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1. Rare but highly structured events

In particle collisions at energies much above the mass of the proton, cer-
tain exceptional final states include subsets of particles of momenta {qj}
with anomalously small invariant mass: (

∑
i qi)

2 � (
∑

iEi)
2, emitted at

wide angles to the beam direction(s) and not embedded among other parti-
cles of similar energy. Such sets of particles are “jets”. Jets are a signature of
large momentum transfer through local interactions, and as such are direct
evidence of processes taking place over distances of the order of 1/(momen-
tum transfer). Proton collisions from all high energy colliders, and most
recently the Large Hadron Collider (LHC), provide striking examples of this
phenomenon on a regular basis.

The first part of these lectures begins with a brief historical review of such
particle jets, discusses them as a window to short distances, and attempts to
explain why and when jets are seen. It goes on to a discussion of the concept
of infrared safety, its essential relation to energy flow, and to a description
of a classical-quantum connection at the heart of jet phenomenology. The
second part describes how infrared safety is used in practice, and aims to
communicate the flavor of the all-orders reasoning that underlies the proofs
of infrared safety for jet cross sections in electron–positron annihilation and
of their factorization in hadron–hadron scattering.

∗ Invited talk presented at the LIV Cracow School of Theoretical Physics “QCD Meets
Experiment”, Zakopane, Poland, June 12–20, 2014.
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The story is a mixture of history and perspective in the description of
these rare but highly structured events.

2. Particle jets, a brief biography

The prehistory of jets extends back to the 1950s, in emulsion records of
high energy cosmic rays. Collisions of high energy projectiles with target nu-
clei resulted in highly directional collections of particles, which were dubbed
jets. In reports of one such experiment we read “The average transverse
momentum resulting from our measurements is pT = 0.5 BeV/c for pions
. . . Table 1 gives a summary of jet events observed to date . . . ” [1]. We now
interpret such jets as collections of fragments, following the directions of the
projectile arriving from space in these experiments. They were not quite
the same as the wide-angle jets that will be the main subject here, but are
related nonetheless, in ways we will see below.

The observation of “wide angle” or “high pT” jets, like the ones in Fig. 1,
had to await the era of high energy physics, beginning in the late 1960s. The
door was opened by inclusive deep-inelastic scattering (DIS), and by the
parton model which provided an explanation for its most striking feature,
approximate scaling. For the DIS cross section, scaling can be represented as

σinclusive
e−proton (Q, x) = σelastic

e−parton(Q)× Fproton(x) (1)

in which the inclusive electron–proton cross section at spacelike momen-
tum transfer qµ, with −q2 = Q2, is given by the elastic scattering cross
section of an electron on a point-like charged particle times a function
Fproton of a dimensionless variable x = Q2/2p q. Simple kinematic rea-
soning suggests that the “scaling variable” x has the kinematic interpreta-
tion of the fraction of the proton’s momentum carried by the elastically-

Fig. 1. An impressive multi-jet event recorded by the CMS Experiment at the LHC.
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scattered point particle, as seen in the rest frame of the incident elec-
tron. These momentum fractions were insightfully assigned to hypotheti-
cal partons, the probabilities of whose fractional momenta are described by
Fproton(x), the “parton distributions” [2, 3].

This was a beautiful but puzzling explanation, given that the leading
candidates for charged partons were quarks, which by then were thought to
be confined. But if they were confined, how could they appear to scatter
elastically? It was not too long, however, before this paradoxical combina-
tion of properties was seen to emerge naturally from quantum field theory
through the asymptotic freedom of quantum chromodynamics (QCD). Sub-
sequently, the charged partons were unambiguously identified with quarks,
in part from the spin-dependence of the electron–parton elastic scattering
in Eq. (1) [4]. The question then quite naturally arose, what happens to
partons in the final state? Would not confinement, the reverse side of the
coin of asymptotic freedom, still forbid a dynamical expression of quarks and
color? The detectors and energies available for these pioneering experiments
did not allow immediate answers to these questions.

The answer, however, was not long in coming from SLAC, in 1975.
Confinement did not prevent a direct signature of quark-pair production
in electron–positron annihilation to hadrons. The angular distribution of
energy flow in such events follows the Born expression for the creation of
spin-1/2 pairs of quarks and antiquarks [5]. In QCD, of course, there are
gluons as well as quarks, and a few years later there were hints of three
gluon structure in Upsilon decay [6], and then unequivocal gluon jets were
found at the higher-energy electron–positron machine, Petra [7], very much
as described in Refs. [8, 9], and as illustrated in Fig. 2. These observations
confirmed color as a dynamical variable.

Fig. 2. A three-jet event, including a gluon jet, as seen by a Petra experiment [7].
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The next generation of machines allowed hadron–hadron scattering, and
by implication the scattering of quarks and gluons. In the early 1980s, there
was strong evidence for scattered parton jets at the ISR [10] and Fermi-
lab [11]. Overall, however, it was an unsettled period until the large angular
coverage of detectors at the SPS made possible “lego plots” in terms of energy
flow, and provided the clear observation of high-pT jet pairs that represent
the scattering of partons by partons, mediated by the strong force itself, as
in Fig. 3 [12]. Such jets are naturally “rare” because the high momentum
transfer scattering of partons in QCD is rare (but calculable), decreasing as
a power of the energy transfer on dimensional grounds.

Fig. 3. UA1 “lego plots”, representing the flow of energy in a rolled-out representa-
tion of the detector surface [12].

In fast-forward we move to the 1990s, and the machines that truly estab-
lished the Standard Model: HERA, the Tevatron Run I, and LEP I and II.
Here, jet cross sections were seen and measured over multiple orders of mag-
nitude. At HERA, the scattered quark of Eq. (1) makes a clear appearance,
as illustrated by Fig. 4 from the H1 experiment. Finally, this century has
seen a new era for jets at the limits of the Standard Model, ushered in by
Tevatron Run II, and then the LHC 7 → 8, heading towards 14 TeV, with
jets whose energies reach 1 TeV and beyond as in Fig. 5. Basic uncertainty
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relations suggest that such events emerge from processes at distance scale
δx ∼ ~c

1 TeV ∼ 2× 10−19 m. They are observed by detector elements up to
about 10 m away, thus bridging 20 orders of magnitude in a single experi-
ment. Over time, theory has kept up with these developments, as illustrated
by Figs. 6 and 7, which show remarkable consistency of theory to data in
both shape and normalization, over more than ten orders of magnitude in
the cross section.• And for DIS:

 Q**2 = 21475   y = 0.55   M = 198 

Fig. 4. A DIS event seen by the H1 experiment at HERA in side view and lego plot.

Fig. 5. A terascale jet seen by the ATLAS experiment.
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Inclusive jet and dijet cross sections

look at the production of jets of hadrons with large transverse energy in

inclusive jet events pp ! j + X

exclusive dijet events pp ! 2j

cross sections measured as a function of the jet pT , rapidity y and dijet invariant mass mjj in
double differential form

(CMS-PAS-SMP-12-012) (ATLAS-CONF-2012-021)

Fig. 6. Single-jet inclusive and jet pair mass distributions measured by the CMS
and ATLAS experiments over many orders of magnitude.Inclusive jet cross section

Motivation for NNLO

experimental uncertainties at high-pT smaller than theoretical ! need pQCD predictions to
NNLO accuracy

collider jet data can be used to constrain parton distribution functions

size of NNLO correction important for precise determination of PDF’s

inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross
sections

↵s determination from hadronic jet observables limited by theoretical uncertainty due to scale
choice

Inclusive jet cross section

Motivation for NNLO

experimental uncertainties at high-pT smaller than theoretical ! need pQCD predictions to
NNLO accuracy

collider jet data can be used to constrain parton distribution functions

size of NNLO correction important for precise determination of PDF’s

inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross
sections

↵s determination from hadronic jet observables limited by theoretical uncertainty due to scale
choice

Fig. 7. Single-jet inclusive cross sections measured by the CMS experiment, in
ratios of theory to experiment.

