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We present a short overview of saturation physics followed by a sum-
mary of the recent progress in our understanding of nonlinear small-x evo-
lution. Topics include McLerran–Venugopalan model, Glauber–Mueller ap-
proximation, nonlinear BK/JIMWLK evolution equations, along with the
running-coupling and NLO corrections to these equations. We conclude
with selected topics in saturation phenomenology.
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1. Introduction

Saturation physics is built on an observation that small Bjorken-x part
of the wave function for an ultrarelativistic hadron or nucleus contains an
intrinsic hard scale, the saturation scale Qs [1]. This scale characterizes the
typical size of color charge density fluctuations in the small-x wave functions
[2–4]. The number of partons in the proton or nuclear wave function grows
at small x, as shown in Fig. 1, leading to a high density of quarks and gluons
inside the proton. This high density leads to large color charge fluctuations,
and, therefore, to a large value of Qs.

In fact, a detailed calculation shows that the saturation scale grows as

Q2
s ∼ A1/3

(
1

x

)λ
, (1)

where A is the atomic number of the nucleus. The numerical value of the
inverse power of Bjorken x is approximately λ ≈ 0.2–0.3. From Eq. (1), we
conclude that at small enough value of x and/or for large enough nucleus, the
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Fig. 1. Parton distribution functions (PDFs) of a proton at the scale Q2 = 10 GeV2

plotted as functions of Bjorken x. Here xuv and xdv are the valence quark distri-
butions, xS is the sea quark distribution, and xG is the gluon distribution. Note
that the vertical axis is logarithmic.

saturation scale Qs becomes larger than the QCD confinement scale ΛQCD,
Qs � ΛQCD such that the strong coupling constant becomes small,

αs

(
Q2

s

)
� 1 . (2)

Therefore, in the saturation regime, we are dealing with a high density of
gluons and quarks inside the proton or nucleus, while at the same time having
a small coupling constant justifying the use of perturbative expansion in the
powers of αs.

2. Classical gluon fields

The most convenient system to study saturation dynamics appears to
be the small-x wave function of a large nucleus. From now on, we will
concentrate on gluons, since they dominate over quarks at small x as follows
from Fig. 1. The small-x gluons “see” the whole nucleus coherently in the
longitudinal direction, and can be emitted by any of the nucleons at a given
impact parameter. (Note that a gluon with kT � ΛQCD is localized in the
transverse coordinate space and does not interact with the nucleons at other
impact parameters.) The small-x gluon can originate in any of the ∼ A1/3

nucleons at a given transverse position. If the nucleus is ultrarelativistic,
this means that the gluon is emitted by the effective color charge density
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which is enhanced by a factor of A1/3 compared to that in a single proton.
This is illustrated in Fig. 2.

Boost

Fig. 2. An ultrarelativistic nucleus appears as a “pancake” with the A1/3-enhanced
color charge density.

If we define the saturation scale squared as the gluon density in the
transverse plane, one readily obtains Q2

s ∼ A1/3, such that for a large nucleus
Qs � ΛQCD and αs(Q

2
s ) � 1. At small coupling, the leading gluon field is

classical (since one can neglect quantum loop corrections): hence, to find
the gluon field of a nucleus one has to solve classical Yang–Mills equations

DµFµν = Jν (3)

with the nucleus providing the source current Jν . This is the main concept
behind the McLerran–Venugopalan model [2–4].

The Yang–Mills equations (3) were solved for a single nucleus source in
[5, 6]. The resulting gluon field could be used to construct the unintegrated
gluon distribution of a nucleus φA(x, k2

T), which counts the number of gluons
at a given values of Bjorken x and transverse momentum kT

φA
(
x, k2

T

)
=

CF
αs 2π3

∫
d2b⊥ d

2r⊥ e
ik·r 1

r2
⊥

[
1− e− 1

4
r2⊥Q

2
s (b) ln(1/r⊥ Λ)

]
. (4)

Here, the gluon saturation scale is given by

Q2
s (b) = 4π α2

s T (b) (5)

with T (b) the nuclear profile function. Transverse vectors are denoted by
x = (x1, x2) and x⊥ = xT = |x|. The unintegrated gluon distribution (gluon
TMD) φA(x, k2

T), multiplied by the transverse momentum phase-space factor
of kT is plotted schematically in Fig. 3 as a function of kT. We conclude from
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Fig. 3. Unintegrated gluon distribution multiplied by the transverse momentum
phase-space factor kT sketched as a function of kT (solid line). The dashed line
denotes the lowest-order result, without saturation effects.

this plot that the majority of gluons in this classical nuclear wave function
have transverse momentum kT ∼ Qs � ΛQCD, such that applicability of
perturbation theory is justified.

