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Anisotropic hydrodynamics is a non-perturbative reorganization of rela-
tivistic hydrodynamics that takes into account the large momentum-space
anisotropies generated in ultrarelativistic heavy ion collisions. As a re-
sult, it allows one to extend the regime of applicability of hydrodynamic
treatments to situations that can be quite far from isotropic thermal equi-
librium. In this paper, I review the material presented in a series of three
introductory lectures. I review the derivation of ideal and second-order
viscous hydrodynamics from kinetic theory. I then show how to extend the
methods used to a system that can be highly anisotropic in local-rest-frame
momenta. I close by discussing recent work on this topic and then present
an outlook to the future.
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1. Introduction

The use of relativistic viscous hydrodynamics to model the spatiotempo-
ral evolution of the quark–gluon plasma (QGP) generated in ultrarelativistic
heavy ion collisions (URHICs) is now widespread. Results from such simula-
tions are in quite good agreement with experimental data available from the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab and
the Large Hadron Collider at the European Center for Nuclear Research
(CERN) [1–35]. Despite this success, there are still some fundamental issues
to be addressed in the context of relativistic hydrodynamics applied to heavy
ion collisions. One of these issues stems from the fact that the traditional
derivation of the dynamical equations of viscous hydrodynamics relies on a
linearization around an isotropic equilibrium distribution function. In recent
years, we have come to understand that the QGP, as generated in URHICs
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is not momentum space isotropic. In fact, at very early times after the initial
nuclear impact one finds very large pressure anisotropies, i.e. PL/PT ∼< 0.3
in the center of the fireball if one uses shear viscosities that are consistent
with experimental observations. As one moves out from the center of the
fireball to the colder regions of the plasma, the level of plasma anisotropy
increases. Such large pressure anisotropies are an indicator of large vis-
cous corrections to the assumed starting point of ideal hydrodynamics. In
addition, one finds that using traditional linearized viscous hydrodynami-
cal treatments, that there always exist regions of phase space in which the
one-particle distribution function is negative. The size of these unphysi-
cal regions increases as one considers early times or colder regions of the
plasma. Since the one-particle distribution function is used as input to phe-
nomenological calculations of other plasma signatures, such as photon and
dilepton production/flow, quarkonium suppression, and freeze-out, this can
potentially lead to inaccuracies in model calculations1.

Because of the aforementioned problems, there was motivation to create
an alternative framework for describing dissipative dynamics that could more
accurately describe the dynamics of highly momentum-space anisotropic
and, hence, far-from equilibrium systems. One method that has proven to be
quite successful is the framework of anisotropic hydrodynamics [34, 88–103].
In this framework, one allows the leading-order (LO) one-particle distri-
bution function to be momentum-space anisotropic. The most important
anisotropies are of spheroidal form, i.e. T xxLO = T yyLO 6= T zzLO in the local rest
frame (LRF) [39, 88, 89], however, it is possible to start with a more general
ellipsoidal momentum-space anisotropy, i.e. T xxLO 6= T yyLO 6= T zzLO in the LRF
[34, 100, 103]. With either prescription, the starting point for the deriva-
tion of the anisotropic hydrodynamics equations is to assume that one can
express the one-particle distribution function in the form

f(x, p) = fiso

(√
pµΞµν(x)pν

Λ(x)
,
µ(x)

Λ(x)

)
︸ ︷︷ ︸

faniso(x,p)

+ δf̃(x, p) , (1.1)

where Ξµν is a second-rank tensor that measures the amount of momentum-
space anisotropy and Λ is a temperature-like scale which can be identified
with the true temperature of the system in the isotropic equilibrium limit.
µ(x) is the effective chemical potential of the particles. Traditionally, LO
anisotropic hydrodynamics (aHydro) is based on an azimuthally symmetric
(spheroidal) ansatz for Ξµν(x) [39, 88, 89] involving a single anisotropy pa-
rameter ξ such that pµΞµν(x)pν reduces to p2 + ξ(x)p2L in the LRF. The

1 For phenomenological calculations of these signatures and related theoretical devel-
opments, I refer the reader to Refs. [36–87].
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dynamical equations of LO spheroidal aHydro were originally derived from
kinetic theory by taking f(x, p) = faniso(x, p) (i.e. by ignoring the correction
δf̃ in Eq. (1.1)), and using the zeroth and first moments of the Boltzmann
equation in the relaxation time approximation [88, 89, 93, 94].

Using a spheroidal form at LO is motivated by the fact that it accounts
for the most important anisotropic corrections to the one-particle distribu-
tion non-perturbatively. In addition, it benefits from the following properties:

— It gives the ideal hydro limit when ξ → 0 (Λ→ T ) which corresponds
to the limit η/S → 0.

— It gives the longitudinal free-streaming limit for a transversely ho-
mogeneous system undergoing boost-invariant longitudinal expansion
(0+1d expansion), which corresponds to the limit η/S → ∞. This
is an extreme case where the system develops the maximal degree of
momentum-space anisotropy and it is exactly described by a spheroidal
form.

— Since fiso ≥ 0, the one-particle distribution function and pressures are
all greater than or equal to zero. This is not guaranteed in linearized
viscous hydrodynamics.

— It can be shown that the aHydro formalism reduces to linearized
second-order viscous hydrodynamics in the limit of small anisotropies.
This was originally shown in the context of 0+1d expansion in Ref. [88],
but can be shown to hold also in the case of fully 3+1d dynamics [104].

In the last year, the corrections due to δf̃ in (1.1) were included in a next-
leading-order (NLO) treatment of anisotropic hydrodynamics [99]. At NLO,
dissipative effects due to the spheroidally deformed LO term are treated
non-perturbatively, while the non-spheroidal corrections δf̃ are treated per-
turbatively. Another interesting recent development has been to generalize
the RS form from spheroidal to ellipsoidal form at LO [100], at least for the
case of a system which possesses cylindrical symmetry in space. This devel-
opment offers some promise to treat all diagonal components of the energy-
momentum tensor non-perturbatively, while treating only the off-diagonal
components perturbatively.

The goal of the anisotropic hydrodynamics program is to create a dissi-
pative hydrodynamics framework that more accurately describes:

— Early time dynamics of the QGP created in heavy ion collisions.
— Dynamics near the transverse edges of the nuclear overlap region.
— Temperature-dependent (and potentially large) η/S.

In the following three sections, I will attempt to summarize the content
presented in the three lectures I gave in the LIV Cracow School of Theoret-
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ical Physics. The first lecture discussed motivation and evidence for large
momentum-space anisotropies and then proceeded to the derivation of ideal
hydrodynamics from kinetic theory. The second lecture discussed linearized
viscous hydrodynamics and anisotropic hydrodynamics. The third lecture
discussed recent advances which have included the development of exact so-
lutions to the Boltzmann equation in the relaxation time approximation and
comparisons of the results obtained in various hydrodynamics frameworks
to these exact solutions.

In this manuscript, I use the particle-physics Minkowski-space metric
convention gµν = diag(+1,−1,−1,−1) and natural units with ~ = c =
kB = 1. With this metric convention, the flow velocity uµ is normalized
as uµuµ = 1. Milne coordinates in Minkowski space are defined by xµ =

(τ, x, y, ς), with longitudinal proper time τ =
√
t2 − z2, space-time rapidity

ς = arctanh(z/t), and metric ds2 = dτ2 − dx2 − dy2 − τ2dς2. In some
places, I denote the scalar product between two 4-vectors with a dot, i.e.
AµB

µ ≡ A ·B.

2. Lecture 1

In Lecture 1, I provide motivation for the study of anisotropic hydrody-
namics and then turn to the derivation of ideal hydrodynamics from kinetic
theory.

2.1. Motivation

If we visualize a 2d slice of the space-time history of the quark–gluon
plasma as generated in a URHIC at the LHC, it would look something like
the cartoon shown in Fig. 1. The timescales shown should be taken as
rough guidelines rather than hard and fast numbers, but these estimates are
reasonable if one considers the evolution of the central region of the QGP
fireball. As this figure shows, at the earliest time after the initial nuclear
impact, QGP evolution is dominated by hard particle production processes
which, in the high-energy limit, are describable in terms of the Color-Glass-
Condensate (CGC)/Glasma [105–110]. During this time period, one expects
extremely large deviations from isotropic thermal equilibrium. In fact, due to
the coherent fields that exist in the CGC initial state, the initial longitudinal
pressure is expected to be negative. After a few multiples of the inverse gluon
saturation scale, Q−1s ∼ 0.1−0.2 fm/c, however, this negative pressure goes
away and one finds a positive, but very small, longitudinal pressure [108]. In
the past, the large amount of momentum-space anisotropy present in CGC-
like initial conditions has been used as argument against the application of
perturbative QCD (pQCD) to heavy ion collisions since it was thought that
one could not match onto hydrodynamical solutions in this case. However,
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it turns out that strong-coupling approaches and viscous hydrodynamics
itself also predict large momentum-space anisotropies at early times. The
existence of large momentum-space anisotropies in the QGP seems to be
very much model-independent.
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Fig. 1. (Color online) A cartoon depicting the space-time history of the QGP as
generated in a heavy ion collision at LHC energies. The overlay on the right-hand
side shows the lab-frame evolution.

