV

 0  0.04  0.08  0.12

β=3.7, Mπ≈180 MeV
β=3.8, Mπ≈220 MeV

Fig. 16. Histogram of the inverse iteration count in the inversion of the fermion
operator from a recent large scale simulation [114].
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not converge and the corresponding gauge configuration is called exceptional.
One can, therefore, plot the iteration count or, as in Fig. 16, the histogram of
the inverse iteration count. If the tail of the distribution has a safe distance
from 0, one can conclude that no real mode has crossed over to the negative
side and, therefore, the fermion determinant is indeed positive.

Some further checks of algorithm stability and efficiency that are rou-
tinely done include monitoring the acceptance rate and the forces in the
classical evolution of the fermion field. Sometimes hystereses are recorded
with respect to varying fermion masses or the gauge coupling when one sus-
pects the proximity of an unphysical phase transition due to lattice artefacts.
In general, one can say that lattice QCD has a large set of tools for checking
the integrity of the simulation algorithms.

4. An example calculation: hadron masses

4.1. Skeleton of a lattice calculation

With the basic techniques established, the next step is to actually make
physical predictions using lattice QCD. We will look at the computation
of ground state light hadron masses [101, 122] as a prototypical example.
In principle, the strategy is straightforward: we want to go to the physical
point and read off the target observables. But the physical point can, of
course, never be reached directly. One always has to extrapolate to the
continuum limit and to infinite volume. In addition, the physical values of
the parameters of the lattice QCD action, namely the gauge coupling and
the quark masses, are unknown. Hence it is necessary to define the physical
point through a set of quantities that can be measured both experimentally
and on the lattice and to interpolate or extrapolate lattice results to the
physical point thus defined.

Typical lattice QCD calculations currently include two flavours of degen-
erate light quarks, a strange quark and possibly a charm quark. In lattice
terminology, these setups are referred to as 2+1 resp. 2+1+1. Isospin split-
ting is usually treated as a perturbation while the effects of b and t quarks
can, generally, be ignored at the current level of precision. In such a setup,
each lattice calculation has 3 or 4 parameters: the gauge coupling g and
the masses of the quarks mud, ms, and possibly mc. Through dimensional
transmutation, the gauge coupling is closely linked to the scale of the theory,
i.e. the lattice spacing. Light and strange quark masses, on the other hand,
are related to the masses of the pseudoscalar mesons. To leading order, this
relation reads [123]

M2
π ∝ 2mud , M2

K ∝ ms +mud . (78)
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One can, therefore, characterise an ensemble of gauge configurations by lat-
tice spacing and the observable quantities Mπ and

√
2M2

K −M2
π instead of

g, mud and ms. In addition, the size of the lattice is a relevant parameter.
Figure 17 displays these simulation parameters for some recent lattice

QCD calculations. Since it is substantially less demanding numerically, a
lot of calculations are still performed at large pion masses, relatively coarse
lattice spacings and small volumes. One can, however, reach physical pion
masses today at multiple lattice spacings and volumes as large as (6 fm)3,
which allows a controlled continuum and infinite volume extrapolation as
well as an interpolation to physical Mπ to be performed.
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Fig. 17. Plot of simulation parameters of some recent lattice calculations with
dynamical fermions following [124]. Data are from ETMC’09(2) [125], ETMC’10
(2+1+1) [126], MILC’10 [55], QCDSF’10(2) [127], QCDSF-UKQCD’10 [128],
BMWc’08 [101], BMWc’10 [114], PACS-CS’09 [129, 130], RBC-UKQCD’10
[131, 132], JLQCD/TWQCD’09 [133], HSC’10 [134], BGR’10(2) [135] and
CLS’10(2) [136]. The cross in the lower left- and right-hand plots denote the phys-
ical point. The percent marks in the upper left-hand plot indicate the estimated
relative finite volume corrections on the pion mass according to [137].
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4.2. Extraction of hadron masses

As a first step towards a physical prediction, we need to actually mea-
sure the hadron masses on our ensembles of gauge configurations. We first
choose two (not necessarily different) operators O1/2 that couple to the tar-
get hadron |h〉

〈h|O1/2|0〉 6= 0 . (79)

We then compute the correlator

G(t, 0) = 〈0|O†2(t)O1(0)|0〉 = 〈0|eHtO†2e
−HtO1|0〉 (80)

as described in Sect. 3.1. Inserting a complete set of eigenstates

1 =
∑
n

1

2En
|n〉〈n| , H|n〉 = En|n〉 , E0 = 0 (81)

in the standard fashion, we obtain

G(t, 0) =
∑
n

〈0|O†2|n〉〈n|O1|0〉
2En

e−Ent . (82)

If our target state |h〉 happens to be the ground state, we can extract its
mass M = Eh by simply going to asymptotic times

G(t, 0)
t→∞−→ 〈0|O

†
2|h〉〈h|O1|0〉

2M
e−Mt (83)

and measuring the exponent in the decay of the propagator with time sep-
aration. One can also define an effective mass

Meff = ln
G(t, 0)

G(t+ 1, 0)

t→∞−→ M (84)

that will signal when the regime has been reached where excited state con-
tributions are negligible.

