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Femtoscopy is a measurement technique used in high energy collisions
of hadrons and heavy ions in order to probe their space-time structure and
dynamics. It relies on mutual two-particle correlations to extract the size
of the region emitting particles. In this paper, we present the theoretical
formalism of the method and discuss features observed in the experimental
data and their interpretation in hydrodynamic models.
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1. Introduction

The quantum interference of two identical particles has been first used
to infer information about an object emitting them (a star) in astronomy.
In 1954, Hanbury Brown and Twiss proposed a measurement based on the
quantum indistinguishability of photons [1, 2]. Pairs of photons were mea-
sured, via the coincidence requirement, in two radio-telescopes separated in
space. As the distance between the detectors was decreased, the coincidence
rate increased. The width of the coincidence rate distribution as a function
of detector spatial separation could be related to the spread of momenta of
the incoming photons which, in turn, with the knowledge of the distance to
the star, could be converted to its angular size. This type of intensity inter-
ferometry was named after the authors: Hanbury Brown–Twiss, or HBT.

In particle physics, an analogous effect was observed by Goldhaber, Gold-
haber, Lee, and Pais [3]. They measured an increased production of identi-
cally charged pions, with respect to the reference given by pairs of oppositely
charged pions. They have correctly interpreted the effect as a Bose–Einstein
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enhancement of the production of identical bosons. Later, Kopylov and
Podgoretsky have significantly advanced the technique and developed the
modern methodology [4]. It now enables a precision measurement of the
size of the particle-emitting region via the construction of the two-particle
correlation functions analyzed as a function of the pair relative momentum.

The technique has been extended to measurement of correlations between
particles which are not identical [5, 6]. The so-called Final State Interactions
(FSI) between pairs of particles, that is Coulomb for charged particles and
strong interaction for hadrons, can also be used. The technique then has
a formalism which is, to a large extent, mathematically equivalent to the
one for identical particles, and enables to perform the measurement of the
system size and dynamics. All the techniques, including HBT-like and FSI
correlations, are collectively referred to as “femtoscopy”, because they enable
the measurement of the sizes at the scale of a femtometer, comparable to
the hadron size [7].

The HBT technique was developed for stars which are static sources; it
can be assumed that they do not change during the measurements. That is
not the case for a heavy ion collision which evolves violently as the particle
production is taking place. It was soon realized that such evolution produces
a specific collective behavior of matter, in particular strong radial and elliptic
flows. If the analysis is then performed as a function of the total momentum
of the pair, specific patterns arising from this flow can be observed via the
so-called “lengths of homogeneity” mechanism. It results in the apparent
decrease of the system size with the increase of the pair momentum. The
observation of such decrease is a strong argument for the collective nature
of matter created in heavy ion collisions. We will explain the effect in detail,
when discussing the current interpretation of the experimental femtoscopic
data.

2. Femtoscopic formalism

2.1. Definition of the correlation function

The correlation function is defined as a ratio of the conditional probabil-
ity to observe two particles together, normalized to the product of probabili-
ties to observe each of them separately. In the particular case of femtoscopy,
we are interested in mutual two-particle interaction, which is naturally con-
sidered in the Pair Rest Frame (PRF), usually as a function of the pair invari-
ant relative momentum q. The mutual two-particle correlation comes from
the (anti-)symmetrization of the wave function for pairs of identical parti-
cles, or from the Final State Interaction (FSI) for charged or neutral hadrons.
The femtoscopic correlation function is expressed mathematically as

C(q) =

∫
S(r, q)|Ψ(q, r)|2d4r , (1)
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where r is a relative space-time separation of the two particles (usually
calculated in PRF) and S is the source emission function which can be
interpreted as a probability to emit a particle pair with given momenta from
a set of emission points with a given space-time separation. Ψ describes
the mutual two-particle correlation, which can have various sources. It is
described in detail in Sec. 2.2. The aim of the femtoscopic analysis is to use
a measured C(q) and a known form of Ψ to deduce information about S.
Naturally, this information is limited to the characteristics of the distribution
of the relative separation of particles. In particular, if the two particles are
identical, the fist moment of S is by definition 0 (S must be symmetric). One
can only access the second and higher moments of such distribution. On the
other hand, if the two particles are not identical (are distinguishable), the
first moment is, in principle, accessible. This is exploited in the so-called
“non-identical particle femtoscopy”, where the emission asymmetries between
particles of different type (usually different mass) are studied [5, 6].