Looking again at Fig. 1, we see that, after the initial period of hard
particle production, there is a pre-equilibrium period that may extend for
as long as 2 fm/c. In the past, it has been claimed that the pre-equilibrium
period can only exist for up to 1 fm/c and that, after that, the QGP becomes
isotropic; however, we now understand that viscous hydrodynamics itself
shows large corrections to ideal isotropic behavior even at times as late
as 2 fm/c. After the pre-equilibrium period is over, one can begin to use
linearized viscous hydrodynamics to describe the evolution of the QGP2.
I emphasize, however, that these time scales are only appropriate for the
description of the matter in the center of the fireball. In a conformal system,
the length of the pre-equilibrium stage scales like the inverse temperature.
Therefore, as one moves out of the center, towards the cooler transverse or
longitudinal regions of the QGP, one expects much larger non-equilibrium
corrections and a longer pre-equilibrium stage.

2 Of course, one can apply linearized viscous hydro prior to this time, but its reliability
is less sure at early times.
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After the pre-equilibrium stage, we move into the hydrodynamic regime.
During this period, the expansion and cooling of the QGP can be described
using the equations of linearized viscous hydrodynamics. At late times, how-
ever, the system goes through a transition to hadronic degrees of freedom
and eventually becomes too dilute to be reliably described by linearized
viscous hydrodynamics once again. The system subsequently “freezes-out”,
first chemically and then kinetically, and finally, the produced hadrons free
stream to the detectors, with an imprint of their former existence as a near-
equilibrium QGP left on their spatial/momentum distributions and relative
abundances.

Fig. 2. (Color online) A cartoon depicting the temporal evolution of the momen-
tum-space anisotropy evolution expected to be generated in a heavy ion collision
at LHC energies. The inset light gray/yellow ellipses indicate the shape of the
momentum-space distribution with the horizontal direction corresponding to the
longitudinal (beamline) direction. The inset in the lower right shows a snapshot of
the receding nuclei, with the (red) wave indicating the stretching of a longitudinal
mode and the (blue) wave indicating a pseudo-static transverse mode.

Having discussed the general space-time picture of a heavy ion collision,
let us now discuss, in some more detail, the evolution of the level of pressure
anisotropy expected. In order to illustrate the pressure anisotropy expected
at various stages of QGP evolution, in Fig. 2 I show a sketch of the proper-
time evolution of the level of momentum-space anisotropy measured by the
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ratio of the longitudinal pressure, PL, and transverse pressures, PT. The
dark gray/blue band shows a range for the possible level of momentum-
space anisotropy. At early times, the lower bound of this band illustrates
the evolution expected in the CGC/Glasma framework. In addition to this
early-time possibility, I also include another possibility, namely that the sys-
tem starts in a prolate configuration (PL > PT). As this cartoon illustrates,
however, one finds that the initial momentum-space anisotropy is not very
important, since the rapid longitudinal expansion of the QGP pulls the sys-
tem into a kind of universal attractor which results in an oblate (PL < PT)
momentum-space anisotropy at times of the order of a few tenths of fm/c.
The reason for this is that, in the high-energy limit and at early times,
the longitudinal expansion scalar grows like 1/τ , while it takes some time
(τ ∼ RT/cs) for collective effects to generate significant transverse expan-
sion. The effect of this is that, at early times, the QGP looks very much like
tiny one-dimensionally expanding universe in which longitudinal momentum
are strongly red-shifted, while transverse momenta are largely unaffected.
As a result, the longitudinal pressure is strongly depleted relative to the
transverse momentum.

After some time, however, the longitudinal expansion rate reduces and
interactions among the QGP constituents are able to drive the system back
towards isotropy. However, as shown in Fig. 2, since the system is still
longitudinally expanding, the interactions are never able to fully restore
isotropy. At late times, the degree of momentum-space anisotropy is set
by the shear viscosity of the QGP as indicated in the figure. If the shear
viscosity to entropy density ratio (η/S) is temperature-dependent, with large
η/S at low- and high-temperatures, one can expect large non-equilibrium
corrections at early and late times. In addition, as already pointed out, if one
moves to colder regions (not precisely in the center of the fireball), one finds
that the level of momentum-space anisotropy increases and the length of
time over which non-equilibrium corrections are important, becomes longer.

To sum up, one finds that there can be a sizable level of momentum-
space anisotropy in the QGP. Going beyond the cartoon level, it is possible
to use both viscous hydrodynamics itself and also strong-coupling AdS/CFT
approaches to try to reach some quantitative conclusions about the level of
momentum-space anisotropy. To arrive at some quantitative conclusions,
let us consider first- and second-order viscous hydrodynamics for a system
that is transversely homogeneous and boost invariant in the longitudinal
direction, aka (0+1d)-dynamics. In this case, first-order Navier–Stokes (NS)
viscous hydrodynamics predicts that the LRF shear correction to the ideal
pressures is diagonal, with space-like components πzz = −4η/3τ = −2πxx =
−2πyy, where η is the shear viscosity and τ is the proper time. In viscous
hydrodynamics, the longitudinal pressure is given by PL = Peq+πzz and the
transverse pressure by PT = Peq +πxx. Assuming an ideal equation of state
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(EoS), the resulting ratio of the longitudinal pressure over the transverse
pressure from first-order viscous hydrodynamics can be expressed as(

PL
PT

)
NS

=
3τT − 16η̄

3τT + 8η̄
, (2.1)

where η̄ ≡ η/S with S being the entropy density. Assuming RHIC-like initial
conditions with T0 = 400 MeV at τ0 = 0.5 fm/c and taking the conjectured
lower bound η̄ = 1/4π [111], one finds (PL/PT)NS ' 0.5. For LHC-like
initial conditions with T0 = 600 MeV at τ0 = 0.25 fm/c and once again
taking η̄ = 1/4π, one finds (PL/PT)NS ' 0.35. This means that, even in the
best case scenario of η̄ = 1/4π, viscous hydrodynamics itself predicts rather
sizable momentum-space anisotropies. For larger values of η̄, one obtains
even larger momentum-space anisotropies. In addition, one can see from
Eq. (2.1) that, at fixed initial proper time, the level of momentum-space
anisotropy increases as one lowers the temperature.

Of course, since first-order relativistic viscous hydrodynamics is acausal,
the analysis above is incomplete. It does, however, provide intuitive guid-
ance since the causal second-order version of the theory has the first-order
solution as an attractor of the dynamics. Because of this, one expects large
momentum-space anisotropies to emerge within a few multiples of the shear
relaxation time τπ. In the strong-coupling limit of N = 4 SYM, one finds
τπ = (2− log 2)/2πT [10, 112] which gives τπ ∼ 0.1 fm/c and τπ ∼ 0.07 fm/c
for the RHIC- and LHC-like initial conditions stated above, respectively. To
demonstrate this quantitatively, in Fig. 3 I plot the solution of the second
order Israel–Stewart 0+1d viscous hydrodynamical equations assuming an
isotropic initial condition and the NS solution together. In the left column,
I assumed 4πη̄ = 1 and in the right column, I assumed 4πη̄ = 3 (η̄ ' 0.24)
with τπ = 2(2 − log 2)η̄/T in both cases. As can be seen from this figure,
even if one starts with an isotropic initial condition, within a few multiples of
the shear relaxation time one approaches the NS solution, overshoots it, and
then approaches it from below. The value of η̄ in the right column is approx-
imately the same as that extracted from recent fits to LHC collective flow
data. I note that if one further increases η̄ or decreases the initial tempera-
ture, then one finds negative longitudinal pressures in second-order viscous
hydrodynamics as well. This can be seen in the lower right panel of Fig. 3.
From this, one learns that the value of η̄ extracted from LHC data [113]
implies that the system may be highly momentum-space anisotropic. In ad-
dition, from these figures we conclude that the momentum-space anisotropies
persist throughout the evolution of the QGP.