On a lattice of finite time extent T , it is, of course, not possible to go
to asymptotic times. In fact, due to the periodicity of the lattice in time
direction, the propagator G(t, 0) will typically be dominated by backward
propagating states for t > T/2. In fact, for T � T − t, we can find

G(t, 0)
T−t→∞−→ 〈0|O†1|h̃〉〈h̃|O2|0〉

2Eh̃
e−Eh̃(T−t) , (85)

where h̃ is the lowest energy state coupling to the adjoint of the source
operators

〈h̃|O†1/2|0〉 6= 0 . (86)
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In principle, there are also contributions to the propagator from multiple
windings around the time direction. Each additional winding in forward
direction e.g. gives an additional factor e−MT , which, however, only gives
a tiny correction to the prefactor and is, therefore, irrelevant for extracting
masses.

As a typical example, the charged pion mass can be extracted using a
source operator

O1 =
(
ψ̄uγ5ψd

)
~x
. (87)

Using a sink operator O2 of the same form, we obtain the observable dis-
cussed in Eq. (71), u and d Du and Dd for the source point (0, ~x ) only. One
can see from Eq. (71) that no additional inversions are required to go to
an arbitrary sink point. In fact, we can sum over all sink points in a given
time slice and thus project the final state to ~p = 0 without any substantial
additional cost. It is, therefore, customary to use as a sink operator

O2 =
∑
~y

(
ψ̄uγ5ψd

)
~y
. (88)

There is a wealth of additional techniques to construct efficient operators
which is beyond the scope of these notes to cover and I refer the interested
reader to the introductory literature for further details [9, 11, 12].

For our specific example, we have |h̃〉 = |h〉 and also 〈0|O†1|h̃〉〈h̃|O2|0〉 =

〈0|O†2|h〉〈h|O1|0〉 so that the prefactors as well as the masses are the same in
the forward (Eq. (83)) and backward (Eq. (85)) contributions. In a region
where excited state contributions are irrelevant, we therefore obtain

G(t, 0) ∝ e−Mt + e−M(T−t) ∝ coshM(T/2− t) . (89)

We can use Eq. (89) as a fit ansatz to extract M from G(t, 0) or solve it
with respect to M for two time slices to obtain an effective mass.

Figure 18 gives an example of an effective mass plot and corresponding fit
ranges for several hadronic channels. As one can see, it is not entirely clear
what is an optimal fit range to choose. It is, therefore, essential to perform
fully correlated fits and monitor the fit quality. It is also good practice to
perform the analysis with multiple fit ranges that seem sensible and let the
corresponding spread of the results enter the systematic error.
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Fig. 18. Plateaus of the effective mass and fit ranges for some hadron channels from
[101].

A further check for a sensible fit range is possible over a set of ensembles.
If there is no excited state contribution, the fit quality Q is expected to be
randomly fluctuating between 0 and 1. One can plot the CDF of the fit
quality and check with a Kolmogorov–Smirnov test whether it is compatible
with the expected linear rise (see Fig. 19).
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times and two observables from [122]. For each case, the legend gives the maximum
distance D between expected and measured CDF as well as the probability p that
they are identical according to the Kolmogorov–Smirnov test.
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Extracting excited state masses from Eq. (82) is much more difficult as
the contribution of excited states decays exponentially with separation. It
is, in principle, possible to make an ansatz

G(t, 0) = a0e
−M0t + a1e

−M1t (90)

and fit for the ground state mass M0, the excited state mass M1 and the
two prefactors a0 and a1. In practice, however, these fits tend to be unstable
and have a limited accuracy. It is preferable in these cases to use a larger
operator basis Oi and measure the full cross-correlator between its elements
[138, 139]

Gij(t, 0) = 〈0|O†i (t)Oj(0)|0〉 . (91)

From two time slices an effective mass matrix

M(t, t0) = G(t, 0)G−1(t0, 0) (92)

can now be computed and its eigenvalues will asymptotically give the ener-
gies of the lowest lying states

λn → e−En(t−t0) . (93)

This so-called variational method may, in fact, be advantageous for extract-
ing ground state masses. The reason is that after diagonalization the con-
tamination of the ground state from the N−1 lowest excited states has been
removed, where N is the size of the operator basis.

For the variational method to work, it is essential that each of the target
states has good overlap with at least one operator of the basis. This is a
nontrivial requirement and the classical example is the scalar operator

Os =
(
ψ̄uψu

)
. (94)

Although Os should, in principle, couple to two-pion states, this coupling
is practically zero. In order to be sensitive to two-pion states, four fermion
operators like

O4 =
(
ψ̄uγ5ψd

) (
ψ̄dγ5ψu

)
(95)

need to be considered, too.
When extracting excited states, one also needs to keep in mind that the

relation between discrete energy levels extracted on a finite volume lattice
and the spectral density characterising an infinite volume resonance is not
straightforward. If one aims at predicting the mass of a physical resonance,
it is not sufficient to simply measure a corresponding energy level on the
lattice. We will briefly return to this point in Sect. 4.4.
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4.3. Scale setting

Being able to compute hadron masses, we can now determine the param-
eters of our lattice ensembles in terms of physical quantities. As outlined in
Sect. 4.1, we can use the pseudoscalar meson masses Mπ and MK to locate
the physical light and strange quark masses. The coupling g is related to
the lattice scale and we need one additional physical observable to fix it.
Setting the mass of the charm quark for cases where it is present trivially
follows along the same lines and will not be further discussed.