3. Jets as a window to short distances

The jets seen to date are, as the data shown above demonstrate, pri-
marily QCD phenomena, and this very fact provides strong tests of the
Standard Model. For example, limits on the compositeness of quarks are set
by observing “Rutherford-like” scattering of quarks by gluon exchange. Data
show that the rapidity distribution tracks the predictions of a process whose
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lowest order is the exchange of a single gluon between two point sources.
Similarly, by reconstructing sets of jets, often in combination with observed
leptons, it is possible to observe, and sometimes discover, heavy particles,
like the top quark, Fig. 8.

Fig. 8. A candidate top-quark pair production event.

Most of all at the LHC, jets are studied as backgrounds to and signals
for new physics. For example, a gluino, the spin-1/2 superpartner of the
gluon, would decay into a squark, the superpartner of a quark, by radiating
an antiquark, which appears as a jet in the final state. Then the squark
decays to a stable, weakly-interacting supersymmetric particle by radiating
an antiquark, which appears in the final state as another jet. Since in most
supersymmetric models, gluinos, should they exist, can be produced only in
pairs, the resulting final state has at least four jets and two sources of missing
energy (the lightest supersymmetric particle). Such an event is complicated,
but by no means uniquely produced by supersymmetry. The Standard Model
produces just such events, and distinguishing between this background and
that signal requires a level of precision in the calculation of each.

Quite generally, jets appear whenever a short-lived state, whether QCD,
electroweak, or new physics, decays to strongly-interacting matter. In the
following, we discuss how this comes about.

4. Why and when are there jets?

The calculation of jet production, and indeed any cross section in QCD,
requires learning to tease predictions out of a quantum field theory that acts
differently on different length, and correspondingly momentum, scales. One
solution to this problem is “factorization” [13]. For factorizable processes, we
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can separate the calculable short-distance scattering of quarks and gluons
from the long-distance binding of hadrons. Jet cross sections are only one
among a larger class of observables for which this is possible. A sibling area,
for example, is the study of elastic scattering, even rarer events in which
jets are replaced by single hadrons, (like p+ p→ p+ p) [14]. Factorization
techniques for these and other processes are still being developed, often in
combination of ideas from effective field theory [15].

A factorized jet cross section is a direct generalization of the expression
for deep-inelastic scattering, Eq. (1) [13, 16]

dσ(A+B → {pci}) =

∫
dxadxbfa/A(xa, µF ) fb/B(xb, µF )

×C
(
xapA, xbpB,

Q

µF
, pci

)
ab→c1...cNjets+X

d

Njets∏
i=1

Jci(pci , µF )

 . (2)

The elements of this expression are parton distributions, fa/A(xa, µF ),

short distance “coefficients” C
(
xapA, xbpB,

Q
µF
, pci

)
ab→c1...cNjets+X

, and final-

state functions of the jet momenta, Jci(pci , µF ). Together, they tell a story,
in which partons a and b, whose probability distributions are given by the fs,
collide through a set of calculable quantum mechanical processes described
by the Cs, resulting in particles that evolve independently into the final
state to produce jets, with probability distributions in their own momenta
given by the Js. The jets, of course, are made up of individual particles, and
very closely related to these jet cross sections are factorized single-particle
inclusive cross sections,

dσ(A+B → H(p))/d3p =

∫
dxadxbfa/A(xa, µF )fb/B(xb, µF )

×
∫
dzC

(
xapA, xbpB,

p

zµF

)
ab→c(p/z)

DH/c(z) , (3)

where the “fragmentation function” DH/c(z) is the probability distribution
for hadrons H to appear in a “c-jet”, with z the fractional momentum of the
jet carried by hadron H.

To interpret these fundamental results is to address the questions: Why
are there jets in quantum field theory? Why is the dynamics of jets factor-
ized, or one might say, “autonomous”? In the following, we will try to answer
these questions in turn, partly with quantum mechanical, partly with clas-
sical reasoning.
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4.1. The why of jets

Let us go back to some of the very basics of quantum field theory in its
perturbative description. All perturbation theory arises from a Schrödinger
equation that controls mixing of (free particle) states, when we are given a
free Hamiltonian H(0), and a perturbing “potential”, V , representing a set
of operators that mix the free states

i~
∂

∂t
|ψ(t)〉 =

(
H(0) + V

)
|ψ(t)〉 . (4)

We solve this equation with free-state “in” boundary conditions,

|ψ(t = −∞)〉 = |m0〉 =
∣∣pin

1 , p
in
2

〉
. (5)

Here, we use the notation Vji = 〈mj |V |mi〉, which specifies the vertices in the
diagrammatic picture of our theory. Theories differ by their lists of particles
that constitute the free states |m〉, and by the lists of their (Hermitian) V s.

Solutions to the Schrödinger equation (4) are sums of ordered time inte-
grals, and taking the matrix element of such a solution with an “out” state
〈mn|, we find the S matrix

〈mn|m0〉 =
∑

τ orders

∞∫
−∞

dτn . . .

τ2∫
−∞

dτ1

×
∏

loops i

∫
d3`i

(2π)3

∏
lines j

1

2Ej
×

∏
vertices a

iVa→a+1

× exp

 i ∑
statesm

 ∑
j inm

E(~pj)

 (τm − τm−1)

 . (6)

This is sometimes referred to as “old-fashioned perturbation theory”. The
E(~pi) =

√
~pi 2 +m2

i are the energies of the particles in each intermediate
state. Because spatial momentum (but not energy) is conserved at each
vertex, the integrals over loop momenta `i are equivalent to sums over free
field intermediate states.

The time integrals in Eq. (6) extend to infinity but, in principle, phase
oscillations can damp them and answers can be finite. Long-time, “infrared”
divergences, usually logarithmic, however, can come about when phases van-
ish over large stretches of the τi integrals, which can then grow at large times.
We would like to know when this happens.
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Some general insights can be found by looking at the phase on the right-
hand side of (6), which is given by

exp

i ∑
statesm

 ∑
j inm

E (~pj)

 (τm − τm−1)


= exp

i ∑
verticesm

 ∑
j inm

E (~pj)−
∑

j inm−1

E (~pj)

 τm

 . (7)

Divergences for τi →∞ require two things, which we can identify from the
right- and left-hand sides of this expression. From the right-hand side, we
see that the vanishing of the phase requires degenerate states∑

j inm

E (~pj) =
∑

j inm−1

E (~pj) . (8)

This, however, is at most a necessary condition for divergence. The phase
is a fairly complicated function of the spatial momenta of particles in all
the virtual states. Divergence requires not only vanishing phase but also
stationary phase, so that small variations in these momenta do not lead to
large oscillations. From the left-hand side of (7), we derive a very useful
condition for stationary phase

∂

∂`iµ
[phase] =

∑
statesm

∑
j inm

(
±βµj

)
(τm+1 − τm) = 0 , (9)

where the βjs are normal 4-velocities

βj = ±∂Ej/∂`i . (10)

Now, the quantity βµ∆τ = xµ is the classical translation of an on-shell
particle with velocity β over time ∆τ . Since Eq. (9) must hold for every
loop whose vertices go far into the future, all vertices between every one
of these loops must be connected with free, classical propagation between
fixed points in space representing the vertices as τ → ∞. That is, the
lines that give long-time behavior must describe a physical process. This is
actually very restrictive, but easy to satisfy if all the βjs are equal in a given
loop [13, 17–19].