The correlation function is, in the most general case, a six dimensional
object (the identities, and therefore the masses of the particles being ana-
lyzed must always be known, leaving three independent momentum compo-
nents for each particle). However, mutual pair interaction only depends on
the relative momentum. Therefore, the dependence of the correlation on to-
tal momentum is factorized out in the formalism and studied by constructing
the correlation separately for pairs in selected ranges of this variable. The
remaining correlation is then a function of three components of the relative
momentum. It can be analyzed in the traditional Cartesian representa-
tion, or in the spherical harmonics decomposition [8–10]. However, the full
three-dimensional analysis requires significant statistics, which is often not
available, particularly for heavier particles. Then, the correlation is repre-
sented in one dimension only, as a function of q = |q|. The decomposition
of the relative momentum into components is most often done in the Longi-
tudinally Co-Moving System (LCMS), a reference frame in which the total
longitudinal (along the beam axis) momentum of the pair vanishes. The
three directions are then: longitudinal, outwards (along the pair transverse
momentum) and sidewards (perpendicular to the other two). The depen-
dence on pair total momentum reduces then to the dependence on average
transverse momentum kT = |pT,1 + pT,2|/2 (azimuthal symmetry is implic-
itly assumed).

2.2. Pair mutual interaction

Particles which are charged will interact via Coulomb, and if they are
hadrons, they will also interact via the Strong interaction. This is reflected
in the Bethe–Salpeter amplitude for the pair, which corresponds to the so-
lution of the quantum scattering problem, taken with the inverse time di-
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rection [11]. Then,

Ψ
(+)
−k∗(r

∗) =
√
AC(η)

[
e−ik∗r∗

F (−iη, 1, iζ) + fC(k
∗)
G̃(ρ, η)

r∗

]
, (2)

where AC is the Gamow factor, ζ = k∗r∗(1+cos θ∗), η = 1/(k∗aC), ρ = k∗r∗.
F is the confluent hypergeometric function, G̃ is the combination of the
regular and the singular s-wave Coulomb function, and fC is the Coulomb-
modified strong interaction scattering amplitude. θ∗ is the angle between
the pair relative momentum k∗ = |k∗| = q/2 and relative position r∗ = |r∗|
in the Pair Rest Frame (PRF), while aC is the Bohr radius of the pair. In
addition, if we are dealing with identical particles, Ψ must also be properly
symmetrized. The s-wave approximation is valid in the small k∗ region
outside of the strong interaction potential. Both conditions are usually met
in femtoscopic measurements.

