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1. Introduction

Physics of relativistic heavy ion collisions is a very broad, interdisci-
plinary field of physics. It is impossible to cover its all important aspects in
a short text. Therefore, one has to decide which topics are selected for pre-
sentation. The idea behind this article is to give a possibly general overview
which concentrates on soft-hadronic observables and may serve as the back-
ground for other advanced lectures presented during the School.

The omitted discussions are partly compensated by references given to
many original papers. They will guide the reader in further studies. We
also note that at present there are several textbooks available which discuss
heavy ion collisions and physics of the quark–gluon plasma [1–5]. We refer
to them and to the collected review articles [6] for additional information.

In the remaining part of Introduction, we give a historical outline of the
development of the heavy ion physics, present the main theoretical tools,
and discuss the concepts of the quark–gluon plasma. In Sec. 2 we discuss
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the main physics terminology used in our field. Section 3 is devoted to the
concept of the limiting Hagedorn temperature. This concept has turned
out to be very inspiring in the physics of strong interactions and led us
directly to the idea of the phase transition from ordinary hadronic matter
to quark matter (later called the quark–gluon plasma [7, 8]). In Sec. 4, we
discuss shortly the coefficients of the Fourier expansion of the momentum
distribution in the azimuthal angle. The first three coefficients are known
as the directed, elliptic and triangular flows. The large values of the elliptic
flow have been reproduced within the hydrodynamic calculations and suggest
the small viscosity to entropy density ratio of the quark–gluon plasma. In
Sec. 5, we present the basics of the Glauber model, which is commonly used
to determine initial distributions of the entropy or energy density in the
transverse plane. The Glauber model serves also as a tool in comparisons
between heavy ion and more elementary proton–nucleus and proton–proton
collisions. The hydrodynamic approaches are discussed in Sec. 6, where we
first recall the famous Fermi, Landau and Bjorken models and then switch
to the characteristics of the perfect-fluid and viscous-fluid dynamics. The
final stage of the space-time evolution of matter is shortly called a freeze-out.
Several approaches to deal with this rather complicated process are presented
in Sec. 7. The space-time dimensions of the produced system at freeze-out
can be inferred by the study of the identical particle correlations, which
we shortly discuss in Sec. 8. The paper is closed with short conclusions.
Throughout the text we use natural units, where c = ~ = kB = 1.

1.1. Historical background

The name “heavy ions” is used for heavy atomic nuclei, and the term
“relativistic energy” denotes the energy regime where the kinetic energy is
much larger than the rest energy. The first experiments with the relativistic
heavy ions (energies larger than 10 GeV per nucleon in the projectile beam)
took place at the Brookhaven National Laboratory (BNL) and at the Euro-
pean Organisation for Nuclear Research (CERN) in 1986. The Alternating
Gradient Synchrotron (AGS) at BNL accelerated 28Si at 14 GeV per nu-
cleon. At CERN, the Super Proton Synchrotron (SPS) accelerated 16O at
60 and 200 GeV per nucleon in 1986, and 32S at 200 GeV per nucleon in
1987. In 1990 the next project on heavy ion physics was organized at CERN
with 32S beams. In 1992 the experiments with 197Au beams at 11 GeV per
nucleon were initiated at BNL. In 1995 the new experiments took place at
CERN with 208Pb beams at 158 GeV per nucleon.

In 2000 the first data from the Relativistic Heavy Ion Collider (RHIC)
at BNL were taken. During the first run, the maximum energy of 130 GeV
per nucleon pair was achieved. In the next years, new runs took place with
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the maximum energy of 200 GeV per nucleon pair. One of those runs was
devoted to study deuteron–gold collisions which were analysed in order to
get a reference point for more complicated gold–gold collisions.

At present, the main activity in the field is connected with Large Hadron
Collider (LHC) at CERN (Pb on Pb reactions at

√
sNN = 2.76 TeV, first run

in Nov.–Dec., 2010). However, new experiments at lower energies (NA61 at
CERN, STAR at BNL) are also very important, since they allows us to study
the energy dependence of many characteristics of the particle production and
analyse the systems at finite baryon chemical potential (see Ref. [9]).

1.2. Theoretical tools

In the relativistic heavy ion collisions, very large numbers (multiplicities)
of particles are produced. For instance, in the central Au–Au collisions at
RHIC, at the beam energy

√
sNN = 200 GeV, the total charged particle

multiplicity is about 5000. Hence, the number of produced particles exceeds
the number of initial nucleons by a factor of 10. In this situation, different
theoretical methods are used, which are appropriate for description of large
macroscopic systems, e.g., thermodynamics, hydrodynamics, kinetic (trans-
port) theory, field theory at finite temperature and density, non-equilibrium
field theory, Monte-Carlo simulations. More importantly, we may also apply
the fundamental theory of strong interactions.

In high-energy nuclear collisions, a many-body system of strongly in-
teracting particles is produced. The fundamental theory of strong interac-
tions is Quantum Chromodynamics (QCD), the theory of quarks and gluons
which are confined in hadrons, i.e., baryons and mesons. The discovery of
asymptotic freedom in the strong interactions in 1973 by Gross, Politzer, and
Wilczek [10, 11] allowed for making precise predictions of the results of many
high-energy experiments in the framework of the perturbative quantum field
theory — the asymptotic freedom is the property that the interaction be-
tween particles becomes weaker at shorter distances (see Ref. [12]).

