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1. Introduction

The promise of a phase transition at finite temperature in QCD from the
confined hadronic phase to a deconfined quark–gluon phase has triggered a
lot of activity both theoretically as well as experimentally. This original pre-
diction by early lattice calculations [1–3] has turned into a smooth crossover
after many years of accumulated experience [4]. The determination and un-
derstanding of the QCD equation of state (EoS) from the lattice [5] plays a
crucial role in the current analysis of ultra-relativistic heavy ion collisions [6].
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While in the limit of massless quarks the QCD Lagrangian is scale invari-
ant, implying a vanishing trace of the energy momentum tensor, the symme-
try is broken explicitly by the finite quark masses and anomalously by the
necessary renormalization which introduces an energy scale and generates a
trace anomaly. The most recent up-to-date results for 2+1 flavour lattices
have been obtained by the Wuppertal–Budapest(WB) [7] and HotQCD [8]
collaborations, and after continued discrepancies there is a final consensus
that maximal violation of scale invariance occurs at Ts ∼ 200 MeV where
the trace anomaly reaches its maximum value.

At very high temperatures, the typical momentum scales or µ ∼ 2πT
are large and finite quark mass effects can be neglected. Due to asymptotic
freedom, the strong and running coupling constant becomes small and thus
interactions can be neglected. Thus, one effectively has a gas of free and
massless 4NfNc fermions (quarks and antiquarks) and 2(N2

c − 1) bosons
(gluons), and scale invariance is restored. At the same time, colour is de-
localized corresponding to a deconfined phase. This allows, in principle, to
count the number of 2NfNc quark and 2(N2

c − 1) gluon elementary species
by means of the Stefan–Boltzmann law. Current analyses show that this
happens for temperatures much larger than Ts.

Yet, there is the firm belief that because of confinement, hadron states,
composite, extended and most often unstable bound states made of quarks
and gluons build a complete basis at very low temperatures, where they ef-
fectively behave as point-like, stable, non-interacting and structureless par-
ticles. This quark–hadron duality resembles to a large extent the similar
duality between different degrees of freedom as the one found in deep in-
elastic scattering (for a review, see [9]). It is remarkable that in the large
Nc limit some of these requirements are indeed fulfilled (for a review, see
e.g. [10]), except and most notably the point-like character. Of course, as
the temperature is raised, we expect many excited states to contribute, but
also that finite width and finite size effects play a role. How this hadroniza-
tion happens in detail has not really been understood so far. Lattice cal-
culations suggest that there is a smooth transition or crossover from the
purely hadronic phase to the purely quark–gluon phase [4]. Actually, it is
not obvious when this hadronic picture fails in practice or what is the main
mechanism behind quark and gluon liberation at the lowest possible tem-
perature. The present contribution tries to address this problem guided by
our own experience on the field.

2. The hadron resonance gas

In the opposite limit of very low temperatures T � Ts, one expects an
interacting gas of the lightest colour neutral particles (for Nf = 3 pions and
kaons) [11]. Because of the spontaneous chiral symmetry breaking, the low-
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lying pseudoscalar particles are the lightest Goldstone bosons made of u, d, s
quarks. For the typical low momenta in the heat bath p ∼ 2πT � mπ,mK

Goldstone bosons interact weakly through derivative couplings and hence
interactions are strongly suppressed. Thus, scale invariance violations of the
non-interacting gas are due to the finite pion and kaon masses. Therefore,
in the chiral limit of massless pseudoscalars, scale invariance is also exact
at sufficiently low temperatures. Because of the small signal, current lattice
calculations of the trace anomaly are just above the edge of this pion and
kaon gas, which is expected to work for T ∼ mπ/2π.

When the temperature is raised, hadronic interactions among pions start
playing a role and two- and more particle states contribute to the thermody-
namic properties. The calculation may be organized according to the quan-
tum virial expansion [12] where there are two kinds of contributions. The
excluded volume corrections come from repulsive interactions which prevent
particles to approach each other below a certain distance. The resonance
contributions stem from attractive interactions which generate states living
long enough to produce pressure in the system, meaning that the resonance
can hit the wall of the container before it decays. A well known example is
ππ scattering where one has attractive and resonating states in the isospin
I = 0, 1 corresponding to the σ and ρ resonances, whereas one has a repul-
sive core in the I = 2 exotic channel [13, 14] providing a measure of the finite
pion size. Once a ρ meson is created, it may interact with another pion and
produce a resonance, ρπ → A1 (which is a 3π state) and so on. For baryons,
the situation is similar, where Nπ → ∆ is a good example of a resonance
contribution. This separation between attractive and repulsive contributions
leaves out the residual interaction stemming from the background scattering.
The Hadron Resonance Gas (HRG) corresponds to assume that all interac-
tions among the lightest and stable particles can be described by an ideal
gas of non-interacting resonances which are effectively pictured as stable,
point-like and elementary particles, hence the trace anomaly is given by

AHRG(T ) ≡ ε− 3P

T 4
=

1

T 4

∑
n

∫
d3p

(2π)3

En(p)− ~p · ∇pEn(p)

eEn(p)/T + ηn
, (1)

where the sum is over all hadronic states including spin–isospin and anti-
particle degeneracies, ηn = ∓1 for mesons and baryons respectively, En(p) =√
p2 +M2

n is the energy and Mn are the hadron masses. This collection
of masses is usually called the hadron spectrum and most often identified
with the PDG compilation which represents an established consensus among
particle physicists [15]. The states classification echoes the non-relativistic
quark model, namely mesons are qq̄ states and baryons qqq states. Those
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falling outside this category are classified as “further states”. The hadron
spectrum obtained from the PDG is depicted in Fig. 1 as well as its separa-
tion into mesonic and baryonic spectra.
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Fig. 1. Left: The full hadron spectrum made of u, d, s quarks from the PDG [15].
Right: Mesonic and baryonic spectrum.

The result of using Eq. (1) with the PDG states [15] compared to the
continuum extrapolated results of the Wuppertal–Budapest (WB) [7] and
HotQCD [8] collaborations is shown in Fig. 2. It is amazing that this exceed-
ingly simple picture works accurately almost below Ts (the maximal scale-
violating temperature) at about T . 170 MeV. Note that the lowest lattice
data points at T = 120 MeV are first saturated when states with masses
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Fig. 2. Trace anomaly for the HRG using the PDG [15] (dashed) and the
RQM [16, 17] (full) compared to the continuum extrapolated results of the WB [7]
and HotQCD [8] collaborations. We also show the contributions from states with
M ≤ 600 MeV (dotted) and with M ≤ 800 MeV (dot-dashed).
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above the vector mesons are included. Higher temperatures start feeling
excited hadronic states, which by their nature embody relativistic dynam-
ics. The quantum statistical bosonic and baryonic character of the states
accounts by less than 1% correction to the classical Maxwell–Boltzmann
distribution (corresponding to take ηn → 0) at about T = 200 MeV, al-
ready well beyond the range where lattice and HRG agree and much smaller
than the lattice 10% uncertainties. The transition from hadrons to quarks
has been analyzed on the light of strangeness [18] and an observable which
vanishes for the HRG has been proposed.

Actually, the HRG model has arbitrated the discrepancies between the
different collaborations in the past and the lattice community have had a
long struggle until agreement between them and with the HRG model has
been declared. While this has made the HRG model a sort of holy grail
(see e.g. [19] and references therein), it is good to remind that despite of the
phenomenological success it is not a theorem, nor a well defined approxi-
mation from the original QCD Lagrangian. The most compelling argument
is that it is to date unclear how corrections to this simple approach should
be implemented nor what the error estimate for the HRG should be. For
a comparison, we also show the result of Eq. (1) using instead the Rela-
tivized Quark Model (RQM) [16, 17] which essentially combines two basic
elements, the static energy among the constituents and a relativistic form
of the kinetic energy which does not consider the spin of the particles but
does not contain more parameters than QCD itself. The likewise impressive
agreement of the RQM trace anomaly with the lattice data not only illus-
trates our point on the lack of uniqueness of what is actually being checked
by these comparisons, but also that the RQM may provide information not
listed in the PDG booklet.

For instance, the PDG lists the quantum numbers, decay modes, masses
and widths of the resonances building the hadron spectrum, but no informa-
tion on their size is provided. While for unstable particles this is a problem-
atic issue (see e.g. [20] and references therein), within the heavy-ion literature
the assumption of a constant volume is frequently made (see e.g. [21]). This
information can be accessed by means of quark models or lattice calcula-
tions. On the other hand, as discussed in Ref. [22], the purely resonance
character makes the very definition of the mass ambiguous, and this allows
to generate an error band on the PDG prediction of the HRG model which
gives a spread for the trace anomaly about half the lattice uncertainties.

3. QCD at finite temperature

As a guideline, let us provide some of the main features of QCD at finite
temperature emphasizing some relevant aspects for the discussion. Many
gaps in this sketchy presentation may be filled by consulting e.g. [5] and ref-
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erences therein. The QCD Lagrangian (in Euclidean space time) is given by

LQCD = −1
4G

a
µνG

a
µν +

∑
f

q af (iγµDµ −mf ) qaf . (2)

The QCD Lagrangian is invariant under colour gauge transformations

q(x) → ei
∑
a(λa)cαa(x)q(x) ≡ ω(x)q(x) ,

Aµ(x) → ω−1(x)Aµ(x)ω(x) +
i

g
ω−1(x)∂µω(x) .