Formula (2) depends on several parameters and its value is usually dif-
ferent in a significant way between various pair types. Pairs of identical
pions are most commonly used. For this system, the strong interaction is
relatively weak and is usually not considered. Moreover, the Bohr radius is
largest of all possible pairs, resulting in a relatively weak Coulomb interac-
tion. The correlation function then has a clear Bose–Einstein enhancement
at low q which is damped by the Coulomb as q nears 0. An example corre-
lation function calculated in a model for central Pb–Pb collision is shown in
Fig. 1, with the B–E peak appearing below qinv = 0.07 GeV/c, and Coulomb
damping strongly affecting only the lowest q points. The sensitivity to the
three-dimensional shape is also quite weak in the Coulomb part, so it is
mostly the Bose–Einstein effect that enables the measurement of radii in
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Fig. 1. Example correlation functions calculated in a model for central Pb–Pb
collisions for pairs of identical pions, kaons, and protons (left panel) as well as for
proton–lambda and proton–antilambda pairs (right panel).
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three dimensions. For pairs of identical charged kaons, the situation is sim-
ilar, although the Coulomb interaction is stronger due to the lower Bohr
radius. An example of such correlation function is also shown in Fig. 1,
with the B–E peak wider due to a smaller source and the Coulomb damping
affecting a significantly wider q region with respect to pions. The picture is
more complicated for pairs of protons. They are fermions, and their singlet
state contributes an enhancement to the correlation, while the triplet state
produces an anti-correlation with the same width. The Coulomb interaction
is much stronger than for the lighter mesons and contributes significantly to
the correlation shape even at q = 0.1 GeV/c. Finally, the strong interaction
has a significant positive contribution which forms a peak centered around
q = 40 MeV/c. All those effects combine into a complicated correlation
shape. An example is also shown in Fig. 1. The sensitivity of the system
size is now not only in the width, but also in the height of the correlation.
For non-identical particles, the effects of Bose–Einstein and Fermi–Dirac
statistics are absent, but we still can have a combination of the strong and
Coulomb interactions, like for the proton–antiproton pair, or a pure strong
interaction correlation, present, for example, for a proton–lambda pair. The
case of baryon–antibaryon correlation is especially interesting, since in this
case the particle annihilation is represented as imaginary components of
the scattering amplitude f , and produces a relatively wide negative correla-
tion, sensitive not only to the system size but also to the magnitude of the
imaginary part of the scattering length, which is poorly known for heavier
baryon–antibaryon pairs [12].

2.3. Extracting the femtoscopic information

The quantitative analysis of the femtoscopic correlation function amounts
to extracting the information about the source from the measured correlation
function. In ideal conditions the full information about S can be obtained
in this way, for example, via the imaging technique [13]. It does require
excellent experimental conditions (large statistics, good two-track resolu-
tion, etc.) and mathematically advanced analysis tools. A more common
approach is to only extract selected properties of the S function, such as
its width. We then employ a minimization procedure, to find the parame-
ters of the fitting function which best describe experimental data. But first
the fitting function itself must be proposed. We start with the functional
form of S, which in heavy ion collision analysis is usually assumed to be a
three-dimensional ellipsoid with a Gaussian density profile

S(r) ≈ exp

− r2out

4
(
RG

out

)2 − r2side

4
(
RG

side

)2 − r2long

4
(
RG

long

)2
 , (3)
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where rout, rside, and rlong are components of r calculated in LCMS, and
Rout, Rside, and Rlong are single-particle femtoscopic source radii. The
S function, together with Ψ from Eq. (2), inserted in Eq. (1) gives the fitting
function. However, an analytical form of such function can be given only in
selected cases, for example, for pure Quantum Statistics (anti-)symmetriza-
tion or for pure strong FSI [14].

For the most common case of identical pions or kaons, additional sim-
plifying assumption is made: the Coulomb part of the charged meson wave-
function can be approximately treated as independent from the QS part.
It is then integrated separately in a procedure known as Bowler–Sinyukov
fitting [15, 16]. Then, Eq. (1) gives the following fit function

Cqs(q) = (1− λ) + λKC(qinv)

×
[
1 + exp

(
−
(
RG

out

)2
q2out −

(
RG

side

)2
q2side −

(
RG

long

)2
q2long

)]
, (4)

where λ accounts for the fact that not all pion pairs are correlated in the
source. KC(qinv) is the two-pion Coulomb wave-function integrated on a
source with Gaussian density profile. The size of this source should be se-
lected to correspond to the size obtained in the fit to the QS part, usually via
an iterative procedure. The Bowler–Sinyukov procedure has been shown to
be a good approximation for sizes ranging from 1 fm in elementary collisions
up to the largest sources measured to date, even up to 9 fm, observed in
central Pb–Pb collisions at the LHC [17]. Equation (4) is fitted directly to
the experimental correlation functions C(q) to extract the femtoscopic radii.

For heavier particles, a simplified analysis is done in only one dimension
in PRF. S is then assumed to be

S(r) ≈ exp

(
− r∗2

4R2
inv

)
, (5)

where Rinv is the single-particle direction-averaged source size. The equiva-
lent integration is then performed giving the one-dimensional fit function

C(q) = (1− λ) + λKC(qinv)
[
1 + exp

(
−R2

inv q
2
inv

)]
. (6)

With this function, the quantitative analysis can be performed also with a
statistics-limited sample.