Now, let us consider deep inelastic scattering (DIS) on a large nucleus,
working in the same classical approximation. The DIS process at high en-
ergies is shown in Fig. 4: the electron (not shown) emits a virtual photon,
which then splits into a qq̄ pair which scatters on the nuclear target. At the
lowest-order, each interaction with the nucleons in the nucleus is limited to
a two-gluon exchange: this is known as the Glauber–Mueller model [7]. The
resummation parameter of such approximation is then α2

s A
1/3. It can be

shown that this is also the parameter resummed by the classical gluon fields
in the MV model [8].

x⊥
q

γ∗

Fig. 4. DIS on a large nucleus in the Glauber–Mueller approximation.

The high-energy DIS cross section can be written as a convolution of
the light-cone wave function Ψγ∗→qq̄ of the virtual photon splitting into a qq̄
pair and the scattering amplitude of the qq̄ on the nuclear target
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σγ
∗A

tot

(
x,Q2

)
=

∫
d2x⊥
4π

1∫
0

dz

z (1− z)
∣∣∣Ψγ∗→qq̄(x, z)∣∣∣2 σqq̄Atot (x, Y ) , (6)

where Y = ln 1/x is the rapidity variable, x⊥ is the transverse size of the
dipole, and z is the fraction of the virtual photon’s light-cone momentum
carried by the quark.

One can write the dipole–nucleus cross section as an integral over impact
parameters of the (imaginary part of the) forward dipole–nucleus scattering
amplitude N ,

σqq̄Atot (x, Y ) = 2

∫
d2b N(x, b, Y ) . (7)

The dipole–nucleus forward scattering amplitude is found in the Glauber–
Mueller model to be [7]

N(x, b, Y = 0) = 1− exp

{
−
x2
⊥Q

2
sq(b) ln(1/x⊥ Λ)

4

}
(8)

with the quark saturation scale

Q2
sq(b) ≡ 4π α2

s CF
Nc

T (b) . (9)

The amplitude N from Eq. (8) is sketched as a function of the dipole size
x⊥ in Fig. 5. As the dipole size goes to zero, so does the amplitude N . This
is the manifestation of color transparency: zero-size dipole does not interact.
As the dipole size increases, so does the amplitude N again. However, due

1

N

x

x2

1/Λ

saturation

<< 1αs

1/Qs

Fig. 5. Dipole–nucleus forward scattering amplitude as a function of the dipole size
x⊥ in the Glauber–Mueller model.
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to multiple rescatterings effects of Fig. 4 which led to the exponentiation in
Eq. (8), we always have N < 1. Using this bound in Eq. (7) we see that, for a
nucleus of radius R, it translates into σqq̄Atot < 2πR2, which is the well-known
black disk limit. We see that saturation effects lead to the scattering cross
section that preserves the black disk limit: we can invert this observation to
argue that saturation is a consequence of unitarity. Note that the onset of
saturation effects and the approach to the black disk regime happens around
x⊥ ∼ 1/Qs, where the dipole is still perturbatively small and perturbation
theory is applicable.

3. Small-x evolution

The classical picture presented above lacks the energy (or Bjorken x)
dependence. The energy dependence enters the picture through quantum
evolution corrections. The corrections for dipole–nucleus scattering in DIS
are illustrated in Fig. 6. Each gluon emission brings in a power of αs and, due
to the phase-space integral, a factor of rapidity Y (at the leading order). The
resulting leading-logarithmic approximation (LLA) resums powers of αs Y .

Fig. 6. Small-x evolution corrections to the dipole–nucleus forward scattering am-
plitude.