From these, relatively simple, considerations, we can draw a strong con-
clusion. If fast partons emerge from the same point in space-time, they can
only rescatter with collinear partons. But such an ensemble describes a jet
of particles. In essence, this is the answer to “when are there jets?”. Jets
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require strong localization of the emission of a set of partons that propagate
essentially on their mass shells to the far future. This, of course, is natural
when particles are produced at short distances in high energy collisions, and
also in the decay of heavy to light particles. On the other hand, this con-
dition is very restrictive, and most sets of degenerate states cannot lead to
divergent amplitudes.

Let us illustrate the role of classical propagation. An example of a set of
degenerate states that cannot give long-time divergences is shown in Fig. 9.
The pair of lines labeled k 6= p can be degenerate with the final state |p, p′〉,
so that the phase associated with this state vanishes, but it cannot give
stationery phase unless the particles in the virtual pair are actually parallel
to the external lines. In terms of our discussion above, this is because the
two virtual particles originate at the same point, and then, once they move
for any finite time in different directions, they can never meet to scatter
with the finite momentum transfer necessary to redirect them into the p and
p′ directions. Thus, the effects of these states are limited to short times,
of the order of the total energy of the pair, and their contributions to the
amplitude are finite.

!"#

$%%&'()**

#

#

Fig. 9. Degenerate states that do not lead to infrared divergences.

In contrast, for particles emerging from a local scattering as in Fig. 10,
(only) collinear (or soft) lines can give long-time behavior. In the collinear
case, two lines travel parallel to each other at the speed of light, and can
interact locally at any time in the future. The term “soft” refers to the ex-
change of lines whose energy vanishes, and which therefore do not contribute
to the phase in Eq. (6). In the space-time picture, these lines have infinite
wavelength, and so can attach at any point in the physical picture.

These simple considerations generalize to any order, and to any field the-
ory, and we conclude that the momentum configurations associated with jets
are precisely those whose contributions to quantum mechanical amplitudes
are large, and can even diverge. We now turn to the independence of jet
evolution and structure from the remainder of the event.
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Fig. 10. Degenerate states that can lead to infrared divergences.

4.2. The autonomy of jets

In the factorized equations (2) and (3), the dependence of the cross
sections on jet momenta, for example their invariant masses p2

c and z-dep-
endence of their fragmentation functions, appear in independent factors,
which depend only on the nature of the partons that initiate the jets. We
will try to justify this “autonomy”. The first thing to point out is that
autonomy is by no means obvious. What about the effect of long-range
forces associated with massless gluons? They might only transfer small
momenta, but such effects might still modify jet substructure, and correlate
it with the substructure of other jets. We will give an intuitive argument
for why this does not happen at high enough relative momenta between the
jets, based on a simple classical analogy. This will be followed by a sketch
of more technical arguments later in the lectures.

Let us think of the classical electromagnetic fields seen by a fast-moving
particle receding from a charged particle. A classical picture is not so far-
fetched, because the correspondence principle is the key to infrared radiation.
An accelerated charge must produce classical radiation, and an essentially
infinite number of soft photons or gluons is required to make up a classical
field.

In any case, we imagine that two particles are produced at the same place
and time, which we choose as the origin in their respective rest frames,
with coordinates xµ and x′µ. We are interested in the fields seen by the
particle with the x′ frame as it recedes from the charged particle with relative
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velocity β, which is near the speed of light, in the x′3 direction. All we need
is the expression for the x3 coordinate of the receding particle in the charged
particle’s rest frame, as a function of the time in its own frame

x3 =

√
1

1− β2

(
x′3 + βt′

)
= γβt′ , (11)

where we use that ~x ′ = 0 for the receding particle siting at the origin in its
own frame. In these terms, the 3-component of the electric field of the par-
ticle with charge q as seen by the receding particle in its own coordinates is

E′3
(
x′
)

=
qx3

(x′3
2)3/2

∼ 1

γ2

q

(βt′)2
, (12)

which decays not only as 1/t′ 2, but as an overall factor of 1/γ2, vanishing
rapidly as β → 1 unless t′ is very small. As β approaches the speed of light,
then, the charge of one particle can exert an appreciable force on the other
particle over only a very short time, much shorter than the time it would
take for the outgoing particle (our proxy for a jet) to evolve into its eventual
final state.

From these considerations, it might seem that factorization should be
easy to prove. It is not quite this simple, however, if only because in pertur-
bation theory the electric field is a derived quantity. From a calculational
point of view, the primary quantities are the gauge fields, Aµ, whose Lorentz
transformations are quite different from those of the field strengths. The
vector potential, Aµ actually turns out to be uncontracted by the Lorentz
transformation, but is mostly a total derivative as seen in the x′ frame,

A′ µ = q
∂

∂x′µ
ln
(
βt′
)

+O(1− β) . (13)

Thus, the “large” part of Aµ must be removed by a gauge transforma-
tion, something which requires special considerations in perturbation theory.
Once the total derivative in the gauge field is brought under control, how-
ever, the residual “drag” forces are corrections of the general size

1− β ∼ 1

2

[√
1− β2

]2
∼ m2

2E2
, (14)

with m the particle mass. This gives a sense of the size of power suppressed
corrections to “jet autonomy”, an estimate which is consistent with factor-
ization, and which vanishes rapidly at large momentum transfer.
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These general considerations apply as well to QCD. We can consider,
for example, the emission of a gluon of momentum k in a scattering process
p+q → r+s, as illustrated in Fig. 11, which shows the interference between
the emission of a gluon from line p (top of the figure) with emission from the
remaining lines. In general, this contribution is complicated, but when k is
emitted nearly collinear to p, the sum of the three diagrams simplifies, and
the entire contribution depends only on p and k, and is naturally thought
of as part of the jet associated with particle p in a factorized cross section
like Eq. (2). The cross section is also large in this limit, consistent with the
considerations of the previous subsection. This simplification depends on
gauge invariance, which is the key to the factorization of jets in QCD. The
jet only knows the rest of the world as a source of unphysically-polarized
gluons.

+

p

k

pk

q

r s

q

r s

q

r k s

p

q

r

p

s

k+

TIMES

IS INDEPENDENT OF MOMENTA q, r, s

Fig. 11. Interference contributions to the emission of a gluon (k) in a scattering
process. In the limit that k becomes parallel to p, this contribution factorizes.

4.3. Infrared safety, energy flow and a classical-quantum connection

We can now summarize: we have found that amplitudes for the pro-
duction of parallel-moving particles are greatly enhanced. Each such set is
a jet. Massless particles can emit other massless particles, so the number
of partons in any jet is indefinite and, generally speaking, amplitudes are
ill-defined. For massive lines, once m� E, amplitudes are enhanced, if not
divergent.
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We are thus faced with the problem of how to get quantitative predictions
from divergent amplitudes. In QCD, t→∞ surely invalidates perturbation
theory because of nonperturbative effects, including confinement. We want
to use scattered partons, but we cannot follow them to infinity, and that is
the problem. Here is another analogy, this time from quantum field theory,
which suggests a way forward.