We can also ask what is the expected degree of early-time momentum-
space anisotropy within the context of the AdS/CFT framework. In this
context, I mention the quite impressive work of two groups: Heller et al.
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Fig. 3. (Color online) The pressure anisotropy as a function of proper time assuming
an initially isotropic system with T0 = 600 MeV (top row) and T0 = 300 MeV
(bottom row) at τ0 = 0.25 fm/c for 4πη̄ = 1 (left column) and 3 (right column).
The solid/black line is the solution of the second order coupled differential equations
and the dashed/red line is the first-order Navier–Stokes solution.

[114] and van der Schee et al. [115]. These two groups both simulated the
dynamics of an expanding QGP using numerical general relativity (GR). In
the work of Heller et al. [114], they simulated the early time dynamics of
a 0+1d system by numerically solving the GR equations in the bulk. In
the work of van der Schee et al. [115], they performed similar numerical GR
evolution, but in the case of a 1+1d radially symmetric system. Both of these
studies found early-time pressure anisotropies of the order of PL/PT ∼ 0.31
or smaller. Since these results were obtained in the context of the strong-
coupling limit, which implies 4πη̄ = 1, the pressure anisotropy found is an
upper bound on what to expect in reality.

Lastly, I would like to mention the role of plasma instabilities in the
isotropization of a weakly-coupled QGP. Currently, it is believed that the pri-
mary driving force for restoring isotropy in the gauge field sector are plasma
instabilities such as the chromo-Weibel instability [116]; however, practition-
ers have found that, even taking into account the unstable gauge field dy-
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namics, the timescale for isotropization in classical Yang–Mills simulations is
very long [55, 72, 117, 118]. The recent work of Epelbaum and Gelis [119] has
included resummation of next-to-leading order (NLO) quantum loop correc-
tions to the initial CGC fluctuations, and simulations in this framework find
early-time pressure anisotropies of the order of 0.01–0.5, depending on the
assumed value of the strong coupling constant gs = 0.1–0.4. Other classical
Yang–Mills simulations by Berges et al. [120, 121] also found persistent late-
time momentum-space anisotropies, however, the ratio of PL/PT they found
was much smaller than obtained in the Epelbaum and Gelis simulations and,
on top of that, they found that PL/PT was a monotonically decreasing func-
tion of proper time at late proper times, suggesting a late-time anisotropic
attractor. In the context of hard-loop simulations of chromo-Weibel instabil-
ity evolution, one finds rapid thermalization of the plasma in the sense that
an anisotropic Boltzmann distribution of gluon modes is established within
∼ 1 fm/c; however, similar to other studies, one finds that large pressure
anisotropies persist for at least 5–6 fm/c [55, 72].

2.2. Derivation of ideal hydrodynamics from kinetic theory

I would now like to briefly review how one can obtain the ideal hydro-
dynamics equations of motion starting from kinetic theory. I will restrict
my considerations to the case that all chemical potential(s) are zero for sim-
plicity. The starting point for the derivation is the Boltzmann equation

pµ∂µf(x, p) = −C[f(x, p)] , (2.2)
where xµ = (t,x), pµ = (Ep,p), ∂µ = (∂t,−∇), and the functional C is the
collisional kernel which includes the effect of particle scattering. To obtain
the bulk equations of motion, we take moments of the Boltzmann equation
by multiplying the left- and right-hand side by an integral operator of the
form

Îν1ν2···νn ( · ) =

∫
dP

n∏
i=1

pνi ( · ) , (2.3)

where dP = d3p/E(2π)3 is the Lorentz-invariant phase space measure. Ap-
plying this operator at zeroth order to the Boltzmann equation, we obtain
the zeroth moment of the Boltzmann equation∫

dP pµ∂µf = −
∫
dP C[f ] ,

∂µ

[ ∫
dP pµf

]
= −

∫
dP C[f ] . (2.4)

The quantity in square brackets above is simply the particle four-current
jµ = (ρ, j). The right-hand side is the zeroth moment of the collision kernel.
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To simplify forthcoming expressions, we can introduce a notation for the
nth-moment of the collisional kernel, Ci ≡

∫
dP

∏n
i=1 p

µiC[f ], which allows
us to write the zeroth-moment equation compactly as

∂µj
µ = −C0 . (2.5)

For number-conserving theories, C0 is zero, and one obtains

∂µj
µ = 0 , (2.6)

which is simply the relativistic continuity equation. At this point, we can
introduce a tensor basis for the particle current. There are two four-vectors
at our disposal uµ, which is the four-velocity of the local rest frame (fluid
four-velocity), and V µ, which is transverse particle current (uµVµ = 0 by
definition). Note that uµ is normalized such that uµuµ = 1, which means
that there are only three independent components of the four-velocity. We
can decompose the current into these two quantities

jµ = nuµ + V µ , (2.7)

where n is the net charge density and V µ = ∆µ
νj
ν is the diffusion current,

where ∆µν = gµν − uµuν is the transverse projector which projects out the
components of a four-vector that are orthogonal to uµ and obeys ∆µ

νu
ν = 0.

For ideal hydro, one can assume that particle flow and energy flow are the
same and, as a result, we can take V µ → 0. In this case, we simply have

jµ = nuµ . (2.8)

Plugging this into Eq. (2.6), we obtain

∂µ(nuµ) = 0 ,

uµ∂µ︸ ︷︷ ︸
≡D

n+ n∂µu
µ︸ ︷︷ ︸

≡θ

= 0 , (2.9)

where D is the comoving derivative and θ is the expansion scalar. Using this
notation, the zeroth moment for number-conserving theories can be written
compactly as

Dn+ nθ = 0 . (2.10)

Next, we consider the first moment of the Boltzmann equation∫
dP pνpµ∂µf = −C1 ,

∂µ

[ ∫
dP pµpνf

]
︸ ︷︷ ︸

Tµν

= −C1 . (2.11)
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We recognize the quantity in square brackets as the energy-momentum ten-
sor as indicated above. For any theory that has an energy-momentum con-
serving collisional kernel (which is guaranteed in quantum field theory via
the four-dimensional delta functions which enforce this), one has C1 = 0.
We, therefore, obtain a simple result from the first moment

∂µT
µν = 0 , (2.12)

which is the statement of energy-momentum conservation. To proceed fur-
ther, we need to establish a tensor basis for Tµν . In ideal hydrodynamics,
we assume that the system is isotropic in the local rest frame at all times.
As a result, there are only two structures that can appear in a rank-two
tensor, namely gµν and uµuν . Therefore, in ideal hydrodynamics, we can
always express

Tµν = Auµuν +Bgµν , (2.13)

where A and B are unknown Lorentz-invariant coefficients. In the local rest
frame, one has uµLRF = (1, 0, 0, 0) and, in ideal hydrodynamics, the energy-
momentum tensor is diagonal with TµνLRF = diag(E ,P,P,P). This allows us
to fix A and B by evaluating Tµν in the local rest frame. Evaluating the
00-component of TµνLRF gives E = A+B. Evaluating any of the three space-
like ii-components gives P = −B. Therefore, A = E + P and B = −P.
Plugging these results into (2.13), we find

Tµν = (E + P)uµuν − Pgµν

= Euµuν − P∆µν . (2.14)

Using this, we can turn Eq. (2.12) into a set of four dynamical equations

∂µT
µν = ∂µ [(E + P)uµuν − Pgµν ]

= uνD(E + P) + (E + P)(uνθ +Duν)− ∂νP = 0 . (2.15)

There are four equations above indexed by ν. In order to obtain four scalar
equations, we can project these equations with uν and the transverse pro-
jector ∆α

ν . Projecting with uν gives

D(E + P) + (E + P)(θ + uνDu
ν︸ ︷︷ ︸

D(uνuν)=0

)−DP = 0 . (2.16)

Simplifying this expression, we obtain

DE + (E + P)θ = 0 . (2.17)

Projecting with ∆α
ν gives

(E + P)∆α
νDu

ν −∇αP = 0 , (2.18)
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where we have introduced the spatial gradient operator ∇α ≡ ∆α
ν∂

ν . To
simplify this further, we can use D(∆α

νu
ν) = 0 to obtain ∆α

νDu
ν =

−uνD∆α
ν = uνD(uαuν) = Duα and we get

(E + P)Duα −∇αP = 0 . (2.19)

Above, it is understood that α is a space-like index. In what follows, I will
simply replace it by i to make this explicit.