The QCD thermodynamics is obtained from the partition function

ZQCD = Tr e−H/T =
∑
n

e−En/T

=

∫
DAµ,a exp

[
−1

4

∫
d4x

(
Gaµν

)2]
Det (iγµDµ −mf ) ,

with the periodic or anti-periodic boundary conditions for gluons and quarks
respectively

q(~x, β) = −q(~x, 0) , Aµ(~x, β) = Aµ(~x, 0) , β = 1/T ,∫
dp0

2π
f(p0)→ T

∑
n

f(wn) ,

where the Matsubara frequencies are wn = 2nπT for gluons and wn = (2n+
1)πT for quarks. Preservation of the quark antiperiodic boundary conditions
implies that only periodic gauge transformations are allowed, namely

ω(~x, x0 + β) = ω(~x, x0) , β = 1/T . (3)

Within the convenient Polyakov gauge (A0(x) stationary and everywhere di-
agonal [23]), the most general remaining transformation is either stationary
and diagonal or of the type

ω(x0) = ei2πx0λ/β , (4)

where λ = diag(n1, · · · , nNc) and Trλ = 0. Large gauge invariance implies
periodicity in A0 with period 2πT/g

A0 → A0 −
2πT

g
λ . (5)

This is the finite temperature version of the Gribov copies, i.e., the fact that
there is no complete gauge fixing in a non-Abelian gauge theory. A drastic
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consequence of this periodicity property is that it becomes explicitly broken
in perturbation theory [24, 25]. Thus, we may consider this as a signal of
the relevance of non-perturbative finite temperature gluons.

In the limit of massless quarks (mf = 0), the QCD Lagrangian is scale
invariant, i.e. x −→ λx. This symmetry is broken by quantum corrections
due to the necessary regularization. To see this, consider the partition func-
tion dependence on the coupling constant g after the rescaling of the gluon
field Āµ = gAµ (and ignoring renormalization issues)

Z =

∫
DĀµ,a exp

[
− 1

4g2

∫
d4x

(
Ḡaµν

)2]
Det(iγµDµ) . (6)

Note that the only dependence on g is the one shown explicitly. Thus,

∂ logZ

∂g
=

1

2g3

〈∫
d4x

(
Ḡaµν

)2〉
=

1

2g

V

T

〈(
Gaµν

)2〉
T
, (7)

where in the last equation we have assumed a vacuum space time indepen-
dent configuration, with V the volume of the system. On the other hand, the
free energy and internal energy are given by the thermodynamic relations

F = −PV = −T logZ , ε =
E

V
=
T 2

V

∂ logZ

∂T
, (8)

and the trace anomaly becomes

ε− 3P = T 5 ∂

∂T

(
P

T 4

)
. (9)

Generally, a renormalization scale µ has to be introduced to handle both IR
and UV divergences. Thus, on purely dimensional grounds, one has

P

T 4
= f

(
g(µ), log(µ/2πT )

)
. (10)

Physical results should not depend on the renormalization scale, thus using
that dP/dµ = 0, we get

∂

∂ log T

(
P

T 4

)
=

∂g

∂ logµ

∂

∂g

(
P

T 4

)
. (11)

Introducing the beta function

β(g) = µ
dg

dµ
= −β0g

3 +O
(
g5
)
, β0 =

11Nc − 2Nf

48π2
, (12)
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the trace anomaly becomes then

ε− 3P =
〈
G2
〉
T
−
〈
G2
〉

0
(massless quarks) , (13)

where

G2 =
β(g)

2g

(
Gaµν

)2
. (14)

Here we have implemented, in full harmony with standard lattice prac-
tice (see, e.g., [26]), a subtraction to renormalize the vacuum contribution
[27, 28]. The vanishing of the trace anomaly at zero temperature is consis-
tent with quark–hadron duality, see Eq. (1).

Also in the massless quark limit, the QCD Lagrangian is invariant under
SUR(Nf )× SUL(Nf ) chiral transformations

q(x)→ ei
∑
a(λa)fαaq(x) , q(x)→ ei

∑
a(λa)fαaγ5q(x) . (15)

Chiral symmetry is spontaneously broken by the chiral condensate in the
vacuum down to SUV(Nf )

〈q̄q〉 6= 0 . (16)

The Gell-Mann–Oakes–Renner relation, which in the simplest Nf = 2 case
becomes

2〈q̄q〉mq = −f2
πm

2
π , (17)

relates the quark condensate and the quark mass to physically measurable
quantities such as the pion mass mπ and the pion weak decay constant fπ.
This relation exemplifies the quark–hadron duality, namely the fact that, in
the confined phase of QCD, we expect quark observables to be representable
by hadronic observables.

In the opposite limit that all quarks become infinitely massive, mf →∞,
the quark determinant becomes a constant which can be factored out of the
path integral

ZQCD → ZYMDet (−mf ) , (18)

and the resulting action corresponds to a pure Yang–Mills theory

ZYM =

∫
DAµ,a exp

[
−1

4

∫
d4x

(
Gaµν

)2]
. (19)
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This purely gluonic action exhibits a larger symmetry: ’t Hooft Center Sym-
metry Z(Nc), namely, invariance under gauge transformations which are
periodic modulo a center element of SU(Nc)

ω(~x, x0 + β) = z ω(~x, x0) , zNc = 1 (z ∈ Z(Nc)) . (20)

An example for z = ei2πk/Nc and in the Polyakov gauge is given by the choice

ω(x0) = ei2πx0kλ/(Ncβ) , A0 → A0 −
2πT

gNc
kλ (21)

with λ = diag(1−Nc, 1, . . . , 1). The Polyakov loop is an order parameter of
the center symmetry which is related to the free energy of a colour charge in
the medium. In the Polyakov gauge, the Polyakov loop in the fundamental
representation reads

ΩF (~x ) = eigA0(~x )/T , A0 =

N2
c−1∑
a=1

λaA
a
0 . (22)

The vacuum expectation value of the Polyakov loop transforms under the
previous gauge transformation as

LT =
〈

Trce
igA0/T

〉
= e−Fq/T −→ zLT . (23)

Therefore, unbroken symmetry (LT = zLT )) implies LT = 0 and hence
Fq = ∞. The divergence of the free energy of a colour charge in the fun-
damental representation is interpreted as a signal for confinement [29]. The
renormalization of the Polyakov loop is a subtle issue addressed in the lattice
in Ref. [30].

In gluodynamics, the center symmetry is spontaneously broken above
a critical temperature and LT /Nc approaches unity (or any other central
element) as the temperature increases. In fact, at high temperatures A0 � T
and one may expand [31]

1

Nc
LT = 1−

g2
〈
TrcA

2
0

〉
2NcT 2

+ · · · = e
−
g2〈TrcA

2
0〉

2NcT2 +···
. (24)

Note that while this formula suggests that LT ≤ Nc, the renormalization
overshoots this value at a perturbative level in a tiny but visible way [31–33].

In full QCD, the center symmetry is explicitly broken, which results in
LT > 0 at all temperatures. In the limit of heavy quarks and low temper-
ature, one has LT = O(e−mq/T ) � 1 or Fq → mq + ε + . . . , where ε is the
smallest residual binding energy of doubly heavy QQ̄ meson. Likewise for
light dynamical quarks LT ∼ e−∆/T , where ∆ denotes the ground state mass
of a heavy–light Qq̄ meson (the mass of the heavy quark excluded) [34].
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One can also define Polyakov loops in higher representations which have
been subject of attention only a few times despite its very interesting prop-
erties [35–38].

Scale invariance is also broken in gluodynamics. For instance, in pertur-
bation theory to two loops, one has [39]

A ≡ ε− 3P

T 4
=
Nc

(
N2
c − 1

)
72

β0g(T )4 +O
(
g5
)
, (25)

where at the lowest order
1

g(µ)2
= β0 log

(
µ2/Λ2

QCD

)
. (26)

Thus, taking µ = 2πT , we expect to have a free gas of gluons and quarks in
the high temperature limit. In the simple case of non-interacting particles,
the partition function is given by

logZ = V ηgi

∫
d3p

(2π)3
log
[
1 + ηe−Ep/T

]
, Ep =

√
p2 +m2 , (27)

where η = −1 for bosons, η = +1 for fermions and gi is the number of
species. From the partition function, we have the thermodynamic identities

F = −T logZ , P = −∂F
∂V

,

S = −∂F
∂T

, E = F + TS .

For the massless quark and gluon gas, the pressure is given by

P =

[
2
(
N2
c − 1

)
+ 4NcNf

7

8

]
π2

90
T 4 , (28)

which is the Stefan–Boltzmann law. Since in the high temperature limit the
particles are effectively massless, scale invariance is restored and hence the
(reduced) trace anomaly vanishes

A ≡ ε− 3P

T 4
→ 0 (T →∞) . (29)

These expectations have been checked in Ref. [40] by a lattice study in a
wide temperature window, T = 0.7 . . . 103Tc.