The ideal scale setting observable should satisfy a few obvious criteria.
Most importantly, it should be known from experiment with a high accuracy
and it should be computable on the lattice with high precision, too. In
addition, it should not depend on quark masses strongly. The most obvious
choices are the masses of some heavy hadrons. In the early days of lattice
QCD, the mass of the ρ meson was often used. This, however, is not an
ideal choice, as the ρ is a broad resonance which makes its mass difficult to
determine precisely both for the experiment and on the lattice.

A quantity that is widely used for scale setting today is the mass of
the Ω baryon and to a lesser extent the cascade Ξ. Both of them can be
measured precisely in experiment and on the lattice, and both have little
light quark mass dependence. Also in wide use today are the pseudoscalar
decay constants Fπ and FK . While they can easily be determined with high
precision on the lattice, one has to keep in mind that their physical value is
not obtained directly from experiment.

There is also a variety of intermediate scale setting variables that are
often used in lattice calculations today. They are not directly related to
any experimentally observable quantity but simple to measure on the lat-
tice. Their physical values have to be determined initially however, which is
usually done by a lattice calculation using a scale setting observable that is
experimentally accessible.

One group of scale setting observables that have been in use since the
early days of lattice QCD is based on the static quark potential. The poten-
tial between static sources of colour charge at a distance R in direction xi
can be expressed in terms of a Wilson loopW T×R

0i (see Sect. 2.2) with a long
extent in time direction as

V (R) = − lim
T→∞

lnW T×R
0i

T
. (96)

Historically, the large separation limit of the force or string tension

σ = lim
R→∞

dV (R)

dR
(97)
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has been in wide use. More recently, the Sommer scale r0/1 [140] which is
related to the force at a finite distance

R2dV (R)

dR

∣∣∣∣
R=r0/1

= 1.65/1 (98)

has become a standard scale setting observable.
Even more recently, scale setting observables based on the gradient flow,

an infinitesimal form of the gauge field smearing procedure, have been sug-
gested [141, 142]. For a generic field theory with fields φ and action S, the
gradient flow of the field φ is defined by

φ̇(x) :=
∂φ(x)

∂t
= −δS[φ, ∂µφ]

δφ(x)
(99)

in a flow time t. Obviously, the field is driven towards the classical solu-
tion for large flow time (see also [143]). Applying this generic concept to a
gauge theory with the Wilson plaquette action (Eq. (14)), one obtains an
infinitesimal form of APE smearing (Eq. (57)). A scale can now be defined
by integrating the flow equation to obtain the smeared gauge fields Gµν(t)
at a finite flow time t and demanding that

t20〈E(t0)〉 = 0.3 , E(t) = −
TrG2

µν(t)

4
. (100)

According to Eq. (64), the effective smearing radius at flow time t is given
by
√

8t and we can use t0 to define a lattice scale. An alternative method is
to use w0 defined via

t
d

dt

(
t2〈E(t0)〉

)∣∣∣∣
t=w0

= 0.3 . (101)

Both the static quark potential and the gradient flow are purely gluonic
quantities, which are much easier to measure than fermionic ones. In ad-
dition, the gradient flow method does not require fitting any data and is
therefore very straightforward to implement.

4.4. Finite volume effects

As a last step before we can extrapolate the lattice results to the phys-
ical point, we need to look at the effect of the finite lattice volume. The
good news is that for masses of hadrons that do not decay via the strong
interaction, QCD finite volume effects are typically small. The reason for
this is that QCD is a theory with a mass gap. A hadron in a finite box
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will be affected by mirror charge effects, i.e. it will interact with itself over
a distance L, where L is the spatial size of the box. Due to the mass gap
of QCD, this interaction will, however, be exponentially suppressed in the
lightest particle mass. Therefore, one generically expects finite volume ef-
fects to be proportional to e−MπL.

Corrections to this leading order behaviour for mesons [137, 145–149]
and, to a lesser extent, baryons [144, 150] have been computed. As demon-
strated in Fig. 20, they describe lattice data very well. As a rule of thumb,
lattices with MπL ≥ 4 generate small finite volume corrections for non-
resonant particle masses where the condition can be somewhat relaxed for
lower Mπ.
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Fig. 20. Pion (left-hand panel) and nucleon (right-hand panel) mass in lattice units
versus lattice size. Lattice data [101] agree very well with the theoretical prediction
[137, 144].

For resonances, finite volume effects are more pronounced however. In
the continuum, a resonance is characterized by an increase in the spectral
density (see Fig. 21). In finite volume however, there are only discrete energy
levels that correspond to some linear combination of the resonance and its
decay products. In order to make an infinite volume prediction for the mass
of the resonant states, it is, therefore, necessary to disentangle these effects.