Probably the most striking feature of QCD is colour confinement, which
is the other side of the asymptotic freedom. This is the phenomenon that
colour charged particles (such as quarks and gluons) cannot be isolated as
separate objects. In other words, quarks and gluons cannot be directly
observed. The physical concept of confinement may be illustrated by a
string which is spanned between the quarks when we try to separate them.
If the quarks are pulled apart too far, large energy is deposited in the string
and it breaks into smaller pieces.
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1.3. Quark–gluon plasma

The main aim of the relativistic heavy ion collisions is the observation
of the two phase transitions predicted by QCD, i.e., the deconfinement and
chiral phase transitions. At Earth conditions (i.e., at low energy densities),
quarks and gluons are confined in hadrons. However, with increasing tem-
perature (heating) and/or increasing baryon density (compression), a phase
transition may occur to the state where ordinary hadrons do not exist any
longer; quarks and gluons become the right degrees of freedom, and their
motion is not confined to hadrons.

This popular picture is based on the asymptotic freedom — QGP is
considered as an asymptotic state available at extremely high energies. Most
likely, such a state has not been reached in the present experiments and,
more importantly, it is very difficult to find an experimental evidence for its
formation. On the other hand, we can accept a more pragmatic point of
view and consider QGP as a new state of strongly interacting matter, whose
properties can be inferred from experimental and theoretical investigations
carried out at the currently available energies (with direct connections to
QCD wherever it is possible). The present evidence suggests that the matter
produced in heavy ion collisions consists of quarks and gluons (due to the
strong coupling these might not be elementary excitations in the system), it
is locally well equilibrated, and characterized by the small (shear) viscosity to
entropy density ratio. These striking experimental and theoretical findings
suggest that QGP behaves more like a fluid than a gas [13, 14].

In the limit of vanishing masses, the left- and right-handed quarks be-
come decoupled from each other and QCD becomes invariant under their in-
terchange — left- and right-handed quark currents are separately conserved,
each state of the theory should have a degenerate partner of the opposite
parity. On the other hand, we know that hadrons have well defined parity,
and no such parity partners are observed. This paradox is resolved by the
phenomenon of the spontaneous breakdown of chiral symmetry [15, 16]: the
chiral symmetry of the interaction is broken by the true ground state of the
theory. One expects that this symmetry is restored at high energies where
quarks and gluons become the correct degrees of freedom. This is a very
exciting subject but we are not going to follow it any longer in this paper.

2. Basic physics terms

2.1. Participants, spectators, and wounded nucleons

At high energies, simple geometric concepts are often used, for exam-
ple, one distinguishes participants from spectators — if we assume that all
nucleons propagate initially (i.e., before a collision) along parallel, straight
line trajectories, then the nucleons which do not strike any other nucleons
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on their way are called spectators. Other nucleons which interact with each
other are called participants. The participants which suffered at least one
inelastic collision are called the wounded nucleons. A two-dimensional vec-
tor connecting centres of the colliding nuclei is called the impact vector (its
length is the impact parameter). In particle and nuclear physics, one intro-
duces a coordinate system, where the spatial z-axis is parallel to the beam,
and the impact vector b points in x-direction. The axes x and z span the
reaction plane of a given collision.

The simple picture outlined above is most convenient for theoretical in-
vestigations where we control the (initial) geometry of the collision process.
On the other hand, the quantities such as the impact parameter or the reac-
tion plane are not directly measured observables and we have to introduce
them in a more sophisticated way. Before we do it, let us define the popular
ways to parametrise the four-momenta of the produced particles.

2.2. Transverse mass and rapidity

The component of a three-vector A parallel to z-axis is usually denoted
by A‖, and the transverse component is A⊥ = A − A‖. The transverse

mass of a particle is defined as m⊥ =
√
m2 + p2

⊥, where m and p are the
particle’s mass and three-momentum (the “transverse” quantities are also
denoted by T, e.g., mT or pT, the “longitudinal” quantities are then denoted
by L, e.g., pL).

Since we deal with relativistic energies, it is useful to use the rapidity
instead of the standard velocity

y =
1

2
ln

(
E + p‖

)(
E − p‖

) = arctanh
(p‖
E

)
= arctanh

(
v‖
)
. (1)

Here, E is the energy of a particle, E =
√
m2 + p2, and v‖ = p‖/E is the

longitudinal component of the velocity.
Rapidity is additive under Lorentz boosts along the z-axis. This means

that the difference dy as well as the rapidity density dN/dy do not change
under Lorentz boosts along the collision axis. The invariance under this type
of transformation (corresponding to a constant dN/dy) is shortly called the
boost-invariance.

Using the rapidity and the transverse mass, we can calculate the energy
and the longitudinal momentum of a particle from the two equations: E =
p0 = m⊥ cosh y and p‖ = m⊥ sinh y. Experimentalists distinguish between
rapidity and pseudorapidity. The latter is defined by the formula

η =
1

2
ln

(
|p|+ p‖

)(
|p| − p‖

) = ln

(
cot

θ

2

)
= − ln

(
tan

θ

2

)
, (2)
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where θ is the scattering angle. Pseudorapidity is easier to measure than
rapidity (it is just a measure of the angle at which a particle has been
emitted). To measure rapidity, one has to identify the particle. Since at large
energies E ≈ |p|, one is often tempted to assume that dN/dy ≈ dN/dη. In
practice, this approximation is poor, especially in the region where rapidity
is close to zero.