Thus, the quark condensate 〈q̄q〉 and the Polyakov loop in the funda-
mental representation LT become true order parameters in quite opposite
situations. While 〈q̄q〉 signals spontaneous chiral symmetry breaking in the
massless quark limit, LT signals confinement for infinitely heavy quarks. The
real situation is somewhat intertwined, and can be summarized as follows.
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— Order parameter of chiral symmetry breaking (mq = 0)
Quark condensate SUR(Nf )× SUL(Nf )→ SUV(Nf )

〈q̄q〉 6= 0 (T < Tc) , 〈q̄q〉 = 0 (T > Tc) .

— Order parameter of deconfinement (mq =∞)
Polyakov loop: Center symmetry Z(Nc) broken

LT = 0 (T < Tc) , LT > 0 (T > Tc) .

— In the real world, mq is finite but inflection points nearly coincide
(accidental?)

d2

dT 2
LT = 0 ,

d2

dT 2
〈q̄q〉T = 0 ,

at about the same temperature Tc = 155(10) MeV.

The chiral-deconfinement crossover is a unique prediction of lattice QCD.
Whether or not this result is accidental, could be answered by computing
the (connected) crossed correlator,〈

q̄qTrc e
igA0/T

〉
− 〈q̄q〉

〈
Trc e

igA0/T
〉

=
∂LT
∂mq

, (30)

which corresponds to the quark mass dependence of the Polyakov loop.
Finally, the correlation function between Polyakov loops in an arbitrary

representation R exhibits Casimir scaling (quenched approximation) [41]〈
TrRΩ(~x1)TrRΩ(~x2)†

〉
≈ e−σR|~x1−~x2|/T , σR = (CR/CF )σF . (31)

It can be shown that this correlation function, which for the fundamental
representation is related to the q̄q free energy, F1(r, T ), can also be written
as a ratio of partition functions between Q̄Q sources placed at a distance
|~x1 − ~x2| and the vacuum [42], hence satisfying a spectral decomposition
with integral weights wn and positive energies En(|~x1 − ~x2|) > 0,〈

TrFΩ(~x1)TrFΩ(~x2)†
〉

=
∑
n

wne
−En(|~x1−~x2|)/T = e−F1(r,T )/T , (32)

where the free energy F1(r, T ) has been introduced. One important property
is that at large distances (for the unquenched full QCD case)〈

TrFΩ(~r )TrFΩ(0)†
〉
→ |〈TrFΩ〉|2 = L2

T . (33)
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4. Relativized quark–gluon models

4.1. Relativity and thermodynamics

One of the most troublesome aspects of hadron binding is that it makes
relatively heavy particles from massless ones, hence most of the mass comes
from the interaction. A prominent example is the glueball in gluodynamics,
where the lightest 0++ state [43] has a mass M0++/

√
σ ∼ 4.5, while glu-

ons are massless. Fully relativistic few body equations are not only hard
to handle but encounter many difficulties regarding cluster decomposition
properties [44–46]. This feature is particularly interesting as it is related to
the compositeness nature of relativistic particles which build the hadrons,
and, strictly speaking, we have to deal with relativistic statistical mechanics
of interacting particles, a subject which has a long history [47].

Unfortunately, as we have shown, the physics of finite temperature QCD
below the phase transition involves the excited hadronic spectrum, and thus
relativity becomes an essential ingredient in the game. Relativized quark
models (RQM) combine two basic elements, the static energy among the
constituents and a relativistic form of the kinetic energy which does not
consider the spin of the particles [16, 17].

4.2. The linear potential

In the Born–Oppenheimer approximation, the object to be analyzed is
the interaction between heavy sources A and B. In perturbation theory, one
has one gluon exchange which yields a Coulomb like interaction,

VAB(r) = λA λB
αs

r
, (34)

where αs = g2/(4π) and λA and λB are the generators1 of the SU(3)
colour group corresponding to the representation of the source. This form
of the colour interaction exhibits Casimir scaling, a property that is vio-
lated only at three loops in perturbation theory [48] and appears to hold
non-perturbatively on the lattice with an additional linear potential contri-
bution [49]. Thus, to a good approximation, the interaction between heavy
sources on the lattice reads

VAB(r) = λA λB

[αs

r
− κr

]
. (35)

Thus, for quark–antiquark or gluon–gluon pairs coupled to a singlet state or
a quark–quark pair coupled to the antifundamental representation (diquark),

1 These are more customarily denoted by T , while λ is twice the generator.
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the following relations are obtained:

VQQ̄(r) = σF r −
4αs

3r
+ · · · , (36)

VGG(r) = σA r −
3αs

r
+ · · · , (37)

VQQ(r) = σd r −
2αs

3r
+ · · · . (38)

In what follows, we use σ to denote the string tension σF . As a consequence
of the Casimir scaling, the ratio between the fundamental QQ̄ ≡ (3 × 3̄)1,
adjoint GG ≡ (8× 8)1, and diquark QQ ≡ (3× 3)3̄ colour sources are

σA
σF

=
9

4
,

σd
σF

=
1

2
. (39)

By making simplifying assumptions, easy relations can be derived from
the Casimir scaling. For instance, consider the lowest glueball state by
analyzing two massless spin-1 particles in the CM system assuming spin-
independent interactions, and similarly for the ρ meson as composed of two
massless quarks. Neglecting the Coulomb term, the respective mass opera-
tors appearing in the Salpeter equation read

M̂G = 2p+ σA r , M̂M = 2p+ σF r . (40)

Simple dimensional considerations imply that the eigenmasses are propor-
tional to the square root of the string tension, thus

Mg,0++/mρ ≈ 3/2 .

Here, as it is customary, we have matched the scales of gluodynamics and
QCD by assuming a common value of σF in both theories. A rough estimate
of the mass follows from using the uncertainty principle for the ground state,
namely, by taking pr ∼ 1. For the glueball, this yields

M0 ≈ min

[
2

r
+ σA r

]
= 2
√

2σA = 4.2
√
σ .

4.3. The cumulative number

The spectrum of the RQM model of Isgur and collaborators for q̄q in the
case of mesons and qqq for baryons [16, 17] is concisely shown in Fig. 3. A
detailed comparison to individual states unveils a rather good description of
the data. Of course, we do not expect this or any quark model Hamiltonian
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to describe accurately the individual levels. This, however, poses an inter-
esting problem on how two different spectra including many excited states
can quantitatively be compared, beyond eyesight and subjective impression
just based on contemplating Figs. 1 and 3. One way suggested by Hagedorn
in the early 60s is by means of the cumulative number of states

N(M) =
∑
n

θ(M −Mn) . (41)

The question is then to decide to what extent NQCD(M) or NPDG(M) coin-
cide.
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Fig. 3. Left: The full hadron spectrum made of u, d, s quarks from the Relativized
Quark Model (RQM) of Isgur and collaborators where mesons are described as
bound q̄q states and baryons as bound qqq states [16, 17]. Right: Mesonic and
baryonic spectrum.

For our discussion, we will consider a simplified version of that model
where hyperfine splittings due to spin and three-body forces are ignored and
the Hamiltonian for n constituents (we restrict to qq̄ and qqq systems) is
taken to be

Hn =

n∑
i=1

√
p2
i +m2

i −
∑
i<j

λi λjv(rij) , v(r) = κ r − αs

r
. (42)

We will consider explicitly some cases of interest below, but already at this
level some important observations can be made on the growth of the cumu-
lative number of states. To this end, let us adopt a semiclassical approxi-
mation, which should be reliable when the number of states is large. The
number of states in the CM system and at rest, below a certain mass M
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takes the form

Nn(M) ∼ gn
∫ n∏

i=1

d3xid
3pi

(2π)3
δ(3)

(
n∑
i=1

~xi

)
δ(3)

(
n∑
i=1

~pi

)
θ(M −Hn) , (43)

where gn takes into account the degeneracy. For the sake of the argument,
let us neglect the Coulomb term, thus v(r) = κ r, as well as the current
quark masses. In this case, a dimensional argument, p → Mp, r → Mr/κ,
gives

Nn(M) ∼
(
M2

κ

)3n−3

. (44)

It is not hard to show that lifting any of the above approximations only
modifies this result by subleading powers of M . Thus, for a finite number of
degrees of freedom, the leading contribution to the cumulative number scales
as a power of the mass. The qualitative power behaviour can be clearly
identified as straight lines in the log–log plot of Fig. 4 for the cumulative
number, where we compare the resulting cumulative number both for the
PDG and the RQM separating the mesonic and baryonic contributions.

1.000.50 2.000.30 3.001.500.70
1

10

100

1000

104

M HGeVL

N
HM

L

Mesons

1.0 2.0 3.01.5
1

10

100

1000

104

M HGeVL

N
HM

L

Baryons

Fig. 4. Cumulative numbers for the PDG (dashed line) and the RQM (full line).
Left panel: Mesonic states (log–log scale). Right panel: Baryonic states (log–log
scale).

As we can also see, the PDG and RQM spectra look very much alike
below 1.7–1.8 GeV. We note, however, that the spectrum for the RQM sat-
urates sharply at 2.5 GeV which is about the cut-off mass where Isgur,
Godfrey and Capstick stopped to compute states. On the other hand, the
PDG states saturate at lower energy values in a softer fashion. Note that
the RQM looks like a linear extrapolation (mind the log scale) of the PDG
spectrum. The agreement at lower masses is not highly surprising since
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RQM parameters were tuned to reproduce low lying states on the one side
and the listed PDG states fit into the quark model scheme on the other side.
On the other hand, there are only σ and the u, d, s quark masses as fitting
parameters, so we should regard the agreement as a further big success of
the RQM from a global point of view.