A very simple quantum mechanical model can nicely illustrate the un-
derlying physics. We consider a particle in a double potential well

V (x) = Kδ(r) , x ∈ [0, L] 0 < r � L . (102)

For an infinite separation between the two wells K →∞, the energy levels of
the small left well x < r, representing the resonance, and the large right one
x > r, representing the scattering states, are independent as illustrated in
the left-hand panel of Fig. 22. We now introduce a coupling of the resonance
by making the barrier height K finite, which causes the left- and right-hand
side modes to mix (middle panel). Changing the volume of the box will then
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Spectral densityFinite volume energy levels

L

E

Fig. 21. Illustration of the infinite volume energy density (right-hand panel) and
the corresponding finite volume energy levels (left-hand panel) plotted versus box
size L for a narrow (dashed line) and a broad (full line) resonance. The physical ρ
resonance would be much closer to the broad resonance case.

change the mixing pattern (right-hand panel) and the phenomenon of level
repulsion occurs. Depending on the box size L, different modes will be in
the vicinity of the uncoupled resonance energy and overlap with the wave
function of the uncoupled resonance state. Measuring these energy levels for
different box sizes, we can infer the energy of the uncoupled resonance and
the barrier height or coupling.

∞ ∞ ∞

Fig. 22. Energy levels and wave functions of the double well potential model.

In a very similar manner, it is possible to treat the problem of resonances
in QCD with scattering theory [101, 151–154]. The energy of the uncoupled
scattering states is known — in the case of the ρ, it is simply the energy of
a two pion system at the relative momenta ~p allowed by the volume — and
one can, therefore, extract the mass and the coupling of the resonance by
measuring the energy levels of the system at various finite volumes.
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It should also be clear from the model consideration that not all energy
levels are equally sensitive to the resonance mass. In order to have large
sensitivity, the level must be close to the resonance mass itself.

4.5. Extrapolating to the physical point

We, finally, have all ingredients ready to extrapolate our target hadron
mass MX to the physical point and make a physical prediction. We have
measured MX on each ensemble and in addition Mπ, MK , and the scale
setting observable MΞ or MΩ. As explained in Sect. 4.1, we traded the bare
parameters of our theory for Mπ, MK and MΞ/Ω, so we need the correct
functional dependence ofMX on these (and on the lattice size) to extrapolate
to the physical point.

Generically, we can expand any heavy hadron mass M in terms of the
quark masses

M = M (0) + α̂mud + β̂ms + . . . (103)

which, according to Eq. (78), translates into

M = M (0) + αM2
π + βM2

K + . . . (104)

Depending on the precision of our data, we may need to add higher order
terms to this expansion. The specific form of these terms depends on the
expansion point we choose. For an optimal convergence radius, a Taylor ex-
pansion around finiteM2

π andM2
K seems to be a good choice. Alternatively,

one may perform an asymptotic expansion around M2
π = 0 for which chiral

perturbation theory generically gives a term ∝M3
π as the next higher order

in M2
π [155]. Since the lattice data are not sensitive to further terms, it is a

good idea to use both ansätze

M = M (0) + αM2
π + βM2

K + γ

{
M4
π

M3
π

(105)

for extrapolating/interpolating to the physical point and let the spread be-
tween the results contribute towards the systematic error.

Sensible ansätze for the infinite volume behaviour have been discussed
in Sect. 4.4. We can, therefore, perform a combined fit of the scale setting
observableMΞ orMΩ versusMπ,MK and the lattice size L, introducing one
fit parameter aβ for each of the bare couplings β = 6/g2 in our ensembles.
Requiring the fit to go through the physical point, which can be defined
by the physical value of the ratios Mπ/MΞ/Ω and MK/MΞ/Ω, the lattice
spacings are determined.
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We can then make an ansatz for the continuum limit of MX guided by
the scaling behaviour of the action (see Sect. 2). For an unimproved Wilson
action, one would e.g. choose

M = M (0) + ηa+ . . . , (106)

while for a nonperturbatively improved clover action

M = M (0) + ηa2 + . . . (107)

might be more appropriate. The specific example calculation I am following
used a perturbatively improved smeared clover action. Formally, its scaling is
O(αsa), which is in between Eq. (106) and Eq. (107). Numerically, even the
leading scaling term is barely relevant. It is, therefore, a very conservative
choice to use both Eq. (106) and Eq. (107), and again add the spread between
the results thus obtained to the systematic error.

Performing a combined continuum, infinite volume, Mπ and MK fit, we
thus obtain a prediction for MX at the physical point. An example of such
a fit for the Ω and nucleon masses with the scale set by MΞ is displayed in
Fig. 23.
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It is interesting to note, that in the derivation of the fit function, we have
so far made a choice that the lattice spacing depends only on β among the
bare lattice parameters, which is known as mass independent scale setting.
Since the lattice spacing is ill defined outside the physical point (i.e. different
definitions may lead to different values), we may actually choose any other
procedure as long as it coincides at the physical point. One might e.g.
assume that outside the physical point the scale setting observable keeps
the same physical value. An alternative way to Eq. (105) for parametrizing
the quark mass dependence would, therefore, be

M = M (0) + αr2
π + βr2

K + γ

{
r4
π

r3
π

, (108)

where rX := MX/MΞ/Ω is the ratio of MX to the scale setting mass. A fit
with this ratio method is displayed in Fig. 24.
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Fig. 24. Nucleon and Ω mas versus r2π from [101]. Points represent lattice data
shifted with the combined fit function to be at physical r2K and corrected for finite
volume effects. Curves represent the fit for 3 different lattice spacings.