Summarizing, we have obtained four equations from the first moment
of the Boltzmann equation, one from the u projection and three from the
transverse projection

DE + (E + P)θ = 0 , (2.20)
(E + P)Dui −∇iP = 0 . (2.21)

The first equation above describes how the energy density and pressure
evolve in response to fluid flow and the second equation describes how the
fluid four-velocity responds to pressure gradients.

At this point, however, we have a small problem since we have more
unknowns than equations. The five unknowns are E , P, and the three inde-
pendent components of uµ, but we only have four equations. To close the
system of equations, we must provide the relationship between E and P by
imposing an equation of state (EoS). This can be formulated as a constraint
on the trace of the energy momentum tensor, Tµµ = E − 3P ≡ I, where I
is called the trace-anomaly. For a non-interacting ideal gas, I = 0 and we
have E = 3P.

Finally, let us consider a simple case of ideal hydrodynamical expansion
that was originally presented by Bjorken [122] in order to get a feeling for
how the temperature evolves in a heavy ion collision. The case we will
consider is a boost-invariant system that is transversally homogeneous (no
transverse dynamics). In this case, it is convenient to use comoving “Milne”
coordinates

t = τ cosh ς ,

z = τ sinh ς . (2.22)

In this coordinate system, one as x̃µ = (τ, x, y, ς) and the metric is g̃µν =
diag (1,−1,−1,−τ2). For a boost-invariant system, the four-velocity in
Minkowski space is

uµ = (cosh ς, 0, 0, sinh ς) , (2.23)

where here µ ∈ {t, x, y, z}. Transforming this to Milne coordinates, one finds

ũµ = (1, 0, 0, 0) , (2.24)
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with, now, µ ∈ {τ, x, y, ς}. With this, we have

D = ∂τ ,

θ =
1

τ
. (2.25)

By applying the last two expressions to the zeroth moment of the Boltzmann
equation (2.10) for an isotropic plasma, we obtain

∂τn = −n
τ
, (2.26)

which has a solution of the form

n(τ) = n0
τ0
τ
. (2.27)

If now we apply again the expressions given in Eq. (2.25) to the first
moment of the Boltzmann equation (2.20) and (2.21), one finds

∂τE +
E + P
τ

= 0 . (2.28)

If the system has an ideal EoS, then E = 3P, and one can further simplify
this to

∂τE = −4

3

E
τ
, (2.29)

which has a solution
Eideal gas = E0

(τ0
τ

)4/3
. (2.30)

If the system does not have an ideal EoS but instead has an equation of
state corresponding to a constant speed of sound, i.e. dP/dE = c2s , then it
follows that P = c2sE , where we have fixed the constant by demanding that
the pressure goes to zero when the energy density goes to zero. In this case,
one finds instead

E = E0
(τ0
τ

)1+c2s
, (2.31)

which reduces to the ideal case when c2s = 1/3. If the EoS has varying speed
of sound, then one can express P in terms of an integral of the speed of
sound.

3. Lecture 2

In Lecture 2, I will discuss how to include non-equilibrium corrections in
the framework of hydrodynamics, first in the context of linearized second-
order viscous hydrodynamics, and then in the context of leading order
anisotropic hydrodynamics.
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3.1. Second-order viscous hydrodynamics

The most commonly used method for including non-perturbative (and
necessarily anisotropic) corrections to the ideal hydrodynamics equations
obtained at the end of the last lecture is to expand the energy-momentum
tensor as an ideal tensor, Tµνideal plus a tensor correction Πµν . It is typically
implicitly assumed that all components of Πµν are small corrections to the
leading-order ideal energy-momentum tensor

Tµν = Tµνideal +Πµν . (3.1)

In general, one can decompose Πµν into a traceless part called πµν and a
traceful part proportional to trΠµν = gµνΠ

µν = Πµ
µ

Πµν = πµν − Φ∆µν , (3.2)

where πµµ = 0. Using ∆µ
µ = −3, we obtain Πµ

µ = 3Φ. With this, we can
generalize Eq. (2.21) to

DE + (E + P)θ −Πµν∇(µuν) = 0 , (3.3)

(E + P)Dui −∇iP +∆i
ν∂µΠ

µν = 0 , (3.4)

where A(µBν) ≡ (AµBν + AνBµ)/2 gives the symmetric part of a rank-two
tensor. In order to solve these equations, however, we need to know the full
spatiotemporal evolution ofΠµν . To do this in the kinetic theory framework,
one must take projections of the second moment of the Boltzmann equation.

Before presenting the second-order result, we can consider the first-order
result, which is given by

πµνNS = 2η∇〈µuν〉 , (3.5)
ΦNS = ζ∇αuα , (3.6)

where ∇〈µuν〉 = ∇(µuν) − 1
3∆

µν∇αuα is the symmetric and traceless part
of the fluid gradients, the coefficient η is called the shear viscosity, and ζ
is called the bulk viscosity. Note that one can also introduce a four-index
projector ∆µν

αβ ≡ ∆
(µ
α ∆

ν)
β − ∆

µν∆αβ/3, which allows us to write ∇〈µuν〉 =

∆µν
αβ∇

αuβ and, more generally, we can define A〈µν〉 ≡ ∆µν
αβA

αβ .
Before proceeding further, let us look at the number of degrees of freedom

that are added when we include the non-equilibrium degrees of freedom. In
general, Tµν is a symmetric tensor. As a consequence, a bulk description
of the energy-momentum tensor has 10 independent degrees of freedom.
As we have already discussed, the flow velocity uµ has three independent
components. In order to make the separation between the ideal and viscous
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contributions precise, one typically requires that uµ corresponds to the time-
like eigenvector of the full energy-momentum tensor, i.e.

uµT
µν = Euν . (3.7)

This choice is referred to as the Landau frame. Since uµT
µν
ideal = Euν , this

implies that uµΠµν = 0 and in the local rest frame, where uµ = (1, 0, 0, 0),
Π0ν

LRF = Πν0
LRF = 0. As a result, there are only 6 possible independent

components of Πµν . There will be 5 degrees of freedom contained in πµν ,
since it is traceless, and 1 more coming from the traceful part which is
proportional to Φ. Combining these with E and P, and the three independent
components of the fluid four-velocity, we obtain a grand total of 11 degrees
of freedom3. As before, one of these degrees of freedom is eliminated by
imposing the relation between E and P implied by the EoS. Therefore, we
are left with 10 degrees of freedom as expected. Since the ideal equations of
motion provide 4 equations, we will need 6 more equations from the second-
moment of the Boltzmann equation.

In order to determine these equations in the kinetic field theory frame-
work, one uses the defining relation for the energy-momentum tensor in
terms of the one-particle distribution function

Tµν(x) =

∫
dP pµpνf(x, p) , (3.8)

where dP = d3p/(2π)3E is the Lorentz-invariant integration measure. If we
linearize the one-particle distribution function around an isotropic equilib-
rium distribution function using

f(x, p) = feq

(
pµu

µ

T

)
+ δf(p, x) , (3.9)

we obtain
Tµν(x) = Tµνideal(x) +

∫
dP pµpνδf(x, p) . (3.10)

Comparing this to Eq. (3.1) allows us to identify

Πµν =

∫
dP pµpνδf(x, p) . (3.11)

Projecting out the symmetric and traceless part using ∆µν
αβ , we obtain

πµν =

∫
dP p〈µpν〉δf(x, p) , (3.12)

3 For simplicity, in this analysis I have ignored the diffusion current and hence heat
flow. The equations of motion for this come from the zeroth moment of the Boltzmann
equation.
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and taking the trace, we obtain

Φ = −1
3

∫
dP pµpµδf(x, p) . (3.13)

From the second expression, we see that for a system of massless particles
for which pµpµ = 0, one has Φ = 0. In what follows in this lecture, I will
restrict our considerations to the case of massless particles, but I note that
recently there have been studies of the effect of bulk viscosity in rapidly
expanding massive gases using the kinetic theory framework [33–35].