In theoretical calculations, one usually uses the space-time rapidity

η‖ =
1

2
ln
t+ z

t− z
. (3)

The space-time rapidity η‖ together with the (longitudinal) proper time
τ =

√
t2 − z2 are used instead of the coordinates t and z to parametrise

the interior of the light cone t2 = z2 (t > 0). One has to be careful to
distinguish between rapidity, pseudorapidity, and space-time rapidity. In
realistic calculations they are usually quite different. Only in very simple
boost invariant models one may assume that these three quantities are equal.

3. Hagedorn limiting temperature

In 1960s, the statistical bootstrap model (SBM) was introduced [17, 18]
that was based on the observation that hadrons form bound and resonance
states. This led to the concept of a possibly unlimited sequence of heavy res-
onance states, each being a constituent of a still heavier resonance. The num-
ber of such states in the mass interval (m,m+ dm) is denoted by ρ(m)dm,
and the function ρ(m) is known as the SBM mass spectrum. The require-
ment that resonances are formed from other resonances in the self-consistent
manner leads to the bootstrap condition for the mass spectrum ρ(m). The
solution of the bootstrap equation shows that the mass spectrum for large
masses m grows exponentially, as found by Hagedorn already in 1965 [17].
As a consequence, any thermodynamics employing this mass spectrum has a
singular temperature TH generated by the asymptotics ρ(m) ∼ exp(m/TH).
At present, TH (Hagedorn temperature) is interpreted as the temperature
where the phase transition from the hadron gas to the quark–gluon plasma
occurs [19].

The subject of the limiting temperature is still an intriguing issue. More
recent studies of the hadron mass spectrum have revealed that the Hagedorn
temperatures of mesons and baryons are different [20, 21]. The concepts that
we are still missing some resonance states and they may be responsible for
(fast) thermalization of the produced matter are widely discussed [22, 23].
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4. Harmonic flows

At present, the extraction of the reaction plane is one aspect of the
very advanced flow analysis of the collisions [24, 25]. In this type of the
investigations, one represents the momentum distribution of the produced
particles in the form

dN

dyd 2p⊥
=

dN

2πp⊥dp⊥dy

[
1 +

∞∑
k=1

2vk cos (k (φp − Ψk))

]
, (4)

where Ψk is the reference angle defined by the condition 〈sin(kΨk)〉 = 0,
where the averaging is done over all particles in one event. Until very re-
cently, it has been common to assume Ψk = ΨRP for all ks and to identify the
angle ΨRP with the angle which specifies the position of the reaction plane.

Averaging of (4) over the azimuthal angle gives the transverse-momentum
distribution. The coefficients vk characterize the momentum anisotropy.
The coefficient v1 is called the directed flow, whereas the coefficient v2 is
called the elliptic flow. In general, the coefficients vk are functions of rapidity
and transverse momentum, vk = vk(y, p⊥), and in this form often called the
kth harmonic differential flow.

4.1. Directed flow

At low energies, the directed flow is manifested by the reflection of in-
coming particles by the first produced regions of highly compressed nuclear
matter. At the SPS energies, the situation is already quite complex [26].
At positive rapidities, the proton directed flow is positive, while the pion
directed flow is negative. This suggests a different origin of v1 of protons
and pions. At the RHIC energies, the directed flow of charged particles is
negative, whereas the v1 of the spectator neutrons is positive. This trend
in the data suggests different behaviour of the matter created in the central
region and in the target/projectile fragmentation regions [27, 28].

4.2. Elliptic flow and thermalisation

In a non-central collision (characterised by a finite impact parameter b),
the particles are produced in an almond-like region in the transverse plane.
This region can be characterised by the spatial anisotropy parameter ε. The
initial longitudinal momenta of the produced particles are very large (due
to the initial impact). On the other hand, the typical initial transverse
momenta are small and distributed isotropically. If the produced particles
do not interact, their final transverse momenta should be also isotropic.
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Contrary, if the particles do interact, the spatial anisotropy is being trans-
ferred into the momentum anisotropy [24]. This leads to non-zero values of
the coefficient v2 in Eq. (4), which becomes proportional to ε.

At RHIC energies, the measured values of the elliptic flow were explained
first by the approaches based on the perfect-fluid hydrodynamics [29]. This
led to the conclusion that the system produced in such collisions is char-
acterised by the very small shear viscosity η [13, 14]. Further studies done
within dissipative hydrodynamics set an upper limit on the ratio of the
shear viscosity η to the entropy density s, which is still very low [30, 31],
1 ≤ 4πη/s ≤ 3 (smaller than for helium at its critical temperature). One has
to clarify that the shear viscosity itself is not a good measure of the viscous
effects as it is a dimensional quantity. A better measure is the ratio η/s as
it is a dimensionless observable (in the natural system of units). Therefore,
the recent hydrodynamic studies aim at fixing η/s.

Originally, the large values of v2 were treated as the evidence of fast
thermalisation of the produced matter. A frequently repeated statement was
that v2 could be generated only in the very early times, smaller than 1 fm/c.
Model calculations show, however, that the elliptic flow can be generated
during the whole time evolution of the system [32, 33] (although the initial
growth is the strongest). The realistic values of v2 can be obtained with
scenarios assuming initial free streaming of patrons or large anisotropy of
the initial pressure [34, 35]. This allows for delayed thermalisation taking
place at the times 1–2 fm/c, which is compatible with the results of different
microscopic calculations (see Refs. [36, 39]).