In quantum electrodynamics, we already know that exclusive cross sec-
tions typically have infrared divergences. The order-α correction to electron–
electron elastic scattering, for example, includes corrections of the general
form

σ(1)
ee→ee (Q,me,mγ 6= 0, αEM) = αEM β(Q/me)ln

mγ

Q
, (15)

where mγ is a regulating mass for the photon, without which the correction
diverges, Q is the momentum transfer, and β(Q/me) is a specific function,
which itself grows as a log of Q/me for Q� me. So long as Q/me is not too
large, however, this problem is solved by introducing a (Bloch–Nordsieck)
“energy resolution”, εQ [20], where we group with true elastic scattering
a sum over photons up to the resolution, Eγ ≤ εQ. Combining these two
possibilities, it is found that (15) is replaced by

σ
(1)
ee→ee+X(ε) (Q,me, εQ, αEM) = αEM β(Q/me) ln ε , (16)

where at the order of αEM, X denotes one γ or nothing. In contrast to (15),
this order-αEM correction to the Born cross section is small if αEM ln(1/ε) is
small, and this is the case so long as ε� e−1/αEM , which is a weak condition
indeed. On further reflection, we see that any practical experiment will be of
this form because of the impossibility of observing arbitrarily soft photons,
of which we must have a large number, given the required radiation by
accelerated charges in the classical limit. The finiteness of such soft photon-
inclusive cross sections is thus fundamental and motivated by very general
considerations.

It is natural to ask whether something like this could be generalized to
field theories with massless charged particles, like massless QED, or QCD,
whose gluons are both charged and massless. That is, can we identify ob-
servables that have no factors like ln

(
m
Q

)
, only at worst

(
m
Q

)
ln
(
m
Q

)
? The

answer is yes, but an energy resolution not enough. An extra angular res-
olution, however, works [18, 21, 22]. This result is closely related to the
Kinoshita, Lee–Nauenberg Theorem, the infrared finiteness of total transi-
tion rates [23].
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We can bring these abstract considerations into contact with experiment
by trading the zero-mass limit for the high-energy limit. Jet cross sections
can then be defined in terms of an angular resolution or its generalizations.
As we shall see below, the essential condition is that final states be “weighted”
by a smooth function of particle momenta, chosen so that the weight for any
state with two parallel-moving particles is the same as the weight for the
state in which this pair of particles is replaced by a single particle of the same
total four-momentum. Such cross sections are free of infrared divergences
of any kind, and depend only on an overall energy scale, Q, and a set of
dimensionless parameters that define the weight function.

Cross sections of this kind are perfect for an asymptotically free theory
like QCD, in which αs(Q) decreases with Q. These include suitably-defined
jet cross sections, for which we may shift the renormalization scale to the
momentum scale, and write

σ (Q/µ, δ, αs(µ)) = σ (1, δ, αs(Q)) , (17)

where δ stands for dependence on the parameters (like the angular or energy
resolution) on which the weight function depends. Such cross sections are
present in any theory, including the full Standard Model at very high energies
�MW , MZ , MH [24].

We will review arguments that show how infrared divergences cancel
later, but first we discuss how such finite cross sections allow the deter-
mination of αs from an infrared safe cross section. We suppose we have
succeeded in computing a cross section σ̂ to some fixed power nmax in per-
turbation theory, and that we have a measurement of this same quantity.
Combining the measured value and the computed expression, we only need
solve the equation

σ̂(αs, Q) =

nmax∑
n=0

Cn(Q/µ)αns (µ) +∆ → αs(µ) = f(σ(µ), Cn(Q/µ), ∆) . (18)

This can be done for any number of observables, with the renormalization
scale µ chosen to minimize the explicit logarithms that occur in the coef-
ficients Cn. Figure 12 shows the result of this procedure applied to many
different observables including recent LHC data, and clearly showing the
running of the QCD coupling.

Freedom from arbitrarily long-time dependence is called “infrared safety”.
In QCD, confinement involves only low momentum transfers, corresponding
to long time scales, and takes place too late to affect the gross properties of
energy flow. The scale for the longest times sampled is set by parameters
imposed on the final state, like jet cone sizes or final state jet masses. A
natural conclusion is that any observable based on the flow of energy is
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Fig. 12. Experimental determination of the running of the coupling.

infrared safe, since it is unaffected by rearrangements of energy between
collinear particles or by soft radiation. And conversely, probing the details
of energy flow (by examining the substructure of jets) through smooth weight
functions provides a controllable approach to infrared dynamics.

The collimated nature of jets makes them useful in another realm, where
their evolution can be affected by, and carry information from, new phases
of strongly-interacting matter in nuclear collisions at RHIC and the LHC.
At both of these colliders, the profound effects of the medium on energy flow
has been clearly observed [25], for example, in asymmetric jet pairs like the
one shown in Fig. 13. 2

FIG. 1: Event display of a highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, and
with high energy calorimeter cell deposits distributed over a wide azimuthal region. By selecting tracks with pT > 2.6 GeV
and applying cell thresholds in the calorimeters (ET > 700 MeV in the electromagnetic calorimeter, and E > 1 GeV in the
hadronic calorimeter) the recoil can be seen dispersed widely over azimuth.

|⌘| < 3.2. The hadronic calorimetry in the range |⌘| < 1.7
is provided by a sampling calorimeter made of steel and
scintillating tiles. In the end-caps (1.5 < |⌘| < 3.2),
LAr technology is also used for the hadronic calorime-
ters, matching the outer |⌘| limits of the electromag-
netic calorimeters. To complete the ⌘ coverage, the LAr
forward calorimeters provide both electromagnetic and
hadronic energy measurements, extending the coverage
up to |⌘| = 4.9. The calorimeter (⌘,�) granularities are
0.1 ⇥ 0.1 for the hadronic calorimeters up to |⌘| = 2.5
(except for the third layer of the Tile calorimeter, which
has a segmentation of 0.2⇥0.1 up to |⌘| = 1.7), and then
0.2⇥ 0.2 up to |⌘| = 4.9. The EM calorimeters are longi-
tudinally segmented into three compartments and feature
a much finer readout granularity varying by layer, with
cells as small as 0.025⇥0.025 extending to |⌘| = 2.5 in the
middle layer. In the data taking period considered, ap-
proximately 187,000 calorimeter cells (98% of the total)
were usable for event reconstruction.

The bulk of the data reported here were triggered
using coincidence signals from two sets of Minimum
Bias Trigger Scintillator (MBTS) detectors, positioned
at z = ±3.56 m, covering the full azimuth between
2.09 < |⌘| < 3.84 and divided into eight � sectors and two
⌘ sectors. Coincidences in the Zero Degree Calorimeter
and LUCID luminosity detectors were also used as pri-
mary triggers, since these detectors were far less suscep-
tible to LHC beam backgrounds. These triggers have a
large overlap and are close to fully e�cient for the events
studied here.

In the o✏ine analysis, events are required to have a
time di↵erence between the two sets of MBTS counters
of �t < 3 ns and a reconstructed vertex to e�ciently
reject beam-halo backgrounds. The primary vertex is
derived from the reconstructed tracks in the Inner De-
tector (ID), which covers |⌘| < 2.5 using silicon pixel and

strip detectors surrounded by straw tubes. These event
selection criteria have been estimated to accept over 98%
of the total lead-lead inelastic cross section.