Specializing to the case that the equilibrium distribution function is a
Boltzmann distribution, feq(x) = exp(−x), we can invert Eq. (3.12) to ob-
tain δf in terms of the shear tensor

f(x, p) = feq

(
pµu

µ

T

)[
1 +

pαpβπαβ
2(E + P)T 2

+O
(
|p|4|πµν |2

T 4(E + P)2

)]
. (3.14)

As one can see from this expression, there will be large corrections to the
equilibrium distribution function in regions of phase space when |p|/T > (E+
P)/|πµν |. In order to get a feeling for where the troublesome regions in phase
space are, we can consider the first-order approximation πµνNS = 2η∇〈µuν〉 for
the case of 0+1d expansion, in which case one finds that, in the local rest
frame, πxx = πyy = 2η/3τ and πzz = −4η/3τ . In addition, if we work at
zero chemical potential, we can use E + P = TS, where S is the entropy
density. In this case, the expansion of the distribution function becomes

f0+1d
NS (x, p) = feq

(
E

T

)[
1 + η̄

(
p̂2x + p̂2y − 2p̂2z

3τT

)
+ · · ·

]
, (3.15)

where η̄ = η/S, p̂ = p/T , and the energy and all momenta are evaluated in
the local rest frame. From this expression, we learn that the overall magni-
tude of the correction is proportional to the ratio of the shear viscosity to
entropy density, inversely proportional to τT , and anisotropic in momentum
space, with the magnitude of the correction increasing quadratically in the
magnitude of p̂. In fact, from this expression we see that there are regions
of phase space, where f0+1d

NS (x, p) < 0.
To quantify this further, let us take 4πη̄ = 3 and T = 230 MeV, which

corresponds to the conditions generated in the lower right panel of Fig. 3
at τ = 0.6 fm/c. In Fig. 4, I present a contour plot of p2f0+1d

NS . The
factor of p2 takes into account the phase factor that appears in the integral
that defines the number density in spherical momentum-coordinates. As
we can see from this figure, there are large regions where the distribution
function is negative. If one were to use such a linearly-corrected distribution
function for the calculation of, e.g., photon production, this would result in a
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Fig. 4. (Color online) Contour plot of p2f0+1d
NS given by Eq. (3.15) using 4πη̄ = 3

and T = 230 MeV at τ = 0.6 fm/c.

relatively large error in the calculation, since the distribution function should
never be negative. It would be nice to have a formalism that, at leading
order, guarantees that the distribution is always ≥ 0 such as anisotropic
hydrodynamics. Before proceeding to this, however, let us return to the
development of relativistic viscous hydrodynamics.

As I said previously, the introduction of non-equilibrium corrections to
ideal hydrodynamics requires additional equations of motion. At first order,
the Naiver–Stokes solution is acausal and one has to go to second order in
gradients in order to have a causal theory of relativistic hydrodynamics. The
equation of motion for the shear tensor obtained from the second moment of
the Boltzmann equation using a variant of the Müller–Israel–Stewart second-
order formalism is [123]

πµν+τπ

[
∆µ

α∆
ν
βπ

αβ +
4

3
πµν∇αuα − 2πα(µΩν)

α +
πα〈µπν〉α

η

]
= 2η∇〈µuν〉 ,

(3.16)
where Ωαβ = 1

2(∇αuβ−∇βuα) and τπ is the shear relaxation time. The most
important feature of the above equation is the appearance of the shear re-
laxation time, τπ. If we take τπ = 0, we recover the first-order Navier–Stokes
result, however, for any finite τπ, the theory will be casual. The shear relax-
ation time, τπ, sets the timescale for the second-order solution for the shear
tensor to approach the Navier–Stokes solution. Since the Navier–Stokes so-
lution is inherently momentum-space anisotropic, one can interpret τπ as the
“anisotropization” time scale. In the strong-coupling limit of N = 4 SYM,
one finds τπ = (2 − log 2)/2πT [10, 112] which gives τπ ∼ 0.1 fm/c and
τπ ∼ 0.07 fm/c for the RHIC- and LHC-like initial conditions stated in Lec-
ture 1, respectively. Therefore, one expects to see very rapid anisotropization
of the QGP generated in a heavy ion collision.
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3.2. Leading-order anisotropic hydrodynamics

Since one expects to see rapid anisotropization of the QGP generated in
heavy ion collisions, it might be efficacious to take into account the existence
of these momentum-space anisotropies from the outset. As discussed in
sIntroduction, this can be accomplished by generalizing the leading-order
term in the expansion of the one-particle distribution function to

f(x, p) = fiso

(√
pµΞµν(x)pν

Λ(x)
,
µ(x)

Λ(x)

)
. (3.17)

The original formulation of anisotropic hydrodynamics was based on an
azimuthally symmetric (spheroidal) ansatz for the local rest frame (LRF)
anisotropy tensor Ξµν(x) [88, 89]. In this case, the anisotropy tensor only
involves a single anisotropy parameter ξ with Ξµν

LRF(x) = diag(1, 0, 0, ξ(x))
and, therefore, for a system of massless particles, pµΞµν(x)pν reduces to p2+
ξ(x)p2L in the LRF. In the spheroidal formulation, ξ = 0 gives an isotropic
distribution, −1 < ξ < 0 gives a prolate distribution, and 0 < ξ <∞ gives
an oblate distribution (see Fig. 5). We will take this as the definition of
leading-order (LO) anisotropic hydrodynamics for the remainder of this lec-
ture. In the next lecture, we will discuss possible generalizations of the
leading-order anisotropy tensor.

Fig. 5. (Color online) Equal occupation number surface for the spheroidal aniso-
tropic hydrodynamics distribution function.

In order to motivate why a spheroidal form might be a good starting
point, in Fig. 6 I present a plot made by Song [124]. The figure shows the
proper-time evolution of all of the components of the shear tensor obtained
from a realistic second-order viscous hydrodynamics simulation. As can
be seen from this figure, two of the components plotted are much larger
than the rest. These correspond to the sum of the space-like components
Σ ≡ πxx + πyy and τ2πηη = πzz 4. The quantity Σ/2 gives the viscous

4 Here, η is the spatial rapidity.
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correction to the transverse pressure and πzz gives the viscous correction to
the longitudinal pressure. The next smallest thing plotted in Fig. 6 is the
difference ∆ ≡ πxx − πyy, which is smaller than Σ and πzz up to times of
the order of 7 fm/c. This means that, to very good approximation, one can
treat the difference between πxx and πyy as a perturbation. Likewise, we
see that all off-diagonal components are even smaller. So small, in fact, that
they require a zoomed inset to visualize. Once again, this suggests that one
can treat these components perturbatively. At leading-order, therefore, a
good approximation might be to assume that the distribution function, and
hence the shear corrections, are spheroidal in form and treat the evolution
of these, potentially large, corrections non-perturbatively.
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Fig. 6. (Color online) Proper time evolution of the components of the shear ten-
sor obtained from a realistic second-order viscous hydrodynamics simulation with
impact parameter b = 7. Figure taken from Song [124].

Another benefit of the spheroidal form is that, for a massless gas, one
can evaluate all components of the energy-momentum tensor analytically,
with the non-vanishing components in Milne coordinates being [88, 125]

E(Λ, ξ) = T ττ = R(ξ) Eiso(Λ) , (3.18)
PT(Λ, ξ) = 1

2 (T xx + T yy) = RT(ξ)Piso(Λ) , (3.19)
PL(Λ, ξ) = −T ςς = RL(ξ)Piso(Λ) , (3.20)
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where Eiso(Λ) and Piso(Λ) are the isotropic energy density and pressure com-
puted in the isotropic limit using fiso, and

R(ξ) =
1

2

(
1

1 + ξ
+

arctan
√
ξ√

ξ

)
, (3.21)

RT(ξ) =
3

2ξ

(
1 + (ξ2 − 1)R(ξ)

ξ + 1

)
, (3.22)

RL(ξ) =
3

ξ

(
(ξ + 1)R(ξ)− 1

ξ + 1

)
, (3.23)

which satisfy R = 2RT +RL. As the expressions above show, for a mass-
less gas, the spheroidal energy density, transverse pressure, and longitudinal
pressure all factorize multiplicatively into a function that only depends on
the anisotropy and a function that only depends on the momentum scale.
This is important, because it allows us to impose the EoS as a relation-
ship between Eiso(Λ) and Piso(Λ), and then the extension to an “anisotropic
EoS” is automatically taken care of by the R, RT, and RL functions. I also
note for completeness that a similar factorization occurs for the spheroidal
number density

n(Λ, ξ) =
niso(Λ)√

1 + ξ
. (3.24)

In addition, for a massless gas, one finds that using a spheroidal distribution
function, all higher-order moments can also be computed analytically [99].