4.3. Triangular flow

Recent hydrodynamic calculations include event-by-event fluctuations in
the distribution of the initial energy or entropy density [40, 41] (this effect
follows from the fluctuations of the nucleon–nucleon collisions which are de-
scribed below in the framework of the Glauber model). The fluctuations
make this distribution less symmetric and this gives rise to both cosine and
sine terms in the Fourier decomposition of the particle momenta in the az-
imuthal angle. Equivalently, different reference angles Ψk should be used for
each value of k in the decomposition (4). In event-by-event hydrodynamics,
one performs the hydrodynamic calculation for a single event first, extracts
vks, and then the averaging over the events is done. This leads to non-trivial
results for the odd harmonics such as, for example, v3 which is called the tri-
angular flow [42]. The combined measurements of the elliptic and triangular
flow enhance our ability to determine the value of the shear viscosity.
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5. Glauber model

Glauber model is used to determine the initial energy (or entropy) density
of matter produced in heavy ion collisions1. With an additional assumption
that the matter is thermalised, one can use the results obtained with the
Glauber model as the input for hydrodynamic calculations which determine
the subsequent space-time evolution of matter until the freeze-out point.

Originally, the Glauber model was applied only to elastic collisions. In
this case, a nucleon does not change its properties in the individual collisions,
so all nucleon interactions can be well described by the same (elastic) cross
section. Applying the Glauber model to inelastic collisions, we assume that
after a single inelastic collision an excited nucleon-like object is created that
interacts basically with the same inelastic cross section with other nucleons.

An alternative to the Glauber model calculations are theoretical studies
related more directly to QCD. The most common approach of this type is
the colour-glass-condensate (CGC) theory [43, 44] which is based on the
concept of gluon saturation [45, 46] (see also [36–38]).

5.1. Nucleon–nucleon collisions

At high energies, the inelastic nucleon–nucleon cross section σin gives
the main contribution to the total cross section. A certain subclass of the
inelastic processes is the diffractive dissociation process. In this process, a
nucleon is only slightly excited and a small number of particles is produced.
The diffractive processes contribute to about 10% of all inelastic collisions.
In non-diffractive inelastic nucleon–nucleon collisions, a certain number of
charged particles is produced. The average charged particle multiplicity
NNN is described by phenomenological formulas which give NNN as a func-
tion of the energy

√
s . Such formulas can be used in the comparisons done

between heavy ion and hadronic collisions.
Let us consider a nucleon–nucleon collision at a given energy

√
s and at

an impact parameter b. In the eikonal approximation, we may introduce the
probability of having a nucleon–nucleon inelastic collision

p (b) =

(
1−

∣∣∣eiχ(b)
∣∣∣2) ≡ t (b)σin , (5)

where χ(b) is the phase shift (times a factor of two). The function t (b),
defined by (5), is called the nucleon–nucleon thickness function. The integral
of p (b) over the whole range of the impact parameter should be normalized
to σin. Thus, the thickness function is normalized to unity.

1 For a recent review of the applications of the Glauber model to describe initial stages
of relativistic heavy ion collisions see, for example, Sec. III in Ref. [5].
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5.2. Nucleon–nucleus collisions

The probability of finding a nucleon in the nucleus with the atomic mass
number A is the usual baryon density divided by the number of baryons in
the nucleus. For large nuclei, one commonly uses the Woods–Saxon function
(our definition of ρA(r) includes A in the denominator, because we want to
interpret ρA(r) as the probability distribution)

ρA(r) =
ρ0

A

(
1 + exp

[
r − r0

a

])−1

, (6)

with the parameters: r0 = (1.12A1/3 − 0.86A−1/3) fm, a = 0.54 fm, ρ0 =
0.17 fm−3. The parameter ρ0 is the nuclear saturation density.

The nucleon–nucleus thickness function for the nucleus A is obtained
from a simple geometric consideration and the assumption that the nucleon
positions in the nucleus A are not changed during the collision process

TA (b) =

∫
dzA

∫
d 2sA ρA (sA, zA) t (sA − b) . (7)

Here, the transverse coordinates in the nucleus A are denoted by the vector
sA and

ρA (sA, zA) = ρA

(√
s2
A + z2

A

)
. (8)

Our definition of the Woods–Saxon distribution implies the normalization
condition ∫

d 2b TA (b) = 1 . (9)

The quantity TA (b)σin is the probability that a single nucleon–nucleon
collision takes place in a nucleon–nucleus collision at the impact parameter b.
Treating all possible nucleon–nucleon collisions in the nucleon–nucleus colli-
sion as completely independent and characterized by the same cross section,
we easily find the probability of having n such collisions

P (n;A; b) =

(
A
n

)
[1− TA (b)σin]A−n [TA (b)σin]n . (10)

The average number of binary nucleon–nucleon collisions may be calculated
from the expression n (A; b) = ATA (b) σin.
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5.3. Nucleus–nucleus collisions

The thickness function for the nucleus–nucleus collision follows also from
the geometric considerations which give in this case

TAB (b) =

∫
dzA

∫
d 2sAρA(sA, zA)

∫
dzB

∫
d 2sBρB(sB, zB)t(b+sB−sA) ,

(11)
with the corresponding normalization condition

∫
d 2b TAB (b) = 1.