4.6. Systematic errors

Having extrapolated the target observable to the physical point, we have
a prediction with a statistical error. In fact, we have many predictions of the
same observable — hundreds or even thousands are not uncommon. During
the analysis, we had many points where a number of different procedures
were reasonable — the time interval for extracting baryon masses, the scale
setting observable or various fit forms — and we said that we will include
the corresponding spread into the systematic error. This is what we will do
now.
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It is important to note that there is no uniquely correct procedure to
compute the systematic error. In fact, unlike the statistical error, the sys-
tematic error cannot be computed. The systematic error tries to quantify
the effects which we are not able to control — e.g. the size of the terms in a
Taylor expansion that we truncated because our data are no more sensitive
to it. It is, therefore, a guess or at best an estimate. The most important
point about estimating a systematic error, therefore, is not to omit any rele-
vant part of it. A sophisticated estimate of the error in theMπ extrapolation
e.g. is useless if all data were obtained at a single lattice spacing or the fit
window for extracting the bare masses was not varied.

Provided that we have varied our analysis procedure to cover all relevant
effects, a simple procedure for estimating the systematic error would then
be to take all the results and compute the spread. The average or mean of
the distribution can serve as the central value. I label this procedure as flat
weight.

One might be worried that with this procedure, an analysis that did not
describe the data well will have the same weight as one that did. One might,
therefore, put a weight to each analysis when computing the spread and the
average. A reasonable weight would e.g. be the fit quality Q.

Another weight that is motivated by information theory is the Akaike
information criterion (AIC) [156]. It estimates the information contained
in a specific fit m by computing the information cross-entropy Jm of the
given fit with the best one in the sample. For a large number of points, the
cross-entropy is then given by

Jm = −χ
2

2
− pm , (109)

where pm is the number of parameters of the fit and χ2
m is given by the

least square fit. The probability that a fit is correct is proportional to the
exponential of the cross-entropy exp Jm. The AIC punishes fits with a large
number of parameters, since according to Eq. (109), χ2 has to decrease by 2
for every new parameter to even achieve the same weight.

Although the AIC might seem to be an optimal method, it is impor-
tant to note that it only gives relative weights among fits that were chosen
beforehand or, in other words, that we have provided as an input a certain
measure in the space of all possible fits that the AIC only modified. Since we
have no a priori knowledge about a proper measure, even the AIC weighted
systematic error is just a guess.

From a practical point of view, it is important to note, that all sensible
estimates of the systematic error should give compatible values (see Fig. 25).
In fact, this agreement is a valuable crosscheck for the entire analysis pro-
cedure.
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Fig. 25. Comparison of three methods to compute the systematic error.

Adding the statistical and systematic errors in quadrature, the ground
state light hadron spectrum can now be computed. The result is displayed
in Fig. 26.
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4.7. QED and strong isospin splitting

We now turn our attention to the fine structure of the hadron spec-
trum. The electromagnetic and strong isospin splitting effects in the hadron
spectrum are typically a few MeV. After having made physical predictions in
QCD, it might seem trivial to include these effects in our lattice calculations.
For the case of strong isospin splitting, this is true at least conceptually —
one only needs to introduce independent u and d quark masses. From a
computational point of view it is, however, extremely demanding to accom-
modate for the very light u quark mass. Both u and d quarks are light, but
mu/md ∼ 0.5 resulting in a much worse conditioned fermion matrix. For
Wilson-type fermions, the probability of encountering an exceptional config-
uration is drastically increased, while for staggered fermions one approaches
the dangerous low mass regime at finite lattice spacing. Apart from these
technical difficulties and the need for an additional observable to fixmu−md,
however, the introduction of strong isospin splitting is straightforward.

QED, on the other hand, has a number of features that make its ab initio
treatment more difficult. First of all, the QED coupling constant α has a
pole in the UV [157] so we are dealing with an effective theory. Secondly,
all electrically charged particles are no more gauge invariant. Computing
propagators with the methods described in Sect. 3 will trivially give 0 unless
one fixes a gauge or inserts appropriate gauge links in between source and
sink to points. Furthermore, for Wilson-type fermions, there will be an
additional additive mass renormalization that will be different for up and
down type quarks due to their different electrical charge. Finally, QED does
not have a mass gap. It, therefore, features power law finite volume effects,
in contrast to QCD. One might also think that adding QED will necessitate
adding electrons to the lattice theory, which would be difficult because of
their very small mass. Their contribution, however, only appears at O(α2)
compared to O(ααs) for quarks, so they may be neglected.

One advantage of QED though is that it is an Abelian theory. However,
compactifying the photon field Aµ via gauge links Uµ, as we did for the gluon
field in Sect. 2.2, would introduce spurious self couplings. It is, therefore,
reasonable to use a non-compact photon action, e.g.

Sγ =
1

2V4

∑
k,µ

∣∣∣k̂∣∣∣2 ∣∣∣Akµ∣∣∣2 , k̂ =
eiakµ − 1

ia
(110)

in Feynman gauge momentum representation. Note that in Eq. (110) the
prefactor of the k = 0 mode is 0. Therefore, A0

µ is not constrained and may
freely fluctuate. It is also easy to check that it is both gauge invariant and
not contributing to the field strength Fµν = ∂µAν − ∂νAµ. Its only effect is
to create a potential difference when winding around the lattice nontrivially
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and returning to the same point. This is a pure lattice artefact appearing at
finite volume and one should subtract it [158]. Due to the 1/2V4 prefactor
in Eq. (110), the theory thus obtained has the same infinite volume limit.