General tensor basis

To proceed systematically, we should go back to the beginning and es-
tablish a tensor basis that can be used in general and then restrict to a
spheroidal form. A completely general tensor basis can be constructed by
introducing four 4-vectors which in the LRF are [93, 94]

Xµ
0,LRF ≡ u

µ
LRF = (1, 0, 0, 0) ,

Xµ
1,LRF ≡ x

µ
LRF = (0, 1, 0, 0) ,

Xµ
2,LRF ≡ y

µ
LRF = (0, 0, 1, 0) ,

Xµ
3,LRF ≡ z

µ
LRF = (0, 0, 0, 1) . (3.25)

These 4-vectors are orthonormal in all frames. The vector Xµ
0 is associated

with the four-velocity of the local rest frame and is canonically called uµ,
and one can also identify Xµ

1 = xµ, Xµ
2 = yµ, and Xµ

3 = zµ as indicated
above. I will use the two different labels for these vectors interchangeably
depending on convenience since the notation with numerical indices allows
for more compact expressions in many cases. Note that in the lab frame the
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three space-like vectors Xµ
i can be written entirely in terms of Xµ

0 = uµ.
This is because Xµ

i can be obtained by a sequence of Lorentz transforma-
tions/rotations applied to the local rest frame expressions specified above.

Finally, I point out that one can express the metric tensor itself in terms
of these 4-vectors as

gµν = Xµ
0X

ν
0 −

3∑
i=1

Xµ
i X

ν
i . (3.26)

In addition, the transverse projection operator, which is orthogonal to Xµ
0 ,

can be rewritten in terms of the vector basis (3.25) as

∆µν = gµν −Xµ
0X

ν
0 = −

3∑
i=1

Xµ
i X

ν
i , (3.27)

such that uµ∆µν = uν∆
µν = 0. We note that the space-like components of

the tensor basis are eigenfunctions of this operator, i.e. Xiµ∆
µν = Xν

i .

Spheroidal anisotropic energy-momentum tensor

Since the energy-momentum tensor is a symmetric rank-two tensor, we
can express it generally as

Tµν(t,x) = t00g
µν +

3∑
i=1

tiiX
µ
i X

ν
i +

3∑
α,β=0
α>β

tαβ

(
Xµ
αX

ν
β +Xµ

βX
ν
α

)
. (3.28)

In the case of spheroidal anisotropic hydrodynamics, one has

T 00
LRF = E = t00 ,

T xxLRF = P⊥ = −t00 + t11 ,

T yyLRF = P⊥ = −t00 + t22 ,

T zzLRF = PL = −t00 + t33 , (3.29)

and, due to the spheroidal symmetry in momentum-space, we must have
t11 = t22 which gives four equations for our four unknowns. Solving for the
coefficients tµν and relabeling Xµ

0 → uµ and Xµ
3 → zµ, we obtain

Tµν = (E + P⊥)uµuν − P⊥gµν + (PL − P⊥)zµzν , (3.30)

which, in the isotropic limit with P⊥ = PL ≡ P, reduces to (2.14).
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Equations of motion

Using the above tensor basis and taking the zeroth and first moments of
the Boltzmann equation, one can derive the equations of motion. If one uses
a relaxation time approximation collisional kernel, the 2+1d anisotropic hy-
drodynamics equations of motion appropriate for describing the spatiotem-
poral evolution of a boost-invariant system are [94]

1

1 + ξ
Dξ − 6D(logΛ)− 2θ = 2Γ

(
1−R3/4(ξ)

√
1 + ξ

)
, (3.31)

and

R′(ξ)Dξ + 4R(ξ)D(logΛ) = −
(
R(ξ) + 1

3R⊥(ξ)
)
∆⊥

−
(
R(ξ) + 1

3RL(ξ)
) u0
τ
, (3.32)

[3R(ξ) +R⊥(ξ)]Du⊥ = −u⊥
[
R′⊥(ξ)D̃ξ + 4R⊥(ξ)D̃(logΛ)

+
u0
τ

(R⊥(ξ)−RL(ξ))
]
, (3.33)

u2y [3R(ξ) +R⊥(ξ)]D

(
ux
uy

)
= R′⊥(ξ)D⊥ξ + 4R⊥(ξ)D⊥(logΛ) , (3.34)

where

∆⊥ ≡ ∂τu0 +∇⊥ · u⊥ ,

D̃ ≡ u0∂τ +
u20
u2⊥

u⊥ · ∇⊥ ,

D⊥ ≡ ẑ · (u⊥ ×∇T) = ux∂y − uy∂x , (3.35)

with u⊥ ≡ (ux, uy), and u20 = 1 + u2⊥.
Equations (3.31) and (3.34) were numerically solved in Ref. [94]. In

Fig. 7, I show a visualization of the dynamics for the case 4πη/S = 1. The
top row of Fig. 7 shows the effective temperature obtained from the (scaled)
fourth root of the energy density at three different proper times. The bottom
row of Fig. 7 shows the ratio of the longitudinal pressure and transverse
pressure at the same times. As can be seen from this figure, even in the case
that 4πη/S = 1, a high degree of momentum-space anisotropy is generated.
In addition, we see that, for the case of fluctuating initial conditions, there
can be regions with a high degree of momentum-space anisotropy even in
the center of the simulation. Finally, I note that one sees that the pressures
(and also one-particle distribution functions) are positive everywhere, even
in the extremely dilute/low temperature region, where there are large non-
equilibrium corrections.
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Fig. 7. (Color online) Visualization of the effective temperature and pressure aniso-
tropy at three different times after the nuclear impact. For these plots, we assumed
a collision centrality of b = 7 fm with a sampled Monte Carlo Glauber wounded-
nucleon profile. The initial isotropic temperature for a central collision was taken
to be T = 0.6 GeV at 0.25 fm/c. For this plot, we used a value of 4πη/S = 1.
Figure taken from Ref. [94].

4. Lecture 3

In the previous lecture, I reviewed the derivation of second-order viscous
hydrodynamics which motivated the development of the anisotropic hydro-
dynamics framework. In this lecture, I would like to begin by addressing
the question of how one can determine if one hydrodynamical framework is
better than another. For this purpose, I will discuss recently obtained exact
solutions of the relaxation time approximation (RTA) for the Boltzmann
equation. Finally, I will give a brief review of what has been accomplished
in the context of anisotropic hydrodynamics in the last year.

4.1. Exact solutions to the RTA Boltzmann equation

In order to judge the efficacy of different hydrodynamics frameworks, it
would be nice to have some exactly solvable cases with which to compare the
various approximations. With this in mind, recently Florkowski et al. have
exactly solved the Boltzmann equation for a transversely homogeneous boost-
invariant system in the relaxation time approximation (RTA) [126–128].
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The starting point for the solution is the RTA Boltzmann equation
pµ∂µf(x, p) = −C[f(x, p)] with

C[f ] =
pµu

µ

τeq

[
f(x, p)− feq (pµu

µ, T (x))
]
, (4.1)

where uµ is the local rest frame four velocity, τeq is the relaxation time which
may depend on proper time, and feq is an equilibrium distribution function
that may be taken to be a Bose–Einstein, Fermi–Dirac, or Boltzmann dis-
tribution. The effective temperature T (τ) appearing in the argument of the
equilibrium distribution function is fixed by requiring energy-momentum
conservation [129]. In Refs. [126, 127], Florkowski et al. restricted them-
selves to the case of massless particles and in Ref. [128] they extended the
solution to the case of massive particles. In these lectures, I will present
the details only for the case of massless particles and refer the reader to
Ref. [128] for the massive case.

In order to simplify the Boltzmann equation for a transversely homoge-
neous boost-invariant system, one can define variables w = tpz − zE and
v = Et − pzz [70, 130, 131]. When written in terms of these variables, the
left-hand side of the Boltzmann equation becomes simply pµ∂µf = (v/τ)∂τf .
This allows one to solve the RTA Boltzmann equation exactly

f(τ, w, p⊥) = D(τ, τ0)f0(w, p⊥) +

τ∫
τ0

dτ ′

τeq (τ ′)
D
(
τ, τ ′

)
feq(τ ′, w, p⊥) , (4.2)

where τ0 is the initial proper time, f0 is the initial non-equilibrium dis-
tribution function, and D(τ2, τ1) = exp

[
−
∫ τ2
τ1
dτ ′′ τ−1eq (τ ′′)

]
is the damping

function. This solution is similar to the one obtained originally by Baym
[129], but has been extended to an arbitrary initial condition at τ0 6= 0 and
allows for the possibility that the relaxation time τeq is time dependent. In
the relaxation time approximation, one finds τeq = 5η/(TS), where η is the
shear viscosity, S is the entropy density, and T is the effective temperature
which we will specify below [132, 133]5. In Refs. [126, 127], Florkowski et al.
assumed that η/S was time independent, however, the exact solution also
allows for a temperature-dependent η/S.