The level of event activity or “centrality” is char-
acterized using the total transverse energy (⌃ET ) de-
posited in the Forward Calorimeters (FCal), which cover
3.2 < |⌘| < 4.9, shown in Fig. 2. Bins are defined in cen-
trality according to fractions of the total lead-lead cross
section selected by the trigger and are expressed in terms
of percentiles (0-10%, 10-20%, 20-40% and 40-100%) with
0% representing the upper end of the ⌃ET distribution.
Previous heavy ion experiments have shown a clear cor-
relation of the ⌃ET with the geometry of the overlap
region of the colliding nuclei and, correspondingly, the
total event multiplicity. This is verified in the bottom
panel of Fig. 2 which shows a tight correlation between
the energy flow near mid-rapidity and the forward ⌃ET .
The forward ⌃ET is used for this analysis to avoid biasing
the centrality measurement with jets.

Jets have been reconstructed using the infrared-safe
anti-kt jet clustering algorithm [9] with the radius pa-
rameter R = 0.4. The inputs to this algorithm are “tow-
ers” of calorimeter cells of size �⌘⇥�� = 0.1⇥ 0.1 with
the input cells weighted using energy-density dependent
factors to correct for calorimeter non-compensation and
other energy losses. Jet four-momenta are constructed
by the vectorial addition of cells, treating each cell as an
(E, ~p) four-vector with zero mass.

The jets reconstructed using the anti-kt algorithm con-
tain a mix of genuine jets and jet-sized patches of the un-
derlying event. For each event, we estimate the average
transverse energy density in each calorimeter layer in bins
of width �⌘ = 0.1, and averaged over azimuth. In the
averaging, we exclude jets with D = ET (max)/hET i, the
ratio of the maximum tower energy over the mean tower
energy, greater than 5. The value Dcut = 5 is chosen

Fig. 13. An asymmetric jet event from a nuclear collision at the LHC.

At future electron–nuclear colliders [26], high energy jets and their frag-
mentation will probe cold nuclear matter, which can shed light both on nuclei
and, by comparison with the process in vacuum, on the transformation of
partons into hadrons, one of the great challenges of quantum field theory.
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5. Subsummary: Part I

The idea of particle jets from quarks and gluons began haltingly, but
has grown into the language of high energy phenomenology. Jets are mes-
sengers of quantum fluctuations at short distances, capable of bridging the
shortest distances probed at a collider and the size of its detectors. Their
presence reflects universal behavior in perturbative quantum processes at
the confluence of quantum and classical behavior.

Their dynamical evolution (including absorption) in media provide high-
energy probes of those media. They encode the transition from short to
long distances, from weak to strong coupling. In this respect, they are
an exemplary expression of the gauge theory of color. Because jets are a
general features of quantum field theory, at the very highest energies jets
from sources other than QCD may become important. They are integral to
the search for new physics at hadron colliders in the production of signals
and as background.

The second part is an introduction to all-orders analysis in perturbative
QCD.

6. Using asymptotic freedom with infrared safety

We now return to the role of infrared safety in perturbative QCD, assum-
ing the basic feature of asymptotic freedom, in which the coupling decays
as the renormalization scale increases. In any calculation in perturbative
QCD at fixed order, we would like to choose the renormalization scale µ “as
large as possible”, to make αs(µ) as small as possible, and thereby make the
perturbative expansion as reliable as possible. But how small is possible?

Consider a “typical” cross section (scaled to be dimensionless), and define
Q2 = s12 ≡ (p1 + p2)2 and xij = sij/Q

2, where sij represents the other
bilinear invariants that can be made from observed momenta. Expanded
perturbatively, such a cross section will look like

σ

(
Q2

µ2
, xij ,

m2
i

µ2
, αs(µ)

)
=
∞∑
n=1

Cn

(
Q2

µ2
, xij ,

m2
i

µ2

)
αns (µ) , (19)

with the m2
i particle masses — external, quark, and gluon (= 0!). Gener-

ically, the order-by-order coefficients Cn depend logarithmically on their
arguments, so a choice of large µ results in large logs of m2

i /µ
2. But, as we

observed in the first part, when we can find quantities that depend on mi

only through powers, (mi/µ)p, p > 0, the large-µ limit exists, and we can
write

σ

(
Q2

µ2
, xij ,

m2
i

µ2
, αs(µ)

)
=

∞∑
n=1

Cn

(
Q

µ
, xij

)
αns (µ) +O

([
m2
i

µ2

]p)
. (20)
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These are the infrared safe quantitates identified above. Most of the phe-
nomenological side of perturbative QCD depends on the isolation and com-
putation of IR safe quantities.

To find IR safe quantities consistently and systematically, we need to
understand where the low-mass logs come from. To analyze diagrams, we
generally think of the m→ 0 limit in m/Q. These ratios are the arguments
of infrared (IR) logarithms.

As we have seen, the generic sources of IR (collinear and soft) logarithms
are illustrated by Fig. 14. After a short while, noncollinear particles are too
separated to interact. For soft emission and collinear splitting, however, it is
“never too late”. But these processes do not change the flow of energy. The
connection to energy flow will be confirmed below from a general analysis
of Feynman diagrams, and will allow us to prove the IR safety of jet cross
sections.

p

αp

Fig. 14. Collinear and soft emission of gluons connecting degenerate states.

For IR safety, we want to sum over sets of degenerate final states in per-
turbation theory, without asking how many particles of each kind we have.
To calculate an IR safe cross section at fixed order, however, the most direct
approach is first to compute the cross section for each channel, and then to
combine them, although it is worth noting that other approaches are possible
[27, 28]. Each fixed number of particles has divergences, which should can-
cel in the sum. To implement such an approach, we must introduce a new
regularization, this time for IR behavior. The resulting IR-regulated the-
ory is like QCD at short distances, but is better behaved at long distances.
Correspondingly, IR-regulated QCD is not the same as QCD except for IR
safe quantities. Similar considerations apply to factorized cross sections and
amplitudes.

Let us see how this works for the total e+e− annihilation cross sec-
tion to hadrons (quarks and gluons) at the order of αs. The lowest order,
α2

EW α0
s , gives the basic a 2→ 2 electroweak process, σ(0)

2 ≡ σLO, while the
cross section with one-gluon emission, σ3, begins at the order of α2

EW αs, at
which order σ2 also gets a (virtual) correction. The order αs cross section
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is shown in Fig. 15 in a “cut diagram” organization, in which the amplitude
and (time-reversed) complex conjugate amplitude are joined at a vertical
line representing the final state. The uncut diagram is a forward-scattering
process, whose possible cuts enumerate all possible final states.

e+(k’)

e−(k)

e+(k’)

e−(k)
q(p)

g(k)

q(p)

g(k)

anti−q(p−k)

anti−q(p−k)

Fig. 15. Total e+e− cross section at the order of αs in cut diagram notation.

The contribution of each final state (cut) to the total cross section is
divergent for vanishing quark and gluon masses in normal QCD. So, we
must regularize, then combine final states. We make two representative
choices for the regularization, each corresponding to a modification of QCD.