4.4. Bound states versus resonances

One issue which is problematic from the start is that if N(M) really
counts the number of bound states, then we expect it to be, for Nf = 2
flavours, just pions (π+, π−, π0), nucleons (p, n) and anti-nucleons (p̄, n̄), so
N(∞) = 3+2×2×2 = 11. More generally, we have N(∞) = (N2

f −1)+2×
2×Nf (N2

f − 1)/3 low lying mesons and baryons, while in the RQM N(M)
diverges as a power.

The cumulative number is by its own staircase nature a piecewise discon-
tinuous function, but as we go to higher states the discontinuities smooth
out. This becomes particularly visible in the RQM in the range of 2 GeV <
M < 2.5 GeV.

In addition, while in the PDG we have an issue regarding completeness
of states, in the RQM case this is not the case; besides angular and spin
flavour quantum numbers, the radial number can just be checked with the
oscillation theorem, in the q̄q case, or simply by diagonalizing in a complete
basis of normalizable states; no state will be left out in the process. In
the PDG however, it is unclear if there are missing or redundant states
although the consensus of listing states fitting into the quark model makes
this argument into a circular one.

Of course, the meaning of MPDG
n and MRQM

n is different. While in the
PDG listing, we usually encounter a Breit–Wigner resonance parameteriza-
tion characterized by a mass and a width, in the RQM we have just the
mass of a bound qq̄ or qqq state. We expect that when we couple these
bound states obtained from the RQM to the continuum there will be, be-
sides a width, a mass shiftMRQM

n →MRQM
n +∆Mn, whence the cumulative

number for bound states will generally differ as the one for Breit–Wigner
resonances, but the sign of ∆Mn is a priori unknown.

4.5. Hadron sizes

The solution of the multiparton Hamiltonian Eq. (42) onto colour singlet
states yields the corresponding hadron wave functions. To estimate the
hadron size, we can make use of the virial theorem based on stationarity
of eigenstates under unitary coordinate scaling ~ri → λ~ri around the λ = 1
value, Ψ(~x1, . . . , ~xn) → λ3n/2Ψ(λ~x1, . . . , λ~xn). For light quarks we may, for
simplicity, take the massless quark limit mq → 0. Thus, for the various
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terms in the Hamiltonian 〈pi〉 → 〈pi〉/λ, likewise 〈1/rij〉 → 〈1/rij〉/λ and
〈rij〉 → λ〈rij〉, where 〈rij〉 is the mean distance between particles i and j.
Due to the virial theorem, we have for a multiparton state

M = −2κ
∑
i<j

λi λj〈rij〉 . (45)

In particular,

Mq̄q = 2σ〈rq̄q〉 , Mqqq = σ〈r12 + r13 + r23〉 = 3σ〈rqq〉 (46)

for mesons and baryons respectively. So, in this model, the size of a hadron
grows linearly with the mass per constituent. For instance, from the relations
mρ = 2σ〈rq̄q〉ρ and MN = 3σ〈rqq〉N , we have 〈rq̄q〉ρ = 0.42 fm and 〈rqq〉N =
0.52 fm. From MN/mρ = 3/2, we would get 〈rq̄q〉ρ = 〈rqq〉N so we can
identify the constituent quark mass as Mq = σ〈r〉. Note that the above
virial relation includes the Coulomb like contribution −αs/r, since this term
scales exactly as the kinetic piece. In the case of hadrons with one heavy
quark, the virial theorem yieldsMq̄Q = 2σ〈rqQ〉+mQ andMqqQ = 2σ〈rqQ〉+
σ〈rqq〉+mQ.

4.6. String breaking

Confinement is often attributed to this ever-linear growing of the en-
ergy with the distance. This is true on the lattice only in the quenched
approximation, where quark–antiquark creation is suppressed. In full QCD
however, the string breaks, a fact that has been observed by lattice calcu-
lations at a distance rc = 1.25 fm [50]. This happens when a light q̄q pair
is created in between the heavy quark and antiquark sources QQ̄, thus two
colour singlet q̄Q and Q̄q mesonic states can be created. On the other hand,
charge conjugation implies that the binding energy of the q̄Q and the Q̄q is
the same and equals the residual energy of a heavy–light meson with total
mass Mq̄Q. Thus, the string breaking distance corresponds to

σrc = 2∆ , ∆ ≡ ∆q̄Q = ∆Q̄q = lim
mQ→∞

(Mq̄Q −mQ) . (47)

Good approximations to these states exist in nature for q = u, d andQ = c, b.
From heavy-quark QCD, we expect a universal (independent of the heavy-
quark spin and flavour) spectrum ∆h,α of hybrid hadron masses (heavy-
quark mass subtracted). For the lightest, pseudoscalar, hybrid meson, the
following sequence should approach a value of ∆, for increasingly heavier
quarks and using the PDG values in the MS-scheme

MK −ms ≡ ∆s = 396(24) MeV ,

MD −mc ≡ ∆c = 603(81) MeV ,

MB −mb ≡ ∆b = 1040(130) MeV , (48)
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which gives the estimate for rc = 2 fm. Another estimate can be made based
on a constituent quark model picture where the total mass of the quark is
Mq = M0 + mq, with M0 the constituent quark mass and mq the current
quark mass. Spontaneous breaking of chiral symmetry implies that in the
chiral limit (massless current quark masses, mq → 0) the total mass is non-
vanishing, thus M0 6= 0. Actually, for light u, d mesons, current masses can
be neglected. Then, the light q̄q meson has a massMq̄q = 2Mq and the mass
of the light qqq baryon is Mqqq = 3Mq. The mass of a heavy–light meson
would then be Mq̄Q = Mq +MQ = 2M0 +mq +mQ hence σrc = 4M0 +2mq,
which for

√
σ = 420–440 MeV and M0 = 300–350 MeV yields the estimate

rc = 1.2–1.5 fm for the string breaking distance, a quite reasonable value.

4.7. Avoided crossings

The observation of string breaking for a Q̄Q system requires taking into
account the mesonic M̄M channels into which the system may decay after
q̄q pair creation from the vacuum. This coupled channel dynamics spans
the Hilbert space H = HQ̄Q + HQ̄qq̄Q and features the avoided crossing
phenomenon familiar from molecular physics in the Born–Oppenheimer ap-
proximation [51]. For two channels, say Q̄Q and M̄M = Q̄qq̄Q, one can
compute the direct correlators yielding the lowest energies

VQ̄Q(r) = σr , VQ̄qq̄Q(r) = ∆q̄Q +∆Q̄q ≡ 2∆ . (49)

These two channels are orthogonal for all r. For simplicity, we have dis-
regarded the Coulomb piece −4αs/3r as well as the residual interaction
between the two heavy–light mesons M = q̄Q and M̄ = Q̄q which is of
van der Waals type and corresponds to meson exchange. Note that these
curves cross when σrc = 2∆. Thus, the spectrum in the Hilbert space with
Q̄Q and M̄M = Q̄qq̄Q components reads

E0(r) = σrθ(rc − r) + 2∆θ(r − rc) , (50)
E∗0(r) = 2∆θ(rc − r) + σrθ(r − rc) , (51)

where now the states Q̄Q and Q̄qq̄Q are piecewise orthogonal. The point
r = rc corresponding to degenerate states is singular. A linear combination
of Q̄Q and Q̄qq̄Q involves a crossed correlator between the channels and
representing a variational improvement. The avoided crossing occurs be-
cause the finite energy of the non-diagonal Q̄Q→ M̄M interaction lifts the
degeneracy, a feature called level repulsion. The adiabatic potential curves
E0(r) and E∗0(r) appear as avoided crossings on the lattice [50] with a finite
and small energy repulsion and a narrow transition region of about 0.1 fm,
see Fig. 5, which resemble the simple shape of Eq. (51). Therefore, as long
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as the size of the system remains small, we may ignore the string breaking
effect. Otherwise, one has to consider a coupled channel dynamics with Q̄Q
and Q̄qq̄Q states. Excited states potential curves should follow a similar
pattern as Eq. (51) but with suitable modifications. Before mixing, one has
the crossing among the energy levels up to q̄q pair creation

V
(0,0)

Q̄Q
(r) = σr , V

(n,m)

Q̄q,q̄Q
(r) = ∆

(n)

qQ̄
+∆

(m)
q̄Q , (52)

where the double excitation character of the adiabatic potential curve is
displayed explicitly and a universal string tension is assumed. The crossings
must happen at σr(n,m)

c = ∆
(n)

qQ̄
+∆

(m)
q̄Q . Avoided crossings take place when

mixing among different sectors is allowed yielding energy curves sketched in
Fig. 5 when using the spectrum from the RQM for c-hadrons [16, 17].
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Fig. 5. Avoided crossings structure of adiabatic energy curves (in MeV) for heavy
QQ̄ sources as a function of the distance (in fm) between the heavy sources. Left
panel: Lowest states from lattice calculations with a threshold 2∆ = 1200 MeV
added [50]. Right panel: Complete double heavy–light spectrum of the RQM for
c-hadrons [16, 17] and included a tiny offset to make clear the structure. We also
draw the envelope σr with σ = (420 MeV)2.