The other analytically solvable case is when only the strong interaction is
present for a given pair. The one-dimensional correlation function is then [14]

C
(
~k∗
)

= 1 +
∑
S

ρS

[
1

2

∣∣∣∣fS(k∗)Rinv

∣∣∣∣2(1− dS0
2
√
πRinv

)
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+
2<fS

(
~k∗
)

√
πRinv

F1(2k
∗Rinv)−

=fS
(
~k∗
)

Rinv
F2(2k

∗Rinv)

 , (7)

where q = 2k∗, F1(z) =
∫ z
0 dxe

x2−z2/z and F2 = (1 − e−z2)/z. Summation
is done over possible pair spin orientations, with ρS the corresponding pair
spin fractions. fS is the strong interaction scattering amplitude (dependent
on the spin of the pair), which in this case can be calculated via the effective
range approximation

fS(k∗) =

(
1

f0
+

1

2
d0k

∗2 − ik∗
)−1

, (8)

where f0 is the scattering length and d0 is the effective radius of the strong
interaction. Both of these parameters are complex numbers, their non-zero
imaginary part corresponds to the particle annihilation for a given pair,
which appears, for example, for baryon–antibaryon pairs. In Fig. 1, an ex-
ample of baryon–baryon and baryon–antibaryon correlation functions, cal-
culated according to Eq. (7), is shown for a radius Rinv = 3.5 fm. For the
proton–antilambda pair, a value of f0 = 0.49+ i1.00 fm is used [12] resulting
in a wide negative anti-correlation, reflecting the annihilation channel of the
interaction.

3. Femtoscopy in experiment

To measure experimentally a correlation that corresponds to the theo-
retical formula given by Eq. (1) one should isolate only the femtoscopic part
of the two-particle correlation. To remove trivial correlations coming from
single-particle acceptance the correlation is defined as

C(q) =
A(q)

B(q)
, (9)

where A contains pairs of particles coming from the same event, while B
contains the “reference” sample. The single particle acceptance for both
particles in B should be as close as possible to the one for particles in A.
Several methods to construct B in this way are proposed. One consists of
taking the A sample and rotating one of the particles by a given angle in the
transverse direction. Another, most commonly used, is the so-called “mix-
ing”, where the two particles are taken from different events with similar
characteristics, such as centrality (final state multiplicity), event plane an-
gle, position of the collision point with respect to the detector (one example:
“z-vertex” cut for collider experiments) and so on. The correlation function
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created in this way contains the two-particle correlations, however it is not
guaranteed that all come from femtoscopic effects only. In particular, in
small systems significant additional correlations are observed, which then
need to be taken into account in the fitting procedure via additional fac-
tors [18]. If such background effects are not large, it is usually possible to
finally extract the femtoscopic signal and perform the quantitative analysis.

In the experimental femtoscopic analysis, a single measurement of the
system size is usually not particularly interesting. It gives a rather limited
static picture of the source, and its value can usually be predicted rather
easily. What is not trivial, is the dependence of the measured femtoscopic
radii (system sizes) on as many variables as possible. Analysis is most com-
monly done versus the pair transverse momentum kT, in three dimensions
in LCMS if possible, otherwise in one dimension in PRF. The dependence
on event centrality or final state multiplicity is also done very often. Finally,
the size is studied versus the colliding system and collision energy

√
sNN ,

ideally in the same accelerator facility and detector system. For non-central
collisions at ultra-relativistic energies, the analysis can also be done versus
the orientation of pair transverse momentum with respect to the reaction
plane. In the following section, we briefly describe the theoretical motiva-
tion for such studies. A large set of recent experimental results can be found
in [17, 19–24] and references therein.