Small-x evolution corrections in the large-Nc approximation can be ab-
sorbed into the dipole amplitude N with the help of the Balitsky–Kovchegov
(BK) evolution equation [9–12]

∂

∂Y
Nx1,x0(Y ) =

αsNc

2π2

∫
d2x2

x2
10

x2
20 x

2
21

[Nx1,x2(Y ) +Nx2,x0(Y )

−Nx1,x0(Y )−Nx1,x2(Y )Nx2,x0(Y )] . (10)

We have slightly modified our notation: the dipole–nucleus amplitude, now
denoted by Nx1,x0(Y ), depends on the positions of the quark and the anti-
quark (x1, x0) in the dipole. Above xij = |xi − xj |. The initial condition for
Eq. (10) is given by the Glauber–Mueller formula (8): this way one resums
both the powers of αs Y and α2

s A
1/3. The linear terms on the right-hand
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side of Eq. (10) correspond to the Balitsky–Fadin–Kuraev–Lipatov (BFKL)
evolution equation [13, 14], while the quadratic term introduced damping
due to saturation effects.

No closed integro-differential equation for the amplitude N exists beyond
the large-Nc approximation. Instead, for general-Nc one has to solve the
Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) ev-
olution equation [15–18], which is a functional differential equation, giving
energy dependence not only for the dipole operator, but for any other op-
erator made out of eikonal Wilson lines along the light cone. Interestingly
enough, a numerical solution of both the BK and JIMWLK evolution equa-
tions in [19, 20] indicates that the differences between the large-Nc and
any-Nc expressions for the dipole amplitude N are very small, of the order
of 0.1%, much smaller than the naively anticipated 1/N2

c ≈ 0.1.
No exact analytic solution of Eq. (10) exists. Our understanding of

its solution stems from several approximate analytic solutions [1, 21–23]
along with the exact numerical solutions [24–27]. Qualitative behavior of
the solution of Eq. (10) is shown in Fig. 7. There, we see that small-x
evolution makes the dipole amplitude shift left from the initial conditions
(dashed curve), toward the smaller values of the dipole size x⊥. The two
evolved curves are shown by solid lines, with the direction of rapidity increase
denoted by arrows. We see two important features in this solution. One
is that we always have N < 1: indeed N = 1 is the fixed point of the
evolution (10), such that the black disk limit is always preserved by the
nonlinear evolution. Hence nonlinear small-x evolution is unitary! Another
feature is that the saturation scale, as the characteristic of the transition
into the saturation region, is growing with rapidity: in Fig. 7 we clearly have
Qs > Qs0 with Qs0 the initial value of the saturation scale. A more careful

1

N

x
1/Λ1/Q1/Qs s0

Fig. 7. A sketch of the small-x evolution of the dipole amplitude N : the initial
condition (given by the Glauber–Mueller formula) is shown by the dashed line. As
rapidity increases, the dipole amplitude shifts to the smaller values of x⊥ in the
plot, as indicated by the solid-line curves and the arrows.
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analysis leads to Q2
s ∼ (1/x)λ ∼ eλY scaling of the saturation scale with

decreasing Bjorken x or increasing rapidity, justifying the claim we made in
Eq. (1). The solution of the BK/JIMWLK evolution for the dipole amplitude
has another important property known as the geometric scaling [28]: the
dipole amplitude turns out to be a function of only one variable, N(x⊥, Y ) =
N(x⊥Qs(Y )), over a broad range of the dipole sizes x⊥ [1, 21, 23].

We summarize this discussion of the nonlinear small-x evolution with a
map of high-energy QCD in Fig. 8. There, we plot the action of the QCD
evolution equations in the (lnQ2, ln 1/x) plane. The DGLAP evolution equa-
tion, implementing renormalization group flow, evolves PDF toward largeQ2

with approximately fixed values of x. The linear BFKL evolution equation
evolves the unintegrated gluon distribution (or dipole amplitude) toward
low-x, but eventually stops being applicable due to violation of unitarity.
The nonlinear BK/JIMWLK equations take over the BFKL evolution at
low-x preventing the unitarity violation and guiding the system into the
saturation region.
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Fig. 8. A map of high-energy QCD.