4.8. Limitations in counting states

As we have said, when the size of the system is large enough, the string
breaks and the assumption of a linear potential becomes invalid, see Eq. (51).
Because of the linear dependence of the size with the mass, Eq. (46), this
provides a maximum mass value beyond which the RQM becomes inappli-
cable. A rough estimate for mesons can be made by taking maxMq̄q = 2σrc

which for rc = 1.25 fm gives maxMq̄q ∼ 2.2 GeV. For baryons, the situation
is more complex. The value maxMqqq = 3σrc ∼ 3.4 GeV is actually an
upper bound for an equilateral triangular configuration, however, the string
may break more economically when just two constituents are sufficiently far
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apart, 〈rij〉 ∼ rc. This corresponds to an elongated isosceles triangle (quark–
diquark configuration) such that maxMqqq = 2σrc + σ〈r12〉 ∼ 2σrc +Mq ∼
2.5 GeV. The RQM departs from the PDG at Mq̄q ∼ 2 GeV (see Fig. 4).
While this poses the problem on the validity of the RQM for masses be-
yond the PDG saturation, it also suggests that higher mass states break up
into weakly bound molecular systems with a small net contribution to the
cumulative number. Actually, as argued in [52], counting hadronic states im-
plicitly averages over some scale, and so states such as the deuteron generate
fluctuations in a smaller scale2.

For systems with a heavy quark, we have that for mesons ∆Qq̄ = MQq̄ −
mQ = 2σ〈rQq̄〉 and baryons ∆Qqq = MQqq −mQ = 2σ〈rQq〉 + σ〈rqq〉 string
breaking occurs when ∆Qq̄, ∆Qqq ∼ 2σrc.

5. Thermodynamics of bound states of quarks

5.1. The total cumulative number and equation of state
in the confined phase

The relativized quark model describes all states as bound states of q̄q for
mesons and qqq for baryons [16, 17]. The total cumulative number is then
defined as

N(M) = Nq̄q(M) +Nqqq(M) . (53)

This counts the number of bound states belowM which is depicted in Fig. 8
(note the log scale) where a clear straight line is observed.

By quark–hadron duality, in the limit of very low temperatures, we ex-
pect to have a gas of pions (the lightest hadrons) which due to spontaneous
breaking of chiral symmetry interact weakly at low energies through deriva-
tive couplings. In the chiral limit, the pions would become massless resulting
in a small trace anomaly in the temperature regime where heavier hadrons
are suppressed. For a gas of hadrons, the pressure reads

P =
∑
n

ηn gn

∫
d3p

(2π)3
log
[
1 + ηne

−
√
p2+M2

n/T
]
, (54)

where the sum is over all hadronic states including spin–isospin and anti-
particle degeneracies. From here, and using the cumulative number Eq. (53)

2 The cumulative number in a given channel in the continuum with threshold Mth is
N(M) =

∑
n θ(M −Mn)+ [δ(M)− δ(Mth)]/π which becomes N(∞) = nB+[δ(∞)−

δ(Mth)]/π = 0 due to Levinson’s theorem. In the NN channel, where Mth = 2MN

the appearance of the deuteron changes rapidly at M = 2MN − Bd by one unit
so that N(2MN − Bd + 0+) − N(2MN − Bd − 0+) = 1, but when we increase the
energy, this number decreases slowly to zero at about pion production threshold
N(2MN +mπ)−N(2MN −Bd − 0+) ∼ 0.
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obtained with the RQM [16, 17], it is straightforward to compute the trace
anomaly. The comparison, shown in Fig. 2, with the continuum extrapolated
results of the WB [7] and HotQCD [8] collaborations is remarkable. As a
side remark, let us mention that in QCD 80% of the trace anomaly stems
from the gluonic part of the operator (right-hand side of Eq. (13)) [8].

5.2. Polyakov loop correlators

A straightforward consequence of Eq. (52) is that in the confined phase
the correlator between Polyakov loops in the fundamental representation at
large distances becomes, according to Eq. (32), with w0 = 1 and E0(r) = σr,

e−F1(r,T )/T =
〈

TrFΩ(~r )TrFΩ(0)†
〉

=
∑
n,m

e
−V (n,m)

Q̄Q
(r)/T

= e−σr/T +

(∑
n

e−∆n/T

)2

, (55)

where ∆n = ∆
(n)
q̄Q = ∆

(n)

qQ̄
by charge conjugation. Then, one has

F1(r, T ) = −T log
[
e−VQ̄Q(r)/T + e−F1(∞,T )/T

]
, (56)

where we have replaced σr → VQ̄Q(r) = σr−π/(12r). The result is depicted
in Fig. 6 for T = 50, 100, 150, 200, 250, 300 MeV using the RQM in the case
of c-quarks for F1(∞, T ). We see that at small temperatures there is a little
change in qualitative agreement with lattice calculations [53].
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Fig. 6. Free energy F1(r, T ) (in MeV) as a function of the distance for a set of
increasing temperatures T = 50, 100, 150, 200, 250, 300 MeV (from top to bottom),
using the RQM in the case of c-quarks. We take

√
σ = 420 MeV.
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Corrections to Eq. (55) are expected, as it is based on a sharp string
breaking transition and the fact that we truncated the spectrum to one
light q̄q pair creation. The avoided crossing structure shown in Fig. 5 is
modified by the finite string breaking transition region, which on the lattice
and for the ground state was found to be about ∆r = 0.1 fm. Moreover, for
∆q̄Q = σrc, we expect the q̄Q system to break up into q̄Q and q̄q.

5.3. The Polyakov loop

We can likewise consider the spectrum of a system with one heavy quark
such as c, b, t quarks. An equivalent cumulative number can also be defined
with similar features. Because of the heavy mass, it is more convenient to
subtract the heavy quark mass, mQ, from the hadron mass, M = ∆+mQ.
Using again the RQM for hadrons with one heavy quark, q̄Q for mesons and
Qqq for baryons [16, 17], the total cumulative number is defined as

N(∆) = Nq̄Q(∆) +NQqq(∆) . (57)

The result is depicted in Fig. 7, where similar patterns as the light quark
systems are encountered, namely power behaviour for large ∆ for individual
Nq̄Q(∆) and NQqq(∆) contributions, and Hagedorn type spectrum for the
combined result, with TH ∼ 210 MeV [54].
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Fig. 7. Left: Cumulative number N(∆) as a function of the c-quark and b-quark
mass subtracted hadron mass ∆ = M − mQ (in MeV) with u, d and s quarks,
computed in the RQM [16, 17] and from the PDG [15]. Right: Polyakov loop
as a function of temperature (in MeV). Lattice data from [55] for the HISQ/tree
action and [56] for the continuum extrapolated stout result. We compare lowest-
lying charmed hadrons from PDG [15], the RQM spectrum with one b- or one
c-quark [34].
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The Polyakov loop is obtained by computing the corresponding partition
function of Nq̄Q(∆) and NQqq(∆) with the pertinent statistics since from
Eq. (33) and Eq. (55), we get

LT =
∑
n

e−∆n/T . (58)

The result can be seen in Fig. 7 and compared to lattice data from [55] for
the HISQ/tree action and [56] for the continuum extrapolated stout result3.

6. Limitations of the hadron resonance gas model

6.1. Hagedorn spectrum

As we have mentioned, the HRG has been successfully applied in many
situations below the phase transition, such as the EoS, and quark number
susceptibilities, but little has been achieved with regard to understanding
the emergence of hadronization in the low temperature regime. So, what
is the complete hadron spectrum? Of course, we expect QCD to give the
answer to this question, but this requires a knowledge of all multiparticle
states of stable particles, and most of them are in the continuum. The PDG
tries to answer this question by filling in the expected quark model states q̄q
for mesons and qqq for baryons. While states falling outside this category
are listed as further states, whether or not the list contains redundant states
is difficult to say.

In Fig. 8 we show the total cumulative number for the PDG [15] com-
pared to the RQM [16, 17]. As can be seen, there is an exponential growth
for M ≤ 2 GeV for the PDG states [15] and M ≤ 2.5 GeV for the RQM
states [16, 17]. This remarkable feature of the cumulative number, first
noted by Hagedorn [57], has fascinated theoreticians for decades. The ex-
ponential growth is of the form N(M) ∼ eM/TH , where TH is the so-called
Hagedorn temperature. This pattern was predicted with very few states
and an ever increasing exponential spectrum was anticipated as new states
entered the hadronic list. Different upgrading analyses have confirmed this
exponential growth [58, 59] and even two different Hagedorn temperatures
have been reported (see, however, the discussion around Fig. 4). The on-
set of the Hagedorn spectrum has been questioned more recently [60]. The
growth happens at about M ∼ 1.5 GeV and continues with the same slope
until M ∼ 2.1 GeV. The pattern is even more clear in the RQM, where the
trend stretches up to M ∼ 2.5 GeV. The consequence of a truly Hagedorn

3 We are cavalier on the renormalization issues and multiplicative ambiguities in LT .
Further details are discussed in Ref. [34].
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temperature is that the partition function, and hence all thermodynamics
quantities develop a pole at the Hagedorn temperature

AHRG →
A

T − TH
. (59)

This form is not observed on the lattice although good fits in the range
of 50 MeV < T < 180 MeV for the trace anomaly yield a value of about
TH ∼ 220 MeV.
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Fig. 8. Cumulative number for the PDG [15] (dashed) and the RQM [16, 17] (full).