First, we use a gluon mass regularization: 1/k2 → 1/(k2−mg)
2. In this

case, we find for the cuts of the diagram with two and three-particle final
states (up to corrections that vanish as powers of mg/Q)

σ
(mG)
3 = σLO

4

3

αs

π

(
2 ln2 Q

mg
− 3 ln

Q

mg
− π2

6
+

5

2

)
,

σ
(mG)
2 = σLO

[
1− 4

3

αs

π

(
2 ln2 Q

mg
− 3 ln

Q

mg
− π2

6
+

7

4

)]
, (21)

which gives for the combination, after setting mg back to zero

σtot = σ
(mG)
2 + σ

(mG)
3 = σLO

[
1 +

αs

π

]
. (22)

This indeed works — the sum is finite and pretty simple, too. As expected,
there is a cancellation between the virtual (σ2) and real (σ3) gluon cross
sections.
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The second choice is dimensional regularization, which in this context
we can think of as a simple change in the area of a sphere of radius R

4πR2 ⇒ (4π)(1−ε) Γ (1− ε)
Γ (2(1− ε))R

2−2ε , (23)

with ε = 2−D/2 in D dimensions and a substitution in the coupling gs →
gsµ

ε with µ the renormalization mass.
Doing the integrals this way, we get

σ
(ε)
3 = σLO

4

3

αs

π

(
(1− ε)2

(3− 2ε)Γ (2− 2ε)

) (
4πµ2

Q2

)ε
×
(

1

ε2
− 3

2ε
− π2

2
+

19

4

)
,

σ
(ε)
2 = σLO

[
1− 4

3

αs

π

(
(1− ε)2

(3− 2ε)Γ (2− 2ε)

) (
4πµ2

Q2

)ε
×
(

1

ε2
− 3

2ε
− π2

2
+ 4

) ]
. (24)

Comparing to the gluon mass regularization, although the exclusive channels
are quite different, their sum is just the same,

σtot = σ
(ε)
2 + σ

(ε)
3 = σLO

[
1 +

αs

π

]
, (25)

where we neglect terms that vanish as ε→ 0, that is, as we go back to four
dimensions. This example illustrates the principle of IR safety: the specific
channels σ2 and σ3 depend on long time behavior, and, therefore, on the
choice of regulator, but their sum does not.

A general rule for IR safe jet cross sections is to form a sum over all states
with the same flow of energy into the final state [29]. More specifically, we
introduce a weight function e({pi}) and define

dσ

de
=
∑
n

∫
PS(n)

|M({pi})|2δ (e({pi})− e) , (26)

where the weight function satisfies

e(. . . pi . . . pj−1, αpi, pj+1 . . .) = e(. . . (1 + α)pi . . . pj−1, pj+1 . . .) . (27)

We will neglect long times in the initial state for the moment and see how
this works in e+e− annihilation jet cross sections.
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7. Infrared safety to all orders for cross sections:
jets and event shapes

7.1. Cross sections, cut diagrams and generalized unitarity

It is possible to prove the infrared safety of many jet-related cross sections
to all orders, starting from very general properties of perturbation theory.
One of the most basic of these is unitarity, illustrated for a general 2 → 2
process in Fig. 16,∑

all C

GC(pi, kj) = 2 Im [−iG(pi, kj)] . (28)

This relation is true diagram-by-diagram at each order, and when {pi} =
{ki} are two-particle states, it relates the cross sections found from each cut
to the forward scattering amplitude. (The relation holds even when they are
multiparticle states and are not equal.) Now to lowest order in electroweak
interactions, the cross section e+e− → hadrons is given by the cuts of a
specific set of diagrams shown in Fig. 17, in which the hadrons appear in
cuts of the self energy diagram of a photon or Z in the Standard Model.

Fig. 16. Unitarity.

Fig. 17. Total e+e− cross section in cut diagram notation.
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The all-order cross section for inclusive annihilation and decay can thus
be reinterpreted in terms of the cut self-energies as

σ
(tot)
e+e−

(
q2
)

=
e2

q2
Imπ

(
q2
)
, (29)

where the function π is defined in terms of the two-point correlation function
of the relevant electroweak currents Jµ (with their couplings included) as

π
(
q2
) (
qµqν − q2gµν

)
= i

∫
d4x eiqx〈0| T Jµ(x)Jν(0) |0〉 . (30)

We conclude that if we can show that π(q2) is IR safe, so will be σe+e− ,
because the latter is proportional to the imaginary part of the former.

At this point, it is easy to check the IR safety of π(q2), by appealing to the
necessary condition for sensitivity to long-time behavior: the possibility of
finding physical processes involving the classical propagation of on-shell lines
between the initial and final states. For π(q2), the initial and final states are
the same, with all hadronic energy flowing in from, and then flowing out to,
an electroweak current. For q2 > 0, there is simply no physical propagation
of massless lines that can carry the total energy from one such current to
the other, simply because for q2 > 0 the massless particles emitted from the
action of the current must travel in different directions at the speed of light,
and so can never meet at a later point. These simple considerations are, as
we have seen, the origin of jet behavior in final states. The same reasoning,
thus, shows that in the total cross section the details of jet behavior are
forgotten.

In fact, the combination of unitarity and physical propagation is much
more general, and allows us to prove the IR safety of the weighted cross
sections defined by Eqs. (26) and (27). We do this by generalizing the
optical theorem of Eq. (28) and Fig. 16 to fixed values of the internal spatial
loop momenta, ~la of each forward-scattering diagram in the figure,∑

all C

GC

(
pi, kj ,~la

)
= 2 Im

[
−iG

(
pi, kj ,~la

)]
. (31)

That is, unitarity holds not only for the complete diagram, but also for
the diagram when only the energy components of loop integrals are inte-
grated. (By the way, an analogous relation holds for integrals over a single
light cone momentum, l0 ± l3.) The proof of this relation is surprisingly
simple. Doing the time integrals for a general amplitude in Eq. (6) gives
the standard form of the “old-fashioned” time-ordered perturbation theory.
For each ordering of the vertices, the time integrals give an overall energy-
conservation delta function times a product of energy deficit denominators.
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The denominator for each intermediate state j is the energy that has flowed
into the diagram before j minus the sum of the on-shell energies of the lines
in state j. Summed over the (many) possible time orderings of vertices,
this result is completely equivalent to the Feynman diagram with the same
set of lines and vertices. For each time ordering of the diagram G at fixed
loop momentum, the sum of cuts in Eq. (31) gives a specific sum over final
states. Suppressing overall factors, and fixing spatial loop momenta, we can
represent this result as

A∑
C=1

GC =
A∑

C=1

A∏
j=C+1

1

Ej − Sj − iε
(2π)δ(EC − SC)

C−1∏
i=1

1

Ei − Si + iε

= −i

− A∏
j=1

1

Ej − Sj + iε
+

A∏
j=1

1

Ej − Sj − iε

 , (32)

where A is the number of intermediate states (one less than the number of
vertices in the diagram). The second line of this relation follows very easily
by repeated use of the identity

i

(
1

x+ iε
− 1

x− iε

)
= 2πδ(x) . (33)

We conclude that the sum over the cuts of any diagram even at fixed spa-
tial loop momenta gives a result that is the imaginary part of a forward-
scattering amplitude. The same reasoning as for the total cross section,
based on physical propagation, then shows the cancellation of long-distance
behavior in the sum over cuts at fixed loop momenta. This can be applied
to the neighborhood of any set of loop momenta which gives long-distance
behavior in each individual final state, because when virtual lines become
parallel to lines in the final state, these same lines appear in final states of
other cuts of the same diagram at these fixed loop momenta, and hence in
the same jet of particles with the same total energy. At fixed loop momenta,
the weights associated with Eq. (27) will be the same for all states related
in this manner, and we can freely carry out the sum of Eq. (31). Only the
contributions from virtual particles that are not collinear to those in the
final state will be left over, and, as we have argued, these will be finite. This
is the basis of the infrared safety of jet cross sections.