For much more detailed presentations of saturation physics, we recom-
mend the review articles [1, 29–33] along with the book [34].

4. Higher-order corrections to the BK and JIMWLK
evolution equations

Over the past decade, main progress in our understanding of nonlinear
small-x evolution came from calculation of higher-order corrections to it,
and from successful phenomenological applications of the results of those
calculations.
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The first development in this direction was the calculation of the running-
coupling correction to the BK and JIMWLK evolution equations in [35–37]
using the BLM method [38]. The result, in the scheme used in [37], reads

∂Nx0,x1(Y )

∂Y
=

Nc

2π2

∫
d2x2

×

αs

(
1

x2
20

)
1

x2
20

− 2
αs

(
1
x220

)
αs

(
1
x221

)
αs

(
1
R2

) x20 · x21

x2
20x

2
21

+ αs

(
1

x2
21

)
1

x2
21


× [Nx0,x2(Y ) +Nx2,x1(Y )−Nx0,x1(Y )−Nx0,x2(Y )Nx2,x1(Y )] , (11)

with the scale R given by

R2(x0,x1; z) = |z − x0| |z − x1|

×
( |z − x1|
|z − x0|

) (z−x0)
2+(z−x1)

2

(z−x0)
2−(z−x1)

2−2
|z−x0|

2|z−x1|
2

(z−x0)·(z−x1)
1

|z−x0|2−|z−x1|2

.

(12)

We will refer to the BK evolution equation with running-coupling correc-
tions as rcBK. The effect of the running-coupling corrections on the small-x
evolution is to suppress the contribution from the very small dipoles (due
to asymptotic freedom), thus slowing down the evolution. In fact, the pa-
rameter λ in Eq. (1) goes from being about 0.7–0.8 at fixed QCD coupling
down to about 0.2–0.3 when the running-coupling corrections are included
[27, 39, 40]: this is a positive development, since λ ≈ 0.2–0.3 gives us the
energy dependence close to that observed in experimental data.

More recently, the full next-to-leading order (NLO) correction to the
BK evolution kernel was calculated in a formidable calculation presented
in [41]. (Running-coupling evolution of Eq. (11) contains a subset of NLO
and higher-order corrections, but is not a complete NLO or higher-order re-
sult.) Knowledge of NLO BK corrections is an important part of theoretical
progress in the field. Solution of the NLO BK evolution (analytical or, more
likely, numerical) has not been constructed at the time of writing.

NLO corrections for the JIMWLK kernel were obtained very recently in
[42–44]. Similar to BK evolution, the impact of the NLO JIMWLK correc-
tions on the evolution of Wilson line correlators is yet to be determined.

NLO correction to the BK or JIMWLK evolution kernel is of the order of
α2

s . If one solves NLO BK/JIMWLK evolution equation exactly, one would
be resumming powers of α2

s Y , in addition to the powers of αs Y resummed
to all orders by the LLA evolution. Here, one runs into the standard power-
counting conundrum: two iterations of NLO evolution kernel give a contri-
bution of the order of (α2

s Y )2, which is of the same order as one iteration
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of the leading-order (LO) kernel times an iteration of the next-to-next-to-
leading order (NNLO) kernel, (αs Y ) (α3

s Y ). It is thus a priori not clear
whether construction of an all-order solution of the NLO non-linear evolu-
tion equation is parametrically justified, or whether this would overstep the
precision of the approximation. Perhaps knowledge of the overall structure
of the solution would facilitate this perturbative expansion (e.g. in DGLAP
evolution all perturbative expansion resides in one place in the solution —
the anomalous dimensions): while such program has recently been initiated
for the linear BFKL evolution [45], it would be much harder to do for the
nonlinear evolution case, where we do not know the exact analytic solution
even in the LLA.

5. Some saturation phenomenology

The field of phenomenological applications of saturation physics has
grown tremendously over the last decade, encompassing scattering processes
as diverse as DIS, p+ p, p+ A and heavy ion collisions (see [33] for an up-
to-date review of saturation phenomenology). It is impossible to do full
justice to this area in this short review. Instead, we will only present a few
phenomenological successes of saturation physics.