One important consequence of such a favourable comparison between
PDG and RQM is that it may provide a clue to the onset of the Hagedorn
spectrum. We can estimate the asymptotic behaviour for both q̄q and qqq
spectra in the RQM as the model Hamiltonian is known. As we have shown,
we expect a power behaviour for bothNq̄q(M) andNqqq(M), a fact confirmed
in Fig. 4 where the separated contributions in a log–log scale exhibit this
power-like behaviour. The question is how is it possible that summing two
polynomials we end up with an exponential?

Using the MIT bag model [61] this question was answered by Kapusta
[62] since then the cumulative number can be computed as

∑
nNn(M)/n!gn

from Eq. (43) by using a constant bag volume and evaluating the phase-
space integral for free particles. We have checked this explicitly by summing
the bag modes [37].

6.2. Finite width corrections

Of course, the discrete summation involved in the cumulative number
definition requires considering all masses of states to be interpreted as bound
states. In reality, most of the states listed in the PDG are resonances, i.e.
unstable particles which have instead a mass spectrum characterized by a
distribution ρ(µ) which is peaked at µ = Mn with a certain width Γn.
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This idea has been implemented by the half-width rule, where resonance
masses are regarded as random variables with an uncertainty of half the
width [63]. This interpretation has been fruitful in describing the Regge
spectrum of mesons [64, 65], hadronic form factors [66] as well as providing
an error estimate for the cumulative number itself [22]. This also provides
a quantitative way of defining a figure of merit for the quark model taking
the width as a genuine uncertainty.

In a quantum mechanical picture, where the resonance decay can be
viewed as a tunneling process, the mass shift of a unstable state is nega-
tive as the infinite barrier becomes finite making the energy shift negative.
As a consequence, the cumulative number would increase for a fixed mass,
Nresonance(M) > Nbound(M). This effect goes in the opposite direction of
making NRQM(M) and NPDG(M) to agree in the upper part of the spec-
trum, and that the outnumbering of q̄q and qqq states in the RQM would
be a genuine one.

6.3. Excluded volume condition

The reason for the failure of the HRG in describing the trace anomaly
at T ∼ 170 MeV may be sought by questioning any of the assumptions
involved. One of them, the finite size of hadrons may be tested by computing
the excluded volume.

In an ideal world where the hadrons live forever they still have a finite
size. This is the case, for instance, in the large Nc limit, where one has
Γ/M = O(N−1

c ) but their size is r = O(N0
c ). Due to the finite hadronic

size, when hadrons overlap their underlying composite nature becomes rele-
vant, particularly regarding the Pauli principle as applied to the constituent
quarks.

The finite volume corrections have often been addressed along the lines
of statistical mechanics for real gasses where hadron volumes are usually
assumed to be similar (see e.g. [21]). Taking into account how these correc-
tions originate in the quantum virial expansion as repulsive contributions
through negative phase shifts, it is unclear what are the actual values one
should take for the volume without actually carrying the phase shift analysis.
In a bound states picture, which is the spirit of the HRG since finite width
effects are disregarded, the size of the bound state is expected to increase
with the mass of the state.

One simple estimate of the size of the hadron can be made by using the
MIT bag model [61], where the volume Vi of the hadron is a natural concept
since in that model hadrons with a mass Mi have a sharp edge, ri, where

Vi =
4π

3
r3
i = Mi/(4B) , B = (0.166 GeV)4 , (60)

and thus the volume grows with the mass.
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In the case of the RQM where particles are interacting through a con-
fining σrij potential, and hadrons are localized but have a diffuse edge, the
volume is not a well defined concept. To estimate the value of the volume
occupied by the hadron in the RQM, we take as the meson radius 〈rq̄q〉/2
and for the baryon the radius of the equilateral triangle 〈rqq〉/

√
3. This

yields the volume estimate

Vi =
4π

3

M3
i c

3
i

σ3
,

√
σ = 0.42 GeV , (61)

where ci = 1/4 for mesons and ci = 1/(3
√

3) for baryons. With this pre-
scription, baryons occupy a smaller volume for the same mass. These are
crude estimates, which assume a sharp edge of the hadron, but they show
that the volume does depend on the mass.

Rather than trying to model finite volume corrections, we will analyze
the quite natural condition that the excluded volume cannot be negative,
or equivalently that the occupied volume is smaller than the total volume.
This means∑

i

ViNi ≤ V ,
∑
i

Vi

∫
d3p

(2π)3

gi

eEi(p)/T ± 1
≤ 1 . (62)

In Fig. 9, we illustrate the situation by depicting the occupied volume con-
dition using the MIT bag model volume, Eq. (60), and our estimate for the
RQM hadronic volume, Eq. (61), using both the RQM spectrum and the

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

T HMeVL

C
o
V
o
l

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

T HMeVL

C
o
V
o
l

Fig. 9. The occupied volume condition using three different models for the relation
between the volume and the mass for a hadron. The upper edge of the figure ex-
presses the maximum limit beyond which the conditions is violated. We show: (left
panel) RQM spectrum with Vi ∼M3

i (dotted), PDG spectrum with Vi = Mi/(4B)

(full), PDG spectrum with Vi = M3
i (dashed); (right panel) PDG spectrum with

constant volume using r = 1 fm (full), r = 0.75 fm (dotted) and r = 0.5 fm
(dashed).
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PDG spectrum. As one can see, the condition is violated for temperatures
T ∼ 150–180 MeV where the HRG departs from the lattice data. This is
an interesting fact, since it relates the crossover to a volume effect, which
deserves further investigation. For comparison, we also show in the right
panel the results for a constant hadronic volume taking the radius values
r = 0.5, 0.75, 1 fm. The choice r ∼ 0.75 fm resembles the RQM and bag
excluded volume condition.

7. Insights from gluodynamics

Matters get simpler in the case of pure gauge theories where gluons
are the only degrees of freedom. In QCD, this corresponds to taking the
limit mq → ∞ for all quark species. As mentioned, the Polyakov loop
in the fundamental representation becomes a true order parameter of the
deconfinement phase transition since at low temperatures it vanishes as LT =
O(e−mq/T ) in this limit. The Polyakov loop in the adjoint representation
does not vanish below Tc. Gluon–glueball duality means in this case that
any observable defined as an expectation value of a gauge invariant and
hence colour singlet operator can be determined in terms of purely colour
singlet states in the confined phase. As we will illustrate, this means in
practice that the EoS can be determined in terms of glueballs (bound states
of gluons) whereas the Polyakov loop in the adjoint representation can be
determined from gluelumps which are bound states of gluons in the presence
of a colour octet source [67–70].

7.1. The glueball gas model

In pure gauge theories, the glueball spectrum has been determined in
the lattice [71]. (For full unquenched QCD glueball studies see e.g. [72]. A
general perspective including phenomenology has been reviewed in Ref. [73].)

Gluons are massless particles for which the helicity formalism [74] is the
proper one. For spin-1 particles, this means that just the ±1 projections are
possible. This issue was first discussed by Barnes [75] within the context
of gluonium (see [76–78] for an upgraded discussion). In the helicity for-
malism, two-gluon states JPC = 1−+, 1++, 3−+, 5−+ are forbidden in accor-
dance to lattice results [71, 79]. The glueball spectrum of two gluons might
be obtained from a full fledged solution of the Bethe–Salpeter equation for
two spin-1 particles [80–83]. In practice, solving these equations requires
an ansatz for the kernel which is usually obtained by making reasonable ap-
proximations. For our discussion, we will make some drastic approximations
which actually illustrate one important point regarding gluon–glueball dual-
ity at finite temperature. We will assume the following rotational invariant
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and spin independent Hamiltonian in the CM system

Hψn =

(
2p+ σAr −

3αs

r

)
ψn = Mnψn . (63)

In this scheme, the total spin of the glueball J is obtained by composing
the gluons spin and the relative orbital angular momentum. Due to Bose
statistics, the total glueball wave function must be, besides a colour singlet
state, fully symmetric. Thus, the spin and orbital part must be both either
symmetric or antisymmetric. This gives a total degeneracy of (2l+ 1)g(g ±
1)/2 for even/odd l, where g is the number of spin states of the gluon. The
lowest one is the 0++ glueball [43]. Then, the cumulative number becomes

N(M) =
∑
n,l

νl(2l + 1)θ(M −Mnl) , (64)

where νl = g(g ± 1)/2 for even/odd l.
A simple estimate using the uncertainty principle for the ground state is

made by taking pr ∼ 1, thus

M0 = min

[
2

r
+ σAr −

3αs

r

]
= 2
√

(2− 3αs)σA ≈ 4
√
σ .