7.2. Jets and event shapes

There are quite a wide variety of weights and jet cross sections. The
simplest conceptually are the cone definitions, although choosing a fixed cone
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in space would leave out too many events. In practice, one first identifies
the jets, then associates with them IR safe quantities.

The “thrust” [30] is one of the oldest and most exemplary of the “event
shape variables”, which are IR safe variants of jet cross sections [31]. It is
adapted to the back-to-back jets associated with the quark pair produced in
e+e− annihilation, where the lab frame is the rest frame of the system. It
is designed to identify the axis that best describes the final state as a pair
of independently hadronizing jets, moving in opposite directions in the lab
frame, as in Fig. 18,

T =
1

Q
maxn̂

∑
i

|n̂ · ~pi| , (34)

with Q the center-of-mass energy. We easily check that this event shape
satisfies the requirements for IR safety, Eq. (27).

Fig. 18. Generic two-jet configuration in the e+e− annihilation rest frame, naturally
characterized by the thrust variable.

At energies high enough to neglect all particle masses, T = 1 character-
izes “back-to-back” jets, each consisting of sets of perfectly collinear parti-
cles. Defining eT ≡ 1−T , we find a relation between eT and the hemisphere
invariant masses

eT ∼
M2

R +M2
L

Q2
. (35)

The thrust then, is directly sensitive to the masses of the jets. This suggests
that we can “design” event shapes to test other properties of jets. One such
set of generalizations is found by choosing ẑ as the thrust axis and dividing
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the event into right and left “HR” and “HL” hemispheres, in terms of which

eT =
1

Q

∑
i∈HR

k−i +
∑
i∈HL

k+
i

 =
1

Q

∑
all i

kiT e
−|η| , (36)

with η the rapidity of the (massless) particles. We then define [32]

ea =
1

Q

∑
all i

kiT e
−|η|(1−a) . (37)

The parameter a defines a family of event shapes, called angularities [33]
where e0 = eT , and e1 is called “jet broadening” [34].

Going beyond two jets in electron–positron annihilation, it is desirable
to have algorithms that identify jets even in complicated events like the
one shown in Fig. 1. These “cluster” or “jet finding” algorithms play in
more general kinematic situations the role played by the maximization in
the definition of thrust, Eq. (34). These algorithms form jets by successively
combining particles (or calorimeter cells) by identifying the minimum of a
“cluster variable” among all pairs, combining that pair into one particle or
cell, and then proceeding until all resulting pairs exceed a certain value of the
cluster variable. The cutoff value is analogous to a cone or energy resolution.
The final set of combined particles or cells defines a list of jets. For hadronic
collisions, the favored cluster variables are naturally built around momenta
kti, transverse to the beam directions,

dij = min
(
k2p

ti , k
2p
tj

) ∆2
ij

R2
, (38)

where ∆2
ij = (yi − yj)2 + (φi − φj)2 in terms of rapidities yi and azimuthal

angles, φi. R is an adjustable parameter. The “classic” choices are p = 1,
the “kt” algorithm, p = 0 the “Cambridge/Aachen” algorithm, and p = −1,
the “anti-kt” algorithm [35], which in practice comes close to identifying jets
made up of cone-like ensembles of particles.

8. Factorization, evolution and resummation

We have seen that it is independence of long-distance behavior that
makes jet cross sections infrared safe when, as in e+e− annihilation, all
partons emerge from a single point in space-time. More specifically, we
concluded that infrared safe observables should depend on only the flow
of energy into the final state, which ensures independence of collinear re-
arrangements and soft parton emisssion. But in collisions involving hadrons,
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we prepare one or two particles in the initial state (as in DIS or proton–
proton scattering), particles which themselves are obviously sensitive to long
time behavior of QCD, since this is what binds them in the first place. The
parton model suggests what to do in such cases: factorize. That is, try to
separate the cross section into short-distance parts that we can confirm are
infrared safe, multiplied by, or in convolution with, long-distance functions
that we can determine from experiment. We have already illustrated this
form in Eqs. (2) and (3) for jet and single-particle inclusive cross sections.
The universal parton distributions take into account, for example, the soft
fragments seen in the original cosmic ray “jets” mentioned at the beginning
of these lectures.

The general form we seek is

Q2σphys(Q,m) = ωSD(Q/µ, αs(µ)) ⊗ fLD(µ,m) +O
(

1

Qp

)
, (39)

where p > 0, ⊗ is a convolution as in Eqs. (2), (3), and where µ is the
factorization scale, which we must introduce to separate what we choose to
call long- and short-distances (“LD” and “SD”). The default choice of µ is the
hard scale, Q, assuming, of course, that there is a unique hard scale. Note
that µ appears only on the right-hand side of this expression, not the left,
which represents a physical quantity. The parameter m, which appears on
both the right and left, represents physical mass scales that we choose to be
on the IR side of µ. Sometimes (especially for jet cross sections), m may
include perturbative scales, as well as fully infrared scales like light parton
masses.

If there is heavy-particle “new physics”, associated with very short-lived
virtual states, it can be incorporated in ωSD, while fLD incorporates “uni-
versal” corrections associated especially with the structure of the colliding
hadron(s). Equations of the form of (39) are the basic input to almost all col-
lider applications. As in the case of the truly IR safe jet cross sections of e+e−

factorization, Eq. (39) requires a smooth weight for final states, Eq. (27).
The actual calculations involve an infrared regularization of the kind dis-
cussed in connection with Eqs. (21) and (24). We calculate the right-hand
side of (39) and the universal functions fLD in the regulated theory, which
enables us to derive the short-distance coefficients ωSD. The calculation
assumes that we can construct fLD order-by-order in IR-regulated perturba-
tion theory. For details, see, for example, Refs. [36–38]. With ωSD in hand,
we discard the regulated theory, and rely on a library of experimentally-
determined parton distributions fLD at appropriate values of µ, to provide
predictions for the cross sections on the left-hand side of (39). This is a
self-consistent “bootstrap” process, in which the experimental parton distri-
butions themselves are determined by comparing measured cross sections on
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the left-hand side of (39) with computed short-distance coefficients for sets
of benchmark processes. Of course, no finite number of measurements can
determine fLD for all µ, and that is where the technique of evolution, which
can be thought of as a consequence of factorization, comes in.

Whenever we succeed in writing a factorized expression for a cross section
we can derive an equation for its dependence on the factorization scale µ,
because the cross section, which is a physical quantity, cannot depend on
our choice of the renormalization scale

0 = µ
d

dµ
lnσphys(Q,m) . (40)

Then, by invoking separation of variables, we have, schematically

µ
d ln f

dµ
= −P (αs(µ)) = −µd lnω

dµ
, (41)

where P (αs) can depend only on the variables held in common by the short-
and long-distance factors. Aside from αs, these are the momentum frac-
tions x and z of Eqs. (2) and (3), which we suppress here. Following this
reasoning, wherever there is factorization, there is an “evolution equation”,
whose solution is a form of “resummation”, which is simply the solution to
the corresponding equation [39]. In the simplest case of a product, we have

σphys(Q,m) = σphys(q,m) exp


Q∫
q

dµ′

µ′
P
(
αs

(
µ′
)) . (42)

The beauty of this approach is that the “separation constant” P (αs) can be
computed from the short distance function, and so is IR safe, and at the same
time determines the µ-dependence of the long-distance functions, allowing
us to use data from relatively low momentum transfers to make predictions
at high momenta. This is how predictions can be made for the LHC jet cross
sections of Figs. 6 and 7, making use principally of the celebrated DGLAP
evolution for parton distributions [40]. In addition, resummation sometimes
makes possible predictions in limits that are not infrared safe order-by-order
in perturbation theory [42].