4. Theoretical expectations for femtoscopic radii

The important discovery of heavy ion collisions at ultra-relativistic en-
ergies, at Relativistic Heavy-Ion Collider (RHIC), at the Large Hadron Col-
lider (LHC) and, to some extent, at the Super Proton Synchrotron (SPS)
was the discovery and the characterization of the new state of strongly in-
teracting matter, the Quark–Gluon Plasma (QGP) [26–29]. Such system is
well described by hydrodynamic models with small viscosity. Surprisingly,
early calculations by such models failed to quantitatively describe the pion
femtoscopy data. It turned out that a correct description of the system
sizes required a significant modification of the original assumptions [30, 31].
Firstly, a first-order phase transition between QGP and normal hadronic
matter was excluded. Instead, a smooth cross-over had to be used. A non-
zero transverse flow at the beginning of the hydro calculation was required.
Also a careful treatment of resonance decay and propagation as well as in-
troduction of a small viscosity in the calculation was needed. As a result, a
satisfactory description of experimental data was achieved.

As an example of a hydrodynamic model predictions, a recent full cal-
culation for the LHC can be analyzed [25]. The pion radii are extracted as
a function of centrality and mT. A strong power-law-like decrease of the
radii is observed. This is understood as a non-trivial consequence of strong
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collective flows, a manifestation of the so-called “lengths of homogeneity”
mechanism [32]. A velocity of a particle in a collective system is a convolu-
tion of the common “flow” one, always pointing from the center of the source
outwards, and a random “thermal” one. For particles with small momentum,
the thermal velocity dominates and two particles can be emitted with the
same velocity (if their mass is the same, this also means small relative mo-
mentum) essentially from the whole volume of the source. The observed
radius is then large. However, in order to observe two particles, both with
large velocities which have the same direction, one needs two particles for
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Fig. 2. (Left panel) Pion femtoscopic radii from a hydrodynamic model of Pb–Pb
collisions at the LHC, calculated as a function of pair transverse mass mT =√
k2T +m2 and collision centrality. (Right panel) The radii for pions, kaons, and

protons as function of pair transverse mass, for selected centralities. From [25].
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which the flow and thermal velocities happen to be aligned. But the flow
velocity of the two particles is only aligned when they come from parts of
the source which are relatively close to each other. Therefore, an effective
volume from which such particle pairs can be emitted is much smaller —
the radius observed for large mT is small. Such decrease is clearly seen
in Fig. 2, taken from [25]. The very nature of the collective flow means
that it should be the same for all particle types, regardless of their mass.
One should therefore expect that similar behavior of radii is also observed
for heavier particles. This is seen in the second panel of Fig. 2, where a
universal approximate mT dependence is seen for pions, kaons, and protons.

A hydrodynamic calculation is performed with a set of initial conditions.
They are tailored separately for each collision system and centrality range,
to correctly describe the transverse momentum spectra of a set of particles
species (usually at least pions, kaons, and protons) as well as the transverse
momentum dependence of the elliptic flow. As a result, no free parameters
remain, and the calculation of the femtoscopic radii for such events can be
treated as a prediction and an important cross-check of the consistency of
the simulation. The hydrodynamic calculation for the LHC predicts, that
the radii scale linearly with 〈dNch/dη〉1/3 [25]. Similar scaling was indeed
observed for heavy-ion data at lower energies [33]. In summary, the hydrody-
namic models allow to predict, via simple scaling laws, femtoscopic radii for
a number of particle species (at least pions, kaons, and protons, and possibly
heavier baryons) in ultra-relativistic heavy ion central and mid-central colli-
sions. The upcoming experimental verification of such predictions will show
whether our detailed understanding of the system created in such collisions
is valid.

5. Summary

We have given a short historical introduction to the technique of the
femtoscopic measurement. We briefly describe the formalism, giving the
important theoretical underpinnings and deriving important formulas such
as fitting functions which enable the extraction of the femtoscopic infor-
mation. We shortly describe the experimental techniques needed to obtain
femtoscopic correlation functions. We also summarize the current theoreti-
cal understanding of the measured values and discuss how the femtoscopic
radii give us insight into the space-time characteristics and dynamics of the
source created in the ultra-relativistic heavy ion collisions.

This work has been financed by the Polish National Science Centre under
decision no. DEC-2011/01/B/ST2/03483.
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