Based on Eq. (4.2), one can evaluate the energy density via

E(τ) = g

∫
dP v2 f(τ, w, p⊥)/τ2 , (4.3)

where g is the degeneracy factor and dP = 2 d4p δ(p2)θ(p0) = v−1 dw d2pT.

5 I note that, when employing the Grad–Israel–Stewart approximation truncated at
second order in moments, one finds instead τeq = 6η/(TS). This is an artifact of an
incomplete second order truncation. The correct result is τeq = 5η/(TS).
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Integrating Eq. (4.2), one obtains an integral equation for the energy density

Ē(τ) = D(τ, τ0)R
(
ξFS(τ)

)/
R (ξ0)

+

τ∫
τ0

dτ ′

τeq (τ ′)
D
(
τ, τ ′

)
R
(( τ
τ ′

)2
− 1

)
Ē(τ ′) , (4.4)

where Ē = E/E0 is the energy density scaled by the initial energy density,
ξ0 is the initial momentum-space anisotropy, ξFS(τ) = (1 + ξ0)(τ/τ0)

2 − 1,
and R was defined previously in Eq. (3.21).

Equation (4.4) can be solved numerically using the method of iteration.
From the resulting energy density, one can obtain the effective temperature
via E(τ) = γ T 4(τ), where γ is a constant which depends on the particular
equilibrium distribution function assumed and the number of degrees of
freedom. The resulting effective temperature allows one to determine the
distribution function feq at all proper times and, with this, the full particle
distribution function can be obtained using Eq. (4.2). Additionally, one can
determine the number density, longitudinal pressure, and transverse pressure
by integrating the distribution function multiplied by v/τ , w2/τ2, and p2T/2,
respectively [127].

Florkowski et al. compared the exact solution with the LO spheroidal
anisotropic hydrodynamics (AH) equations obtained from the zeroth and
first moments of Boltzmann equation in RTA [88]

1

1 + ξ
∂τξ −

2

τ
− 6

Λ
∂τΛ =

2

τAH
eq

[
1−R3/4(ξ)

√
1 + ξ

]
,

R′(ξ)
R(ξ)

∂τξ +
4

Λ
∂τΛ =

1

τ

[
1

ξ(1 + ξ)R(ξ)
− 1

ξ
− 1

]
, (4.5)

where Λ is the transverse temperature and τAH
eq = 5η/(2ΛS) is the relax-

ation time. The time evolution of ξ and Λ is obtained by solving Eqs. (4.5)
and, using these, one can straightforwardly compute the time dependence of
the energy density, transverse pressure, longitudinal pressure, and number
density using Eqs. (3.18), (3.19), (3.20), and (3.24) [88, 125].

In addition, they compared the exact solution with two second order
viscous hydro prescriptions, both of which can be written compactly as

∂τE = −E + P
τ

+
Π

τ
,

∂τΠ = −Π
τπ

+
4

3

η

τπτ
− βΠ

τ
, (4.6)

where Π = Πς
ς is the shear and τπ = 5η/(TS) is the shear relaxation

time. In the majority of the literature, practitioners use β = 4/3 which we
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will refer to as the Israel–Stewart (IS) prescription. They also compared
the exact solutions with the complete second order treatment from Ref. [27]
which, within the relaxation time approximation, gives β = 38/21. We will
refer to the second choice as the DNMR prescription6. In both cases, one
can compute the transverse pressure via PT = P+Π/2 and the longitudinal
pressure via PL = P −Π.

For their results, Florkowski et al. assumed that the initial distribution
function was spheroidal in form but for the exact solution they did not
restrict the form of the distribution function after this point in time. In
Fig. 8, I show the pressure anisotropy as a function of proper time assum-
ing T0 = 600 MeV at τ0 = 0.25 fm/c. The three rows show three differ-
ent assumed values of the shear viscosity to entropy ratio corresponding to
4πη/S ∈ {1, 3, 10}. The left column shows the case ξ0 = 0 and the right
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Fig. 8. (Color online) Pressure anisotropy as a function of proper time assuming
T0 = 300 MeV at τ0 = 0.25 fm/c for 4πη/S = 1 (top), 3 (middle), and 10 (bot-
tom). The left column shows the case ξ0 = 0 and the right column shows the
case ξ0 = 10. The exact solution (solid/black), aHydro (AH) approximation (long-
dashed/red), Israel–Stewart (IS) approximation (dot-dashed/blue), and full second
order (DNMR) approximation (dotted/brown) [27] are compared. Figure adapted
from Ref. [126].

6 Reference [30] has also obtained λ = 38/21 using the Chapman–Enskog method.
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column shows the case ξ0 = 10. In the figure the aHydro, Israel–Stewart,
and DNMR method [27] are compared with the exact solution of the Boltz-
mann equation. In Fig. 9, I present the pressure anisotropy subject to the
same initial conditions and values of η/S for an initial effective temperature
of T0 = 300 MeV.
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Fig. 9. (Color online) Pressure anisotropy as a function of proper time assuming
T0 = 300 MeV at τ0 = 0.25 fm/c for 4πη/S = 1 (top), 3 (middle), and 10 (bottom).
The left column shows the case ξ0 = 0 and the right column shows the case ξ0 = 10.
Labeling is the same as in Fig. 8. Figure adapted from Ref. [126].

As Figs. 8 and 9 demonstrate, the aHydro approximation is always closer
to the exact solution than the IS and DNMR approximations. The IS ap-
proximation is the worst approximation to the exact solution in all cases
shown and, for the case 4πη/S = 10, it even predicts a negative longitu-
dinal pressure for the majority of the time shown. The DNMR approx-
imation represents a significant improvement over the IS approximation;
however, we note that, if one increases the shear viscosity to entropy ratio
even further, the DNMR approximation also predicts negative longitudinal
pressures. Within the LO aHydro approximation, on the other hand, the
pressures are guaranteed to be positive at all times. In addition, within LO
aHydro, the one-particle distribution function is guaranteed to be positive
at all times.
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Next, I will review a recent paper that demonstrated that, if one goes
to NLO aHydro, the agreement between aHydro and the exact solution pre-
sented above becomes extremely good [99]. Before entering this discussion,
I would like to mention that recently it has been demonstrated that the
exact solution obtained by Florkowski et al. can be extended [134, 135] to a
boost-invariant system that is also expanding transversely subject to “Gub-
ser flow” [136, 137]. This groundbreaking solution will allow practitioners to
test different dissipative hydrodynamics frameworks in a highly non-trivial
case.

4.2. Next-to-leading-order (NLO) anisotropic hydrodynamics

Anisotropic hydrodynamics can be extended to NLO by generalizing
Eq. (3.17) to include arbitrary (but, in principle, small) corrections to a
spheroidal LO distribution function [99]

f(x, p) = fiso

(√
pµΞµν(x)pν

Λ(x)
,
µ̃(x)

Λ(x)

)
+ δf̃(x, p) . (4.7)

The parameters Λ and µ̃ are fixed by requiring 〈E〉δ̃ = 〈E2〉δ̃ = 0. To
fix the value of the anisotropy parameter ξ, one demands that δf̃ does not
contribute to the pressure anisotropy PT−PL. Using Eq. (4.7), one obtains
the NLO aHydro decomposition

jµ = jµRS + Ṽ µ , (4.8)

Tµν = TµνRS − Π̃∆
µν + π̃µν , (4.9)

where

Π̃ ≡ −1
3

〈
p〈α〉p〈α〉

〉
δ̃
, (4.10)

π̃µν ≡
〈
p〈µpν〉

〉
δ̃
, (4.11)

Ṽ µ ≡
〈
p〈µ〉

〉
δ̃
, (4.12)

with
〈O(p)〉δ̃ ≡

∫
dP O(p) δf̃(x, p) . (4.13)

The equations above are subject to the constraints uµπ̃µν ≡ π̃µνuν ≡
(xµxν+yµyν−2zµzν)π̃µν ≡ π̃µµ ≡ 0. The additional shear stress π̃µν arising
from δf̃ has only 4 degrees of freedom. The strategy of NLO aHydro is
to solve the equations of motion for LO aHydro non-perturbatively, while
coupling the LO equations to additional viscous flows from δf̃ . To close the
system, one derives “perturbative” second order equations of motion for Π̃,
Ṽ µ, and π̃µν .
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In Ref. [99], the perturbative evolution equations for the dissipative flows
Π̃, Ṽ µ, and π̃µν were obtained by generalizing the 14-moment approximation
detailed in Ref. [27] to an anisotropic background distribution. The resulting
equations are lengthy and I refer the reader to Ref. [99] for the details. Below,
I will present the simplified form obtained for 0+1d expansion. I note that
δf̃ is much smaller than δf , particularly at early times, since the largest
part of δf is already accounted for by the momentum deformation in the
LO term of Eq. (4.7). The inverse Reynolds number R̃−1π =

√
π̃µν π̃µν/Piso

associated with the residual shear stress π̃µν is therefore strongly reduced
compared to that associated with πµν . This significantly improves the range
of applicability of NLO aHydro relative to standard second order viscous
hydrodynamics.