9. The spirit of factorization proofs

Space does not allow more than a sketch of proofs of factorization, but
we have assembled sufficient concepts in these lectures to do at least this. In
particular, it may be interesting to see the quantum field theoretic analogs
of the classical arguments for the “autonomy” of jet functions given above,
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which is an essential ingredient in the factorized jet and single-particle cross
sections of Eqs. (2) and (3). The technical problem is the factorization and
cancellation of soft gluons that, on a diagram-by-diagram basis, attach out-
going jets with each other and with the forward-moving fragments of the
colliding hadrons. The solution to this problem [41, 43, 44] can be organized
into two steps.

The first step is represented by Fig. 19, which shows the sources of long-
distance behavior in an arbitrary momentum-space configuration that con-
tributes to the single-particle inclusive cross section for a hadron, h(p) at
some fixed momentum. The figure shows jet-like subdiagrams, one a final-
state jet consisting of lines in the direction of h(p), along with other final-
state jets, one coming from the hard-scattering, H, and two others consisting
of the fragments of the colliding hadrons, labeled J1 and J2. A dashed oval,
labeled Hh(p) surrounds all lines in the final state that are not in the for-
ward (Ji) directions. The blob labeled S consists of soft gluons, interacting
with each other and with each of the jet diagrams, through propagators of
the vector potential Aµ. We should note that the arguments we have given
above are adequate to show that the only connections between the final state
jets are through soft gluons.

h(p)

= x

S

h(p)

h(p)

Fig. 19. Factorization for single-particle inclusive cross section in cut diagram no-
tation.

The right-hand side of Fig. 19 illustrates the field-theoretic analog of
the classical argument on the Lorentz contraction of the gauge field. The
dynamics of the jet of lines collinear to p factorizes completely from the
soft gluons. While we cannot give details here [13, 45], the essential point
is that in perturbation theory, we can show that the leading-power connec-
tions of all gluons on the right-hand side involve not the full field, but only
its divergence, very much as in the classical electromagnetic field, Eq. (13).
Summing over gauge-invariant sets of diagrams then leads to the right-hand
side, which represents the result that the soft gluons couple only to the
net color charge of the outgoing parton that fragments into the observed
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hadron, h(p), but has no influence on the fragmentation itself. The result is
very much of the form of Eq. (3), with a fragmentation function, represented
by the diagram on the far right, multiplying the remaining cross section.

The second step is to show the cancellation of the remaining soft connec-
tions to the simplified hard scattering, H on the right-hand side of Fig. 19.
This separates the other final-state jets from the forward-moving jets, J1 and
J2. This part of the all-orders argument is another application of the optical
theorem, very much in the spirit of our proof of the IR safety of jet cross
sections. The procedure is represented in Fig. 20. The first line is the optical
theorem applied to the hadron–hadron collision, in the generalized form of
Eq. (31). The physical cross section is on the left-hand side, but unlike e+e−

annihilation, Fig. 17, in this case we do not have every cut of the diagram,
because soft gluons exchanged before the hard scattering in the amplitude or
its complex conjugate can produce states that do not contribute to the jet or
single-particle inclusive cross sections, which require that a hard scattering
has taken place. For each term on the right-hand side of the first line, how-
ever, there are closed loops of energetic lines that connect hard scatterings.
The same physical picture requirement that we applied to Fig. 17 shows
that these loops are essentially point-like, as shown in the second line. But
then, all terms on the right-hand side are power-suppressed by the scale of
the large momentum transfer, because soft radiation is very unlikely to be
emitted by lines that are far off-shell. With this result, the factorization of
the cross section, Eq. (3) is almost complete, except for soft gluons that do
not connect to the final-state jets, but only connect the forward jets, J1 and
J2. Such connections are also present in the processes that depend on elec-

H

J1

2
J

S

H

J1

2
J

S

H

J1

2
J

S

= Im - -

= Im
H

J1

2
J

S

- H

J1

2
J

S

H

J1

2
J

S

-

Fig. 20. Cancellation of soft gluons that connect the initial state to the final state.
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troweak rather than hard scattering, such as the Drell–Yan process. Proofs
of factorization for these processes, and therefore for jet and related cross
sections, have been presented in detail in Refs. [16, 38].

10. Conclusion

We have, of course, only scratched the surface of the tremendous amount
of work that has gone into perturbative QCD at short distances. In partic-
ular, the extraordinary progress in explicit calculations at fixed order [46]
has been passed over, although I hope the motivation underlying these cal-
culations has been touched upon.

Another frontier beyond the discussion given above is implied by the
structure of factorization proofs outlined in the previous section. The can-
cellation of the soft radiation that would connect the dynamical evolution
of final- and initial-state jets assumes that we sum over soft radiation of all
energies, without imposing an “energy resolution” ε that is “too small”. The
dependence of jet cross sections on the analog of the energy resolution in
Eq. (16) is quite complicated however [47, 48], and is subtle to control even
for relatively simple processes like jets in e+e− annihilation [49]. Some of
these subtleties are illustrated by Fig. 21, in which we trigger on two jets,
with energies of the order of Q, and measure the energy that is radiated into
some region Ω outside the jets. We denote the distribution of energy flow
into Ω by ΣΩ(E).

Fig. 21. Radiation into a specified region.

The nature of the cross section depends sensitively on how the inter-
mediate region Ω̄ is treated. In brief, if we limit radiation into Ω̄ (QΩ̄ in
the figure) enough so that the number of jets is fixed at two, then we can
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retain a simple form of factorization with only two final-state jets. In this
case, we can derive relatively simple evolution equations for ΣΩ(E), and
resum logarithms of E/Q [32, 50]. The other possibility, which is much less
restrictive, is to allow the cross section to be inclusive in region Ω̄. In this
case, the number of jets is effectively not fixed, as jets of intermediate energy
populate region Ω̄ and radiate into Ω. Then we cannot write a factorized
form for the cross section that is as “simple” as Eq. (2), for example. It
turns out, however, that in an appropriate approximation (large numbers of
colors, Nc), it is possible to derive a nonlinear evolution equation for ΣΩ(E)
[51], which is nearly identical to the nonlinear equations that describe high
energy saturation physics and nuclear scattering [52–54] in similar approx-
imations. The origin of the nonlinearity is the production of color dipoles,
which extend out of the two original jets into intermediate region Ω̄. Con-
siderations of this sort are becoming more and more relevant for studies of
the long-distance behavior of QCD, for its own sake and for its role as a
precision tool in tests of the Standard Model [55] and the search for New
Physics.

In summary, we have a good understanding of those hard-scattering cross
sections in QCD at large momentum transfer whose definitions are suffi-
ciently inclusive. This has opened the way to many exact higher order and
resumed cross sections. Future progress will involve a bracing combination
of precision calculations of inclusive cross sections, and an exploration of the
role of long-distance properties, as we learn to relax the constraints imposed
by inclusive cross sections, and explore the dynamics that opens up.
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