There is a problem with this simple subtraction scheme however. Sub-
tracting the k = 0 mode is equivalent to adding a term

ξ
∑
µ

(∑
x

a4Aµ(x)

)2

(111)

to the action and letting the Lagrange multiplier ξ → ∞. Evidently, this
term spoils reflection positivity as it connects all field components at points
on arbitrary time slices with each other and the resulting theory is not
guaranteed to possess a well-defined Hamiltonian.

This deficiency can be cured by making the Lagrange multiplier in
Eq. (111) time dependent

∑
t

η(t)
∑
µ

(∑
~x

a4Aµ(t, ~x )

)2

. (112)

With η(t) → ∞, this is equivalent to subtracting all modes ~k = 0 from
the action, a procedure first proposed by Hayakawa and Uno [159]. Using
the Hayakawa–Uno (HU) subtraction in Coulomb gauge results in a theory
that is reflection positive [122]. Additionally, the HU subtraction is a pure
finite volume effect. Finite volume terms are universal up to O(1/L2) and
O(1/L3) terms do not diverge for infinite volume or time extent [122, 160].

It is interesting to note that although the HU subtraction is not gauge
invariant, one can define a slightly modified subtraction that is gauge in-
variant and coincides with the HU subtraction in temporal gauge. We can
define this scheme by adding to the action

ξ

(∑
x

a4A0(x)

)2

+
∑
t

η(t)
∑
i

(∑
~x

a4Ai(t, ~x )

)2

(113)

with ξ, η(t)→∞. It thus removes from the action the components A0
0 and

~A
(k0,~0 )

for all k0. With the additional Ak0 = 0 in temporal gauge, this
new scheme is identical to HU in that gauge and, therefore, seems to fulfil
reflection positivity, too.

QED and strong isospin splitting have introduced two new parameters
α and mu − md to our lattice theory that need to be extrapolated to the
physical point. We, again, would like to find two experimentally accessible
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observables that are strongly dependent on α and mu − md, and not so
on other parameters. One such observable is the mass difference between
charged and neutral kaons M2

K± −M
2
K0 . As a second observable, one can

take the value of the renormalized QED coupling α itself because, in contrast
to αs of QCD, it is very small at low energies. The renormalization scheme
best suited to obtain α is, in fact, provided by the gradient flow (see Eq. (99))
for photon fields.

Having defined the physical point, the target observables, which in this
case are hadron isospin splittings, can be extrapolated there. Skipping fur-
ther technical details that can be found in [122], the lattice predictions
for some hadronic isospin splittings are displayed in the left-hand panel of
Fig. 27.
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Fig. 27. Isospin splitting of some ground state hadrons from [122]. In the left-hand
panel, boxes (grey) represent experimental uncertainties and dots (red) are lattice
predictions. ∆CG denotes the violation of the Coleman–Glashow relation [161],
a quark model relation predicting ∆Σ −∆Ξ −∆N = 0.

5. QCD thermodynamics

5.1. Formulation of QCD at finite temperature

We now turn our attention to finite temperature QCD. Introducing finite
temperature into an Euclidean quantum field theory is straightforward. For
a generic QFT with fields Φ and Lagrangian L, the path integral is given as
the vacuum to vacuum transition amplitude

Z =

∫
DΦe−

∫∞
−∞ dtL = 〈0|0〉 . (114)

At finite Euclidean time extent T and with corresponding periodic/anti-
periodic boundary conditions for bosons/fermions, one instead obtains
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ZT =

∫
DΦe−

∫ T
0 dtL =

∑
i

〈i|e−EiT |i〉 = Tr
(
e−HT

)
(115)

which describes a thermal ensemble at a temperature T = 1/T given by the
inverse time extent of the system.

Introducing finite temperature into a lattice theory is, therefore, achieved
by simply reducing its time extent T = aNt. One can vary T in steps
of a which, especially at high temperatures, can be very coarse. As an
alternative, one may keep the number of lattice points in the time direction
Nt fixed and vary the lattice spacing a instead which can be achieved by
varying the gauge coupling β = 6/g2. The advantage of this method is
that the temperature might be varied continuously, but one has to keep
in mind that all other quantities vary with β, too. The spatial volume is
directly affected by a change in a, and so is the relation between bare quark
masses in lattice units and renormalized physical quark masses. In order
to ensure that by changing β, one does not change the parameters of the
theory as well, we have to determine the physical point at each β as outlined
in Sect. 4.1. The resulting path through the parameter space of our theory
connects parameter sets describing the same physical situation as the cutoff
is varied. In the thermodynamics literature, this is known as the line of
constant physics (LCP).