The quantity TAB (b)σin is the averaged probability that a nucleon–
nucleon collision takes place in a nucleus–nucleus collision characterized by
the impact parameter b. In the limit t(b)→ δ(2)(b), we may write

TAB (b) =

∫
d 2sA TA(sA)TB(sA − b) . (12)

The nucleus–nucleus thickness function TAB (b) can be used to calculate
the probability of having n inelastic binary nucleon–nucleon collisions in a
nucleus–nucleus collision at the impact parameter b

P (n;AB; b) =

(
AB
n

)
[1− TAB (b)σin]AB−n [TAB (b)σin]n . (13)

The average number of the collisions is n (AB; b) = AB TAB (b) σin.
The total probability of an inelastic nuclear collision is the sum over n

from n = 1 to n = AB

Pin (AB; b) =
AB∑
n=1

P (n;AB; b) = 1− [1− TAB (b)σin]AB . (14)

In more realistic calculations, the positions of nucleons in the target and
projectile nucleus are fixed, and the averaging should be done later. The
probability of an inelastic collision for a fixed nucleon configuration equals

1−
A∏
j=1

B∏
i=1

[
1− t

(
b + sBi − sAj

)
σin

]
. (15)

The probability of an inelastic nuclear collision at the impact parameter b
is then

Pin (AB; b) =

∫
d2sA1 TA

(
sA1
)
. . . d2sAATA

(
sAA
)∫
d2sB1 TB

(
sB1
)
. . . d2sBBTB

(
sBB
)

×

1−
A∏
j=1

B∏
i=1

[
1− t

(
b + sBi − sAj

)
σin

] . (16)
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The integration of (16) over b gives σABin . Equations (14) and (16) differ
from each other! The more accurate formula (16) is much more complicated
to handle and cannot be simply reduced to (14). Only for nucleon–nucleus
collisions the two methods are equivalent. Since there is no good analytic
method to evaluate (16) for large values of A and B, one is most often
satisfied with Eq. (14) only. It is called the optical limit of the Glauber
model. In order to have a more reliable distributions, one does the Monte-
Carlo calculations [47, 48].

5.4. Wounded nucleons

The Glauber model can be used also to calculate the number of the
participants. To be more precise, we distinguish between the participants
which may interact elastically and the participants which interact only in-
elastically. The latter are called the wounded nucleons [49]. The number
of nucleons in the nucleus A is A

∫
d2s TA(s). Probability, that the nucleon

from A at the position s collides one or more times with the nucleons in B
(in an AB collision at the impact parameter b) is

B∑
n=1

P (n;B; b− s) = 1− [1− σinTB (b− s)]B . (17)

The number of wounded nucleons in A can be obtained from the expression

wA (A;B; b) = A

∫
d2s TA (s)

(
1− [1− σinTB (b− s)]B

)
. (18)

An analogous expression holds for the number of wounded nucleons in B.
Since the number of wounded nucleons in the collision of A and B is the
sum of the wounded nucleons in the nucleus A and B, we obtain [49] (after
making the appropriate shifts in the integration over positions s)

w (A;B; b) = A

∫
d2s TA (b− s)

(
1− [1− σinTB (s)]B

)
+B

∫
d2s TB (b− s)

(
1− [1− σinTA (s)]A

)
. (19)

5.5. Nuclear modification factor

A simple way to quantify the differences between the nucleus–nucleus
collisions and the nucleon–nucleon collisions is to calculate the nuclear mod-
ification factor

RAB(p⊥) =
1

nAB

d2NAB

dp⊥dη

/
1

σpptot

dσppincl

dp⊥dη
, (20)
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where NAB — average number of particles produced in the collisions of the
nuclei A and B, nAB — number of the binary nucleon–nucleon collisions
obtained in the framework of the Glauber model.

The denominator of (20) is the inclusive cross section for pp collisions
divided by the total cross section. This quantity is equal to the average
number of particles produced in pp collisions in the appropriate phase-space
interval

dNpp

dp⊥dη
=

1

σpptot

dσppincl

dp⊥dη
. (21)

If the collisions of the nuclei A and B are simple superpositions of the ele-
mentary pp collisions, the scaling with the number of binary collisions should
hold, and the nuclear modification factor is expected to be equal to unity.
This is the reason why the nuclear modification factor is so frequently used
in direct searches for non-trivial dynamics.

6. Hydrodynamic description of heavy ion collisions

6.1. Early statistical and hydrodynamic models

The use of relativistic hydrodynamics to describe particle production in
hadronic collisions has a long history which starts with the famous work
of Landau in the early 1950s [50], see also [51, 52]. Landau’s considera-
tions were preceded, however, by a few approaches that used pure statistical
and thermodynamic concepts in the analysis of hadronic collisions [53–56].
Such approaches may be regarded as pre-hydrodynamic models and it is
important to present them before we turn to the discussion of the genuine
hydrodynamic models.

6.1.1. Fermi model

Fermi assumed that when two relativistic nucleons collide, the deposited
energy is released in a very small volume V , whose magnitude corresponds
to the Lorentz contracted characteristic pion field volume V0, i.e., V =
2mNV0/

√
s, where V0 = (4/3)πR3

π with Rπ = 1/mπ, and where
√
s is the

centre-of-mass energy. Subsequently, such a dense system decays into one of
many accessible multiparticle states. The decay probability is calculated in
the framework of the standard statistical physics.