0+1d NLO aHydro

As mentioned above, for a transversally homogeneous system undergo-
ing boost-invariant longitudinal expansion, the Boltzmann equation can be
solved exactly in RTA [127]. The resulting exact solution can be used
to test various macroscopic hydrodynamic approximation schemes. Set-
ting homogeneous initial conditions in r and space-time rapidity ς and
zero transverse flow, π̃µν reduces to a single non-vanishing component π̃:
π̃µν = diag(0,−π̃/2,−π̃/2, π̃) at z = 0. Using the factorization of the
spheroidal energy density, pressures, etc. presented in the last lecture, one
can obtain the following equations of motion for ξ̇, Λ̇, ˙̃π [99]:

ξ̇

1+ξ
− 6

Λ̇

Λ
=

2

τ
+

2

τeq

(
1−

√
1+ξR3/4(ξ)

)
, (4.14)

R′(ξ) ξ̇ + 4R(ξ)
Λ̇

Λ
= −

(
R(ξ) +

1

3
RL(ξ)

)
1

τ
+

π̃

Eiso(Λ)τ
, (4.15)

˙̃π = − 1

τeq
[(R(ξ)−RL(ξ))Piso(Λ) + π̃]− λ(ξ)

π̃

τ

+12

[
Λ̇

3Λ
(RL(ξ)−R(ξ)) +

(
1+ξ

τ
− ξ̇

2

)(
Rzzzz−1 (ξ)− 1

3
Rzz1 (ξ)

)]
Piso(Λ) ,

(4.16)
where a dot over a symbol indicates a comoving derivative. The special
function λ(ξ) and the R-functions appearing above can be found in [99].
The relaxation time τeq and the ratio of shear viscosity η to entropy density
S, η/S, are related by τeq = 5η/ST = 5η̄/R1/4(ξ)Λ. In [99], the solution
of these equations was compared with the exact solution and various hydro-
dynamic approximation schemes discussed above plus a third-order viscous
hydrodynamic approximation derived in [31]. As an example of the im-
provement given by going to NLO, in Fig. 10 I show the entropy production
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(measured by the increase in particle number τn(τ)) between the start and
the end of the dynamical evolution. The initial temperature was taken to
be 600 MeV and the freeze-out temperature was taken to be 150 MeV. For
this extreme 0+1d scenario, where the difference between longitudinal and
transverse expansion rates is maximal, NLO aHydro is seen to reproduce
the exact solution almost perfectly, dramatically outperforming all other
hydrodynamic approximations.
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Fig. 10. (Color online) The particle production measure (τfn(τf ))/(τ0n(τ0)) − 1

as a function of 4πη/s. The black points, dashed/red line, dashed-dotted/blue
line, dashed/green line, and dotted/purple line correspond to the exact solution
of the Boltzmann equation, vaHydro, aHydro, third-order viscous hydrodynamics
[31], and second-order viscous hydrodynamics [27], respectively. The initial condi-
tions are T0 = 600 MeV, ξ0 = 0, and π̃0 = 0 at τ0 = 0.25 fm/c. The freeze-out
temperature was taken to be Tf = 150 MeV. Figure taken from Ref. [99].

4.3. Other recent advances

In this last year, there have been some other important advances that
need to be mentioned. Firstly, I would like to mention the work of Florkowski
and Tinti [100]. In this paper, the authors derived dynamical aHydro equa-
tions appropriate for describing the spatiotemporal evolution of a 1+1d
cylindrically symmetric system. Instead of using a spheroidal ansatz for
the anisotropy tensor, they started from a, more general, ellipsoidal ansatz.
In addition, they demonstrated that, in order to more naturally connect to
standard second-order viscous hydrodynamics approaches, it was better to
use the second-moment of the Boltzmann equation instead of the zeroth-
moment.
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In a subsequent paper by Florkowski et al. [128], it was shown that using
the equation obtained from the second moment yielded better agreement
with exact solutions of the RTA Boltzmann equation for massive particles
obtained in Ref. [128]. However, Ref. [128] found that, although aHydro
worked better than Israel–Stewart theory, the evolution of the bulk pressure
was still rather poorly described compared to the description of the pressure
anisotropy. To address this, in a subsequent paper, Nopoush et al. general-
ized the formalism of Tinti and Florkowski to include an explicit degree of
freedom associated with the bulk pressure [103]. Reference [103] also showed
that, when including the bulk degree of freedom, the additional equation
of motion necessary could be provided by the zeroth moment. Compar-
isons of numerical results obtained with the dynamical equations obtained
in Ref. [103] and the exact solution obtained in Ref. [128] showed that the
inclusion of an explicit bulk degree of freedom dramatically improved the
agreement of aHydro with the exact solution. As a demonstration of this im-
provement, in Fig. 11 I show the proper-time evolution of the bulk pressure
for the case m = 1 GeV, τ0 = 0.5 fm/c, τeq = 0.5 fm/c, and T0 = 600 MeV.
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Fig. 11. (Color online) Proper-time evolution of the bulk pressure. The three lines
correspond to the exact solution of the Boltzmann equation [128] (solid/black line),
the full aHydro equations including the bulk degree of freedom (dashed/red line),
and the aHydro equations with the ellipsoidal bulk degree of freedom set to zero
(dot-dashed/blue line). For both panels, we used m = 1 GeV, τ0 = 0.5 fm/c,
τeq = 0.5 fm/c, and T0 = 600 MeV. In the top panel, we fixed the initial spheroidal
anisotropy parameter ξ0 = 0 and in the bottom panel we chose ξ0 = 100. Figure
taken from Ref. [103].
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The figure shows the aHydro result obtained with and without the explicit
bulk degree of freedom included. As can be seen from this figure, inclusion of
the bulk degree of freedom dramatically improves agreement with the exact
RTA Boltzmann equation solution.

5. Conclusions

In this writeup, I have attempted to convey the content of the three
lectures I gave at the LIV Cracow School of Theoretical Physics. There has
been a lot of progress in the area of dissipative hydrodynamics, including
anisotropic hydrodynamics, in recent years. The recent extension of aHydro
to NLO provides a complete second-order treatment which takes into ac-
count QGP momentum-space anisotropies from the outset and, as a result,
yields a superior approximation scheme. Future developments will include
implementation of numerical codes including anisotropic freeze out. Since
the expansion around a locally anisotropic momentum distribution results
in smaller deviations δf̃ of the distribution function from the leading-order
ansatz, the NLO aHydro framework should yield results that are quantita-
tively more reliable, particularly when it comes to the early stages of QGP
hydrodynamical evolution and near the transverse edges of the overlap region
where the system is approximately free streaming. As mentioned previously,
another important recent development has been the development of leading-
order ellipsoidal anisotropic hydrodynamics [100]. Before wrapping up, I
would like emphasize that, now that it is widely accepted that the QGP is
momentum-space anisotropic, many fundamental QGP processes should be
carefully reconsidered. Finally, I will note that a spin-off of these studies
has been the development of a new exact solution of the RTA Boltzmann
equation which includes simultaneous transverse and longitudinal expansion
[134, 135]. This development offers the possibility to quantitatively assess
the accuracy of different hydrodynamic approaches.

I thank the organizers of the LIV Cracow School of Theoretical Physics,
Zakopane, Poland for inviting me to present these lectures. I also thank
the participants of the summer school for humoring me when I attempted
to play fiddle with the local Polish highlanders. Finally, I thank D. Bazow,
U. Heinz, E. Maksymiuk, M. Martinez, M. Nopoush, R. Ryblewski, and
L. Tinti for their collaboration on anisotropic hydrodynamics. Support for
this work was provided in the framework of the JET Collaboration by the
U.S. Depatment of Energy Award No. DE-AC0205CH11231.
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