As discussed above, geometric scaling is a consequence of non-linear
small-x evolution. In Fig. 9 from [28], we show a compilation of DIS to-
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Fig. 9. Data on DIS γ∗ + p total cross section for x < 0.01 plotted as a function of
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s (x) [28].



Brief Review of Saturation Physics 2251

tal cross section data for x < 10−2 plotted as a function of the single scaling
variable τ = Q2/Q2

s (x). The figure demonstrates that small-x DIS data ap-
pears to exhibit geometric scaling predicted by saturation theory [1, 21, 23]!

A more quantitative comparison of small-x DIS data and saturation the-
ory from [46, 47] is shown in Fig. 10 for the F2 structure function of the
proton. The theory curves shown are generated using rcBK evolution equa-
tion (employing equations like (6) and (7) to obtain the structure function).
Clearly the description of the data is very good.
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Fig. 10. Fit to the HERA DIS data on F2 structure function of the proton at low-x
within the saturation framework performed in [46] based on the rcBK evolution
equation.

Saturation physics and non-linear small-x evolution are relevant not only
to DIS, but to any high-energy scattering process. They are likely to play an
important role in describing particle production and correlations originating
in the early stages of heavy ion collisions. Description of heavy ion collisions
in the saturation framework starts with determining classical gluon field of
the colliding ions in the MV model. One has to solve the same Eq. (3),
but now with the source given by two colliding nuclei. This problem is very
hard to solve analytically, allowing only for either perturbative or variational
solutions [48–53]. Luckily, the problem can be solved numerically [54–56].
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Once the classical gluon production is understood, one needs to include
quantum evolution corrections into the obtained formula: at present, this
is impossible to do analytically, though it is doable numerically [57]. The
program is similar to what was done for DIS: quasi-classical Glauber–Mueller
formula received quantum evolution corrections through the BK/JIMWLK
equations.

While the exact saturation calculation for gluon production in heavy ion
collisions is rather hard to do, one could use an approximate Kharzeev–
Levin–Nardi (KLN) approach [59–61] which employs the (slightly modified)
kT-factorization formula which is an exact saturation-physics result for gluon
production in p+A collisions [62, 63]. The unintegrated gluon distributions
entering the kT-factorization formula can be found using rcBK-evolved ex-
pression for the dipole amplitude. The result of applying this procedure to
charged hadron production in A+A collisions is shown in Fig. 11: while the
description of RHIC data in this figure is a result of a fit, the dashed curve
for the LHC is a prediction, appearing to be in a very good agreement with
the data. Once again saturation physics appears to be consistent with the
data, and this time it was, in fact, able to predict the data.
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Fig. 11. Saturation description of the charged hadron multiplicity in heavy ion
collisions based on the KLN-type model with rcBK evolution [58]. RHIC data
(Au+Au and Cu+Cu) was fitted (solid and lower dashed lines), while the LHC
results (Pb+Pb) were predicted by the top dotted curve.

6. Outlook

While tantalizing evidence for saturation regime was seen in e+p, p+A
and A+A collisions, the decisive evidence for saturation sealing the discov-
ery case can be found at an e+ A collider. In high-energy e+ A collisions,
the saturation scale (1) would get enhancements from both the low value
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of x and the large value of A, making the saturation region much broader
than in e + p collisions. Another advantage of e + A collisions is a clean
electron probe, allowing for higher precision in theoretical predictions and,
with varying virtuality of the photon Q2, providing an extra lever for ex-
perimental measurements, giving e + A collisions an advantage over p + A
and A + A collisions in terms of its potential for saturation discovery. An
Electron Ion Collider (EIC) is being proposed in the US: for more details on
the proposal, I refer the reader to the EIC White Paper [64].

I would like to thank the organizers of the LIV Cracow School of Theoret-
ical Physics in Zakopane, and in particular Michał Praszałowicz, for hosting
such an enjoyable meeting. This material is based upon work supported by
the U.S. Department of Energy, Office of Science, Office of Nuclear Physics
under Award Number DE-SC0004286.
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