The main reason for the introduction of the statistical concepts was the
breakdown of the perturbation theory in description of strongly interact-
ing systems. Clearly, the large values of the coupling constant prohibit the
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application of the perturbation theory. On the other hand, the large coupling
is responsible for the phenomenon of multiparticle production, which is a
very characteristic feature of strong interactions.

The probability of the transition into a given state is proportional to the
square of the matrix element and to the density of states. In the statistical
description, the matrix elements are treated as constants and the main ef-
fect comes from the phase space. Thus, the statistical approach represents
a simple theoretical modelling of collisions which may be regarded as the
complementary approach to the perturbation schemes which typically break
down at a certain scale. The main heuristic argument for the justification
of the use of the statistical approach is that the role of the phase space
naturally grows with the increasing energy of the collisions.

According to Fermi, the probability for the formation of the state with
n particles is proportional to the factor

S(n) =

[
V

(2π)3

](n−1) dQ(W )

dW
. (22)

Here, W is the total energy of the colliding system, dQ/dW is the number
of states per unit energy, and V is the interaction volume. The power n− 1
arises from the fact that the momenta of only n−1 particles are independent.

In the last chapter of his seminal paper from 1950, Fermi considers the
collisions at extremely high energies. He argues that in this case a detailed
statistical considerations may be replaced by the simple thermodynamic ar-
guments. Assuming that the matter is thermalized, one can calculate the
temperature of the produced hadronic system from the thermodynamic re-
lations valid for massless particles. Fermi took into account only the pro-
duction of pions, nucleons and antinucleons, and used the formula

(
επ + εN+N̄

)
V =

π2V T 4

3
= W . (23)

Using the expression for the Lorentz contracted volume, we rewrite (23) in
the following form

T 4 =
3

2π2

W 2

V0mN
=

9

8π3

W 2m3
π

mN
. (24)

This equation may be used to calculate the abundances of the produced pi-
ons, nucleons and antinucleons from the thermodynamic relations giving the
particle densities in terms of the temperature. It is interesting to note that
Fermi’s idea forms the ground for present thermal model analyses discussed
below in Sec. 7.2.
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6.1.2. Landau model

In the Landau model [50], an expansion of matter before the hadron
decoupling is included. The idea of modification of the Fermi approach was
indicated by Pomeranchuk [56]. He argued that the particles in the sys-
tem should interact until the average distance between them becomes larger
than the typical interaction distance. Landau proposed his hydrodynamic
approach to describe proton–proton collisions. Following Fermi, he assumed
that the two colliding protons released their energy in the volume corre-
sponding to the Lorentz-contracted size of a proton. Under the influence of
the longitudinal gradient, the system starts expanding. The transverse gra-
dient is also present but, initially, the gradient in the longitudinal direction
is much larger and the early expansion may be regarded as one-dimensional.

6.1.3. Bjorken model

In the Landau model, the initial conditions are specified for a given
laboratory time in the centre-of-mass frame, when the matter is highly com-
pressed and at rest. Landau’s description does not include one aspect of
high-energy processes — fast particles are produced later and further away
from the collision centre than the slow particles. It is possible to include
this effect by imposing special initial conditions. This idea was proposed
and developed by Bjorken [57].

The Bjorken hydrodynamic model [57] is based on the assumption that
the rapidity distribution dNch/dy is constant in the mid-rapidity region.
This fact means that the central region is boost invariant. In this case, the
longitudinal flow has the form vz = z/t and all thermodynamic quantities
characterizing the central region depend only on the longitudinal proper
time τ =

√
t2 − z2 and the transverse coordinates x and y.

The main success of the Bjorken model is that it allows for simple and
realistic estimates of the initial energy density available at the early stages
of heavy ion collisions. Such estimates always indicate that the produced
matter has the energy density much larger than the typical energy density
characterising the phase transition from the hadron gas to the quark–gluon
plasma. Thus, using Bjorken’s simple estimates we expect a formation of a
new state of matter in heavy ion collisions at the relativistic energies.

6.1.4. Towards modern hydro approaches

Modern hydrodynamic calculations follow general concepts introduced
in the Landau and Bjorken models. However, they differ from the Landau
original description in the way how they treat the initial conditions. They
also go beyond the simple Bjorken approach by including transverse expan-
sion [58] and, eventually, by breaking the boost-invariance. Additionally, the
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recent hydrodynamic codes use modern equations of state inspired by the
lattice simulations of QCD and advanced hadron-gas calculations. In ad-
dition, the hydrodynamic simulations are performed on the event-by-event
basis [40, 41].

In the Landau and Bjorken models, the thermalized matter was a gas of
ultra-relativistic particles, mainly pions, satisfying the extreme relativistic
equation of state P = ε/3. At present, more accurate equations of state
for hot and dense matter are known (for the perturbative QCD calculation,
see [59, 60] and for the lattice QCD calculations, see [61, 62] and Hoelbling
lecture [63]). Expecting the phase transition to the quark–gluon plasma, one
can use the plasma equation of state including the phase transition back to
ordinary hadronic matter, see, for example, Refs. [64, 65]. In this way, the
phase transition is incorporated in the hydrodynamic frameworks in a very
elegant and thermodynamically consistent way.