For excited states, an estimate can be obtained by using the Bohr–Sommerfeld
quantization condition (WKB spectrum). For s-wave, this gives

2

a∫
0

dr p(r) = 2π(n+ α) ,

where p(r) = (M−σAr+3αs/r)/2, a is the classical turning point, p(a) = 0,
and α depends on the boundary conditions. This produces (neglecting the
Coulomb term)

M2
n = 4πσA(n+ α) (WKB, s-wave) .

More systematically, the eigenvalues of the CM Hamiltonian, Eq. (63),
can be computed by diagonalizing it in the harmonic oscillator wave func-
tions basis

Rnl(r) =
unl(r)

r
=
e−

r2

2b2

4
√
π

(r
b

)l√ (n− 1)!2l+n+1

b3(2l + 2(n− 1) + 1)!!
L
l+ 1

2
n−1

(
r2

b2

)
, (65)
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where Ll+
1
2

n−1(x) are associated Laguerre polynomials. The advantage of the
harmonic oscillator basis is that the matrix elements of the pseudodifferential
operator |~p | are simply related to those of r 4.

The reduced wave functions unl(r) are normalized to unity
∞∫

0

drr2Rnl(r)
2 =

∞∫
0

drunl(r)
2 = 1 ,

and satisfy the equation

−u′′nl(r) +

[
r2

b4
+
l(l + 1)

r2

]
unl(r) =

1

b2
(2l + 4n− 1)unl(r) . (66)

Here, b has dimensions of length. The single-particle energies are

εnl =
1

2Mb2
(4n+ 2l − 1) = ω (2n+ l − 1/2) ,

where the oscillator frequency is ω = 1/(Mb2). Thus, we can compute
the matrix elements Hnl,n′l up to some maximum values of n and l and
diagonalize the truncated Hamiltonian. A list of eigenvalues (for a linear
potential) for n ≤ 8 and l ≤ 13 can be looked up in Ref. [84]. The quoted
accuracy is right provided we take the dimension as large as N = 100.

A derivative expansion [85] can be used to evaluate the cumulative num-
ber of the Hamiltonian in Eq. (63). In the present context, this is closely
related to a semiclassical expansion and a large mass expansion. A direct
application of the results in [85] gives5

N2g(M) =
g2

2

∫
d3xd3p

(2π)3
θ(M −H(p, r)) + . . .

=
g2

2

(
M6

720πσ3
A

+
αsM

4

16πσ2
A

+
9α2

sM
2

8πσA
− M2

9πσA
+ . . .

)
. (67)

By restoring the ~s in the Hamiltonian, σA → σA/~ and αs → ~αs, we
can see that the first quantum corrections enter in the last term quoted. As
advertised, the derivative expansion corresponds to a power expansion inM ,
with a general form

N(M) =
∑
n

anM
n . (68)

4 Beware that the Fourier–Bessel transform introduces an additional phase (−1)n to the
momentum space wave function Pnl(p) ≡

∫∞
0
jl(pr)Rnl(r)r

2dr = (−1)nRnl(r = pb2).
5 For simplicity, here we disregard the effect of the different degeneracies in even and
odd partial waves. It has no effect at leading order in ~.
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We show in Fig. 10 the comparison of the full diagonalization in the harmonic
oscillator basis to the semiclassical large mass expansion. As we see, the
agreement is rather good for a relatively low value of N(M).
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Fig. 10. Left panel: Cumulative number of states for two-gluon glueballs as a
function of the mass in units of the fundamental string tension

√
σ, compared to

the semiclassical approximation. Right panel: Two-gluon states contribution to
the trace anomaly compared to the lattice data from the WB Collaboration [40].

It is now straightforward to compute the corresponding contribution to
the trace anomaly from the expression6

A2g
glueball(T ) =

∑
n

∞∑
k=1

1

2π2k

(
Mn

T

)3

K1

(
kMn

T

)
, (69)

where Mn are eigenvalues of H with the corresponding spin–orbit-colour
degeneracies compatible with the colour singlet and Bose character of the
two-gluon states. The most recent lattice data from the WB Collaboration
[40] include 7 points for A(T ) below Tc which being a dimensionless quantity
depends just on the dimensionless ratio T/Tc. In our case, we only have the
dimension

√
σ and thus the dimensionless A2g(T ) depends on T/

√
σ. Thus,

we can determine Tc/
√
σ from a fit of A2g(T ) to the lattice data [40].

For g=3, we get χ2 = 3.2 for the first 6 lattice data but χ2/ν = 56/(7−1)
when the last point is added. Actually, the value of σ is already determined
by the first point, although its error decreases as new points are included
in the fit. This provides some robustness to the analysis, and indicates that
for T ≤ 0.9Tc the trace anomaly is mainly saturated by two-gluon glueballs.
The fit gives

Tc√
σ

= 0.71247 , lattice 0.629(3) , (70)

a quite reasonable result.
6 This expression follows from the expansion of Eq. (1) in powers of e−En(p)/T prior to
integrate over the momentum.
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We can proceed further in the analysis by rewriting the trace anomaly
for bosons as

A(T ) =
∞∑
k=1

∫
dM

∂N(M)

∂M

1

2π2k

(
M

T

)3

K1

(
kM

T

)
,

and making use of the formula

∞∫
0

dM

(
M

T

)3 Mn−1

2π2k
K1(kM/T ) =

(n+ 2)(2T )nΓ
(
n
2 + 1

)2
2π2kn+4

, (71)

as well as the large M expansion of the cumulative number, Eq. (68). Then,
we get an equivalent large T expansion for the trace anomaly

A(T ) =
∑
n

an
n(n+ 2)

2π2
(2T )nζ(n+ 4)Γ

(n
2

+ 1
)2

. (72)

For instance, in the two-gluon sector, we get

A2g(T ) =
2048π8

3465
a6T

6 +
128π6

1575
a4T

4 +
128π6

1575
a2T

2 . (73)

Applying the results in Ref. [85] for the coefficients ai yields

A(T ) =
32768π7T 6

113669325σ3
+

512π5αsT
4

127575σ2
+

16

945
π4T 2

(
2α2

s

πσ
− 16

81πσ

)
. (74)

The interesting feature is that the effect of the full quantized spectrum
can be very well described by the semiclassical expansion for the temper-
atures available on the lattice. Thus, we can use instead the semiclassical
expansion to fit the parameters and sidestep the diagonalization.

As a further remark, let us note that a direct attempt to fit the poly-
nomial formula fails since there are too few data points and the curve is
smooth. The correlations implicit in the 2g-Hamiltonian among the differ-
ent coefficients are however enough to guide the fit. The last data point is
intriguing and the most obvious candidate to fill the gap is by looking at
three-gluon glueballs. The three-gluon potential on the lattice has been ana-
lyzed [86] and it has been found that the triangle is preferred to the starfish
configuration. In a semirelativistic framework, three-gluon glueballs have
been addressed in Ref. [87]. Thus, we can take the partonic Hamiltonian
result which sets a scale separation between 2g-WKB and 3g glueballs

A3g(T ) ∼ e−M3g/T � A2g(T ) . (75)
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Whether or not 3g saturate the missing contribution, or even multigluonic
states are needed remains to be seen. On the other hand, let us note that
using the lowest glueballs on the lattice we found [88] that while the cumula-
tive number could, after come coarse graining, be described as exponentially
growing with TH = 2.8Tc, the effect on the trace anomaly was tiny. The
High-Precision Thermodynamics in connection to the Hagedorn Density of
States has been discussed in [89]. A satisfactory fit with TH = 1.024(3)Tc

was obtained by adding a string motivated Hagedorn spectrum to the lowest
0++ and 2++ glueballs (see also [90] and [40] ). The fate of glueballs above
the phase transition has been analyzed in Ref. [91].

7.2. The adjoint Polyakov loop and the gluelump spectrum

According to duality, the adjoint Polyakov loop can be computed in the
confined phase in terms of the gluelump spectrum. In the simplest case, this
system corresponds to one massless spin-1 particle and one gluon source
(infinitely heavy) which is the CM system. The Salpeter equation for the
Hamiltonian operator (the Coulomb term is omitted) reads

Hψn = (p+ σAr)ψn = Mnψn , (76)

which by rescaling the coordinate can be brought to the glueball spectrum

Mgluelump = Mglueball/
√

2 . (77)

Thus, the smallest mass gap in the pure gauge theory is the gluelump and
not the glueball! This scaling relation of the spectrum implies that the
partition function fulfills Zgluelumps(T ) = (2/g)Zglueballs(T/

√
2). Likewise,

for the adjoint Polyakov loop at low temperatures implies

〈Ω8〉T ∼ Zgluelumps(T ) =
∑
n

e−∆n/T 6= 0 (T < Tc) . (78)

7.3. The powers of deconfinement

One straightforward application of the glueball gas is that because they
are heavy, the pressure in the confined phase is tiny,

P (T ) = Pglueball(T ) ≈ e−MG/T (T < Tc) , (79)

where MG � Tc. On the other hand, at high temperatures the pressure is
due to a free gluon gas

Pgluons(T ) =
b0
2
T 4, b0 =

2π2

45

(
N2
c − 1

)
(T � Tc) . (80)
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When the trace anomaly for gluodynamics was first evaluated on the lat-
tice [26] across the phase transition, the common wisdom was the standard
textbook explanation of the deconfinement based on the MIT bag model,
where hadrons are bubbles in the strongly interacting vacuum with an en-
ergy density B ∼ MH/V ∼ 1 GeV/fm3 ∼ (0.3 GeV)4 [61]. Thus, the total
pressure was

P (T ) = Pgluons(T )−B , T > Tc , (81)

and continuity of the pressure implies Pgluons(Tc) = B for MG � Tc, and
thus yields the trace anomaly

A =
ε− 3P

T 4
=

4B

T 4
, T > Tc . (82)

However, this behaviour is in complete disagreement with the old [26] and
newest [40] lattice data.