The LCP will, of course, depend on the specific observables chosen to
identify the physical point. The difficulty of determining it also depends
largely on the action used. For the 2 + 1 flavour staggered action that
is in broad use today, one of the two ratios necessary to fix the LCP is
simply given by the ratio of bare quark masses ms/mud. Although it is
not an experimentally accessible quantity, it is known to a good enough
accuracy and its use reduces the number of parameters that need to be
independently tuned by one. For Wilson-type fermions, on the other hand,
the additive quark mass renormalization renders the search for an LCP much
more difficult so that it is preferable to vary the temperature by varying Nt.

As an example, Fig. 28 displays a determination of the relation between
lattice spacing a and bare gauge coupling β along a LCP from a recent calcu-
lation with 2 + 1 flavour stout-smeared staggered fermions. It is important
to note, that one can define LCPs which are not physical. One can e.g.
set the quark mass ratio ms/mud to unphysically small values. The results
obtained will be consistent, but will not describe the real physical situation.
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Fig. 28. Relation between bare gauge coupling and lattice spacing from [162].

5.2. Identifying phase transitions

One of the main motivations for dealing with thermodynamics is the
exploration of the phase structure of a theory. Generically, phase transitions
appear only in infinite volume. Studying their emergence at finite volume is
best achieved by finite size scaling techniques.

In QCD, we can define the chiral susceptibility as the second derivative
of the partition function with respect to the (light) quark mass

χψ̄ψ =
T

V

∂2Z
∂m2

=
∂
〈
ψ̄ψ
〉

∂m
. (116)

The corresponding quantity in pure gauge theory, the Polyakov loop suscep-
tibility, is plotted in the left-hand panel of Fig. 29 versus β for three different
lattice volumes. It is clearly visible that the peak height scales with volume,

Fig. 29. Polyakov loop susceptibility in pure SU(3) gauge theory (left-hand panel)
and chiral susceptibility of 2 + 1 flavour QCD (right-hand panel) versus β from
[10, 163].
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which is a sign for a phase transition that develops in the infinite volume
limit. The exponent with which the peak height diverges with volume de-
pends on the universality class. In the present case, the height scales ∝ V ,
which is characteristic of a first order phase transition.

In one of the landmark calculations of lattice QCD [163], it was demon-
strated that at physical quark masses (and vanishing chemical potential)
QCD does not exhibit a phase transition but rather a crossover. In the
right-hand panel of Fig. 29, the chiral susceptibility is plotted versus β for
the same three lattice volumes as in the pure gauge theory case. In con-
trast to pure gauge theory, the peak does not show an increase with volume
though.

As clear as this evidence might seam, it is not conclusive yet because
it lacks a proper continuum limit. The calculation was, therefore, repeated
for 4 different values of Nt, which allowed for taking the continuum limit of
the peak height (upper panel of Fig. 30) before extrapolating it to infinite
volume (lower panel of Fig. 30). The result clearly shows that the peak
height does not diverge and that therefore QCD has no phase transition at
vanishing chemical potential.

Fig. 30. Continuum extrapolation of the peak height for 3 different lattice volumes
(upper panel) and infinite volume behaviour of the inverse peak height (lower panel)
from [163].
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5.3. Critical and pseudocritical temperatures

As we have seen now that QCD does not exhibit a phase transition, the
question about its critical temperature is moot: there simply is no critical
temperature. One might nonetheless be interested in finding the tempera-
ture where the thermodynamic observables exhibit the largest change, e.g.
where the peak in the chiral susceptibility is located even if it does not
diverge.

It is evident that there is no unique pseudocritical temperature. As a
simple illustration, we might look at the phase diagram of water (Fig. 31).
Let us assume we want to determine the transition temperature of water
at constant pressure below the critical point. We could e.g. measure the
density ρ or the specific heat cp for different temperatures. The critical
temperature will be the unique point where ρ is discontinuous and cp diverges
and redefining our observables by multiplying them with a smooth function
of T , e.g. T 2 will not change the situation (lower left-hand panel of Fig. 31).
If, on the other hand, the pressure is above the critical value, not only will
the peak of cp generically be at a different temperature than the largest
change in ρ, but redefining the observables by multiplying them with T 2

will shift those temperatures (upper left panel of Fig. 31).

water

crossover

vapor

1  order phase transitionst

Fig. 31. Illustration of the phase diagram of water. In the right-hand panel the
phase structure is plotted in the p versus T plane, the left-hand panels show the
temperature dependence of the density ρ and the specific heat cp versus tempera-
ture at a line of constant pressure below and above the critical point.
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In QCD, a pseudocritical temperature may also be computed for differ-
ent observables. In addition to the chiral susceptibility (Eq. (116)), quark
number susceptibilities

χq2 =
T

V

∂2Zµ
∂µ2

q

∣∣∣∣
µq=0

(117)

may be used. One may also use the renormalized chiral condensate〈
ψ̄ψ
〉
R

=
mud

M4
π

(〈
ψ̄ψ
〉
ud
−
〈
ψ̄ψ
〉
ud,T

)
(118)

itself or a quantity called the strange subtracted chiral condensate that is
defined as

∆l,s =

〈
ψ̄ψ
〉
ud,T
− mud

ms

〈
ψ̄ψ
〉
s,T〈

ψ̄ψ
〉
ud
− mud

ms

〈
ψ̄ψ
〉
s

, (119)

where 〈ψ̄ψ〉q,T is the chiral condensate for quark flavour q at temperature T
and 〈ψ̄ψ〉q the corresponding condensate at zero temperature.