It is interesting to stress that the use of the appropriate QCD equation of
state was crucial for the correct description of the HBT radii (see Kisiel [66]).
Moreover, determination of the real character of the phase transition may
be helpful to perform realistic calculations within the cosmological models
based on the Friedman equation [67].

6.2. Initial conditions

For boost-invariant systems with vanishing baryon chemical potential,
one usually assumes that either the initial entropy density, σi(x⊥)=σ(τi,x⊥),
or the initial energy density, εi(x⊥) = ε(τi,x⊥), are directly related to the
density of sources of particle production, ρsr(x⊥).

The sources considered in this context are wounded nucleons or binary
collisions. The symmetry with respect to the Lorentz boosts along the col-
lision axis means that it is sufficient to consider all these quantities in the
plane z = 0. In general, a mixed model is used, with a linear combination
of the wounded-nucleon density w (x⊥) and the density of binary collisions
n (x⊥). This leads to the following expression for the initial entropy [68, 69]

σi(x⊥) ∝ ρsr(x⊥) =
1− κ

2
w (x⊥) + κn (x⊥) , (25)

where κ is a fit parameter. The initial longitudinal profiles are less known.
One usually uses Gaussian parametrisation of the entropy density in space-
time rapidity (with a possible flat insert in the middle). The width of this
distribution is chosen in such a way as to reproduce the measured rapidity
distribution.
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6.3. Hydrodynamics of perfect fluid

The perfect fluid is defined formally by the form of its energy-momentum
tensor, namely

Tµνeq = (ε+ P )uµuν − Pgµν , (26)

where gµν is the metric tensor with g00 = 1, ε is the energy density, P is the
pressure, and uµ is the four-velocity of the fluid element.

The form (26) follows from the assumption of local thermal equilibrium.
Equations of motion of the perfect fluid are then obtained from the conser-
vation laws

∂µT
µν
eq = 0 . (27)

In (27) we have four equations. On the other hand, we search for five
unknown functions: three independent components of the fluid four-velocity,
the energy density, and pressure. The system of equations becomes closed
if (27) is supplemented with the equation of state, for example, in the form
P = P (ε). Using (27), one may check that the entropy is conserved, hence
the flow is adiabatic. If the fluid has a non-zero baryon density, one should
add the baryon number conservation law to (27) as an extra equation.

6.4. Hydrodynamics of viscous fluid

In viscous hydrodynamics, the energy-momentum tensor has the form

Tµν = Tµνeq + Πµν , (28)

where Tµνeq is the perfect-fluid part given by (26) and Πµν describes dissipa-
tion

Πµν = πµν +Π∆µν , ∆µν = gµν − uµuν . (29)

Here, πµν is the shear tensor and Π describes the viscous bulk pressure. The
equations of hydrodynamics follow from the conservation laws for energy
and momentum, and from the requirement that the entropy production is
positive. These conditions determine the form of equations to be satisfied
by the dissipative terms πµν and Π.

From the formal point of view, the inclusion of the dissipative terms in
(28) follows from the gradient expansion around the local equilibrium. In
the first order in gradients, one finds the Navier–Stokes expressions

πµν = η∇〈µuν〉 , Π = ζ∂αu
α , (30)

where the angle brackets project out the traceless symmetric part (the sym-
metric part is denoted by round brackets)

∇〈µuν〉 = 2∇(µuν) − 2
3∆

µν∇αuα , ∇α = ∆αβ∂β . (31)
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The quantities η and ζ in (30) are the shear and bulk viscosity, respectively.
Unfortunately, the relativistic fluid dynamics based on the Navier–Stokes
prescription suffers from problems connected with the acausal transmission
of signals. This is why the second-order theory had been developed by
Israel and Stewart [70]. Within the second-order theory, the shear tensor
πµν and the bulk pressure Π satisfy non-trivial dynamic equations. They
are not any longer expressed by simple formulas such as (30). Moreover, the
second-order theory requires that higher-order kinetic coefficients should be
introduced.

At the moment, the formalism developed by Israel and Stewart is the
most popular version of the dissipative hydrodynamics used to describe
heavy ion collisions. Usually, only the shear viscosity is included in such
calculations. There are, however, suggestions that the bulk viscosity may
also play an important role [71]. More importantly, the second-order formal-
ism may lead to unphysical behaviour at the early stages of the collisions
or at the edges of the produced system. Such issues are discussed in the
lectures by Strickland [39] in the context of a new formulation of dissipative
fluid dynamics (anisotropic hydrodynamics [39, 72, 73]).

7. Freeze-out

7.1. Kinetic freeze-out

The thermal or kinetic freeze-out is the stage in the evolution of matter
when the hadrons practically stop to interact. In other words, the thermal
freeze-out is a transition from a strongly coupled system (very likely evolv-
ing from one local equilibrium state to another) to a weakly coupled one
(consisting of essentially free-streaming particles).

It is triggered by the expansion of matter, which causes a rapid growth
of the mean free path, λmfp, of particles. The thermal freeze-out happens
when the timescale connected with the collisions, τcoll ∼ λmfp, becomes
larger than the expansion timescale, τexp. In this case, the particles depart
from each other so fast that the collision processes become ineffective. We
may formulate this condition as the inequality [74]

τcoll ≥ τexp . (32)

The magnitude of the collision time is determined by the product of the
average cross section and the particle density,

τcoll ∼
1

σ n
, (33)

whereas the magnitude of the expansion time is characterized by the di-
vergence of the four-velocity field, uµ, describing the hydrodynamic flow of
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matter,

τexp ∼
1

∂µuµ
. (34)

Very often a simplified criterion is assumed which says that the thermal
freeze-out happens at the time when the mean free path of hadrons is of the
same order as the size of the system.