In Fig. 32, the behaviour of three of these observables is plotted. The
pseudocritical temperature extracted is in the range of Tc ∼ 145–165 MeV.
These results are in agreement with older results from the Wuppertal–
Budapest Collaboration [165, 166]. They are also in agreement with re-
cent results of the hotQCD Collaboration [167] that had previously quoted
substantially higher numbers [168] (see Fig. 33).
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Fig. 32. Determination of the pseudocritical temperature of QCD from 3 different
observables from [164].

Some valuable crosschecks of the results on the phase transition are be-
ginning to emerge from lattice calculations with alternative fermion formu-
lations. Although continuum results at physical quark masses are currently
only available for staggered fermions due to their relatively low computa-
tional cost, there are results at larger quark masses from Wilson and overlap
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fermions [169–171]. As an example, Fig. 34 shows a comparison of the stag-
gered and Wilson chiral condensate at an unphysically large pion mass. As
one can see, the continuum results are in nice agreement.
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5.4. Equation of state

The final lattice calculation I want to briefly discuss is the QCD equation
of state. From standard thermodynamic relations, we find that up to finite
volume corrections the pressure is given by

plat(β,mq) =
Ta4

V
lnZ(β,mq) . (120)

Since lattice QCD does not give us the normalization of the partition func-
tion, Eq. (120) can only be used to compute pressure differences

plat(β,mq)− plat
(
β0,m0

q

)
=
Ta4

V

(β,mq)∫
(β0,m0

q)

∂ lnZ
∂β′

dβ′
∂ lnZ
∂m′q

dm′q . (121)

It is important to note that the pressure difference in Eq. (121) is indepen-
dent of the integration path, which allows one to choose optimal integration
paths dependent on the problem. The derivatives of the partition function
occurring in Eq. (121) are the gauge action and the chiral condensate

∂ lnZ
∂β

= −〈SG〉 ,
∂ lnZ
∂mq

=
〈
ψ̄ψ
〉
q
. (122)

Like in the previous section, a T = 0 subtraction has to be performed on
them to remove divergences.

We can now integrate the pressure starting from a reference point. One
straightforward method to do so is to compute the derivative of the pressure
with respect to temperature along the LCP. The temperature derivative of
the pressure is related to the trace anomaly

I = Θµµ = ε− 3p (123)

via the relation
I

T 4
= T

∂

∂T

p(T )

T 4
. (124)

Alternatively, one can construct the pressure as a function of β and the
quark masses, constraining its form by computing derivatives with respect
to all these parameters [172].

There are also different possible choices for a reference point. Ideally,
the pressure should be negligible at the reference point. One natural choice
is e.g. a physical point at low temperature. The pressure will be low at low
temperature and, in addition, it can be estimated rather accurately in the
hadron resonance gas model [174–176]. However, in a fixed Nt approach,
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the lattice spacing a = Nt/T increases dramatically at low T and there
are potentially large discretization effects. Alternatively, one may choose a
reference point that is not on the LCP. Increasing the bare quark masses at
a fixed β leads to an unphysical theory deeply in the confined phase where
the pressure is almost zero which can serve as an ideal reference point [162].
In the left-hand panel of Fig. 35, the result of a pressure integration from
such a reference point are displayed for two lattice spacings.
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Fig. 35. Pressure integration from a reference point at high bare quark mass for
two Nt (left-hand panel) and the continuum extrapolated pressure as a function
of temperature (right-hand panel) from [162]. The β of the reference point cor-
responds to T ∼ 214 MeV at the physical point. In the right-hand panel, HRG
denotes the hadron resonance gas result and HTL refers to the hard thermal loop
result of [173].

In the right-hand panel of Fig. 35, the continuum extrapolated pres-
sure is plotted versus temperature and compared to the hadron resonance
gas prediction, the hard thermal loop prediction and the Stefan–Boltzmann
limit. Further thermodynamic quantities can be obtained from p(T ). Apart
from the trace anomaly (Eq. (124)), we can compute the energy density ε,
the entropy density s and the speed of sound cs via

ε = I + 3p , s =
1

T
(ε+ p) , c2

s =
∂p

∂ε
. (125)

Similarly to the case of the pseudocritical temperature discussed in
Sect. 5.3, there has been until very recently a marked discrepancy in the
literature regarding the equation of state as obtained by the two major col-
laborations computing it. The peak height of the trace anomaly reported
by the hotQCD Collaboration [179, 180] was substantially larger than that
reported by the Wuppertal–Budapest Collaboration [162, 172]. With the
latest results of the hotQCD Collaboration [177], this discrepancy has dis-
appeared and there is now consensus on the on the QCD equation of state
at vanishing chemical potential (see Fig. 36).
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Fig. 36. Trace anomaly versus temperature from the Wuppertal–Budapest Collab-
oration [162] and the hotQCD Collaboration [177]. The “s95p-v1” parametrisation
[178] and a previous hotQCD result (HISQ, [179]) is plotted for comparison.

I would like to thank Stephan Dürr, Zoltan Fodor, Sandor Katz, Laurent
Lellouch and Kalman Szabo for discussions and support in preparing the
lectures.
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