7.2. Chemical freeze-out and thermal models

Chemical freeze-out defines the stage where the hadron abundances are
fixed — it should precede the kinetic freeze-out. The concept of the chemical
freeze-out is used in thermal models of particle production. In such models,
one assumes that a gas of stable hadrons and resonances is formed (at the
chemical freeze-out). The final (measured) multiplicities of hadrons consist
of primary particles, present in the hot fireball, and of secondary particles
coming from the decays of resonances.

There exist several versions of the thermal approach in the literature, for
example, see [75–83]. The most popular is the grand canonical version, where
one assumes that all hadron species are formed in local thermal and chemical
equilibrium. Other versions of the thermal approach assume chemical non-
equilibrium in the strange sector of particles, or chemical non-equilibrium in
both the strange and non-strange sectors2.

There is also a possibility that the chemical and thermal freeze-out co-
incide. Such a single freeze-out model was constructed in Ref. [85] and was
successfully used to describe the RHIC soft hadronic observables. Its Monte
Carlo version is defined in Refs. [86, 87].

The recent LHC data on heavy ion collisions show that the predictions of
two popular versions of the statistical model (the chemical equilibrium model
and the strangeness non-equilibrium model) give too large values for the kaon
to pion ratio, (K+ +K−)/(π+ +π−), and, especially, for the ratio of protons
to pions (p + p̄)/(π+ + π−) [88, 89]. The recent fit [83] gives almost three
standard deviations higher values for protons and anti-protons compared
to the LHC data. Besides the problems with thermal interpretation of the
hadron abundances at the LHC, one encounters also the problems with the
hydrodynamic interpretation of the transverse-momentum spectra of pions,
kaons and protons. It turns out that one can connect the proton puzzle with
the anomalous behaviour of the pion pT spectra and solve the two problems
within the chemical non-equilibrium version of the single freeze-out model
[90, 91].

2 The results of different versions of the thermal model applied at the LHC energy have
been recently reviewed in [84].
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In the hydrodynamic calculations, the freeze-out process is modelled in
two alternative ways: either one uses the concept of a single freeze-out and
assumes that the hadrons are completely decoupled on a specific freeze-
out hypersurface or one switches from the hydrodynamic description to the
hadronic cascade model which relies on the kinetic theory [92].

8. Hanbury–Brown-Twiss interferometry

The fundamental object in the HBT interferometry is the two-particle
correlation function C(p1,p2), measured for pairs of identical particles such
as π+π+, π−π−, or K+K+. In general, it is defined by the expression

C(p1,p2) =
P2(p1,p2)

P1(p1)P1(p2)
, (35)

where P1(p) is the invariant inclusive one-particle distribution function in
the space of rapidity and transverse-momentum,

P1(p) = Ep
dN

d3p
=

dN

dyd2p⊥
, (36)

and P2(p1,p2) is the analogous two-particle distribution

P2(p1,p2) = Ep1Ep2
dN

d3p1d3p2
=

dN

dy1d2p1⊥dy2d2p2⊥
. (37)

Equations (36) and (37) imply that the correlation function (35) transforms
like a Lorentz scalar. In (35), we may use the average momentum

k = 1
2 (p1 + p2) , (38)

and the difference of the two momenta

q = p1 − p2 . (39)

In the analyses of the correlation functions, one uses commonly the out-
side-long coordinate system. First, by making the Lorentz boost along the
collision axis, we may set k‖ = 0. In this way, we change to the special frame
that is called the longitudinally comoving system (LCMS). In this frame,
the direction of the beam is called the long direction. The direction of the
three-momentum of the pair is the out direction, and the third orthogonal
direction is called the side direction. The measured correlation functions are
usually fitted with the Gaussian of the following form3

C(k⊥, q) = 1 + λ exp
[
−R2

long(k⊥)q2
long −R2

out(k⊥)q2
out −R2

side(k⊥)q2
side

]
.

(40)
3 Strictly speaking, the parametrisation (40) is suitable for boost-invariant and az-
imuthally symmetric systems. In more general cases, one should use more complex
formulas.
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The parameters Rside, Rout, and Rlong are called the HBT radii. The mea-
surements of the HBT radii as functions of the mean transverse momentum
of the pion pairs gives us information about the space-time sizes of the sys-
tem at the kinetic freeze-out (for more details, see [66]).

9. Conclusions

Successful applications of relativistic hydrodynamics in description of
ultra-relativistic heavy ion collisions allowed us to establish a uniform picture
of these complicated processes. In some sense, we are in a fortunate situation
that such complex systems and processes may be described within a concise
and well-defined framework.

The hydrodynamic approach, combined with the modelling of the initial
state by the Glauber model or the colour glass condensate on the one side,
and supplemented by the kinetic simulations of the freeze-out process on the
other side, forms the foundation of an approach that may be regarded as
the Standard Model of ultra-relativistic heavy ion collisions. Nevertheless,
many details of this picture should be improved and surprises may wait for
us just around the corner.

This work was supported in part by the Polish National Science Center
with Decision No. DEC-2012/06/A/ST2/00390.
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