Ten years ago, we looked into the Polyakov loop and found that, con-
trary to expectations, one has inverse temperature power corrections above
the phase transition of the form of Eq. (24) [31], with a remarkable good
description of the data in a wide range of temperatures. These power correc-
tions were quite surprising and completely unexpected7, since it indicated
the breakdown of perturbation theory for temperatures as large as 5Tc, but
have been verified on the lattice [35, 36] and other models [93].

One possibility to explain the trace anomaly data is to assume instead
that there is a temperature dependence in the bag constant (a fuzzy bag [94],
see also [88, 95–97] for a unified setup)

P (T ) = Pgluons(T )−Bfuzzy(T ) (T > Tc) , P (Tc) = Pglueballs(Tc) = 0 .
(83)

An inspiring consequence from the power corrections of Eq. (24) is to assume

Bfuzzy =
b0
2
T 2

c T
2 −→ P =

b0
2

(
T 4 − T 2T 2

c

)
, (84)

which gives

A =
ε− 3P

T 4
= b0

(
Tc

T

)2

, b0 = 3.51 . (85)

The result is presented in Fig. 11 and compared with the most recent
lattice data from the WB Collaboration [40]. As we see, the agreement for
T > 1.5Tc of such a simple model is impressive. These features are confirmed

7 In fact, a 1/T 2 behaviour in the trace anomaly data of [26] was already noted by the
authors of [92].
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for any Nc [98, 99]. Further analyses involve renormalization group resuma-
tions [88], hard thermal loops [100] as well as holographic methods [101–103],
but a clear physical picture of the undoubtful but mysterious powers is still
lacking.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

HTc�TL2

HΕ
-
3
p
L�
T
4

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T�Tc

HΕ
-
3
p
L�
T
4

Fig. 11. Trace anomaly as a function of 1/T 2 and T comparing the fuzzy bag of
Pisarski [94] A(T ) =

(N2
c−1)π2

45

(
Tc

T

)2
θ(T − Tc) with the lattice data from the WB

Collaboration [40].

8. Emergence of duality with Polyakov loop models

8.1. Chiral quark models at finite temperature

Up to now, we have assumed that duality holds without specifying how
this might occur from a microscopic point of view. Here, we want to illustrate
how duality arises from quark models and the relevant provisos to achieve
this goal. A full QCD argument for the hadronization of the Polyakov loop
was advanced and elaborated in Refs. [34, 37].

Chiral quark models have been used (e.g. [104] and references therein)
for a long time to describe the chiral phase transition. It was then realized
that they lead to a wrong Nc counting of thermal corrections, since they are
described as one quark loop and hence are O(Nc). In reality, they corre-
spond to zero point energy of meson states which are O(N0

c ). For instance,
in the quark condensate, one has 〈q̄q〉0 = O(Nc) but 〈q̄q〉T −〈q̄q〉0 = O(N0

c )
(wrongly counted by the CQM as O(Nc)). This observation was well known
although surprisingly nothing was done about it. The requirement of large
gauge invariance motivated us for the introduction of the Polyakov line
as an independent variable [105] which has a local and quantum charac-
ter. Previous works had already dealt with this coupling [106, 107] initi-
ating the Polyakov–Nambu–Jona-Lasinio (PNJL) saga [108–117] where the
Polyakov line has been taken global and classical. This allowed to study
the interplay between chiral symmetry restoration and breakdown of the
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center symmetry although, as we have repeatedly pointed out in our previ-
ous works [105, 118–121], this generates an undesirable ambiguity of group
coordinates as well as a non-vanishing value for the Polyakov loop in the
adjoint-representation, contradicting lattice simulations8. These difficulties
may be overcome [105, 118] by recognizing the local and quantum nature of
the Polyakov loop. Using this interpretation, we have shown that a gateway
to the hadron resonance gas may be established if the motion of quarks in
the field generated by the Polyakov loop is quantized.

We note that on the lattice [124], the HRG has been deduced in strong
coupling and for large Nc by considering hadrons at rest.

8.2. The quantum and local Polyakov loop

As we have mentioned above, large gauge invariance is an important re-
striction at finite temperature which breaks down in perturbation theory.
In the Polyakov gauge, one can automatically implement large gauge invari-
ance by considering the Polyakov loop line Ω(~x ) as an independent variable,
which in the Polyakov gauge becomes a diagonal unitary matrix in colour
space. This is equivalent to a minimal coupling scheme in the time deriva-
tive of a dynamical quark or gluon field. We refer to Refs. [105, 118–120] for
further motivation.

Following this prescription, the partition function of the Chiral Quark
Model (CQM) at finite temperature can be written as

ZCQM =

∫
DΩ e−S(T,Ω) , (86)

where Ω = eigA0/T and DΩ is the invariant SU(Nc) Haar group integration
measure, for each SU(Nc) variable Ω(~x ) at each point ~x . Here, the action
is

S(T,Ω) = Sq(T,Ω) + SG(T,Ω) . (87)

The fermionic contribution depends on the quarks (and antiquarks), and it
is obtained from the corresponding fermion determinant. Assuming mass-
degenerated quarks, for simplicity, the effective action reads

Sq(T,Ω) = −2
∑
q

∫
d3xd3p

(2π)3

(
Trc log

[
1+Ω(~x ) e−Eq(p)/T

]
+c.c.

)
, (88)

where c.c. stands for the complex conjugated contribution stemming from
the antiquarks and 2 is the spin degeneracy factor for spin 1/2 particles.

Here, Eq(p) =
√
~p 2 +M2

q is the energy of a quark with total mass Mq =

8 See Refs. [122, 123] for a study of this interplay from effective potential methods.
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M0 + mq, and M0 is the constituent mass. As one can see, the diagonal
part of the Polyakov loop corresponds to consider chemical potentials for
different colour species. Large colour gauge invariance is implemented by
just averaging over group elements. We will check whether this minimal
coupling scheme for the Polyakov line complies with known QCD properties
[34, 37], such as the fact that the expectation value of the Polyakov loop
admits a hadronic representation.

8.3. Hadronic representation of the Polyakov loop

In order to see this, consider a system with Nf dynamical quarks and an
extra heavy quark (not antiquark) of an arbitrarily large mass mH at rest
located at a fixed point and with fixed spin and colour a = 1, . . . , Nc. From
Eq. (88), the change in the effective action is

Sq (Nf + 1)− Sq(Nf ) = −2 log
(

1 +Ωaae
−Eh/T

)
≈ −2e−mH/TΩaa , (89)

yielding the partition function

ZH
CQM(Nf + 1)

ZCQM(Nf )
= 1 + 〈Ωaa〉2e−mH/T + . . .

= 1 +
1

Nc
〈TrcΩ〉2e−mH/T + . . . (90)

after averaging over colour degrees of freedom implied by DΩ. Thus, we get

1

Nc
〈TrcΩ〉 = lim

mH→∞

1

2

[
ZH

CQM(Nf + 1)

ZCQM(Nf )
− 1

]
emH/T . (91)

To evaluate the r.h.s., we explicitly separate in the corresponding HRG
hadrons composed of hadrons made of Nf dynamical quarks and one ex-
tra heavy quark. The mass of such hadrons can be written as

Mq...,H = ∆q... +mH , (92)

where by definition in ∆, it has been subtracted the mass of the heavy
quark. On the other hand, the HRG partition function with Nf + 1-flavours
with this extra heavy quark H can be separated into hadrons containing it
or not. To do this, we reinstate the finite box quantization conditions on
the momentum ~p to make sense of the limit mH → ∞ and V → ∞ (the
Compton wavelength of the heavy quark is shorter than the box size) and
get

logZHHRG(Nf + 1) = logZHRG(Nf ) +
∑
~p ,α

ηαgα log
[
1 + ηαe

−(∆α+mH)/T
]
.

(93)
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In the limit mH →∞, only the states with ~p = 0 survive corresponding to
a heavy Hadron at rest contribution, and thus we get the result

1

2

∑
α

gαe
−∆α/T = lim

mH→∞

1

2

[
ZH

HRG(Nf + 1)

ZHRG(Nf )
− 1

]
emH/T . (94)

Quark–hadron duality at this level implies ZHRG = ZCQM, so that we get

1

Nc
〈TrcΩ〉 =

1

2

∑
α

gαe
−∆α/T (95)

providing confidence on the assumed minimal coupling of the Polyakov line
to quarks.

8.4. From chiral quark models to the hadron resonance gas

The previous models can be pictured as multiquark states which are cre-
ated or annihilated at point ~x and momentum ~p with factors Ω(~x )e−Ep/T

and Ω(~x )†e−Ep/T . This corresponds to classical particles with internal quan-
tum numbers and statistic, i.e. to a second quantized but not first quantized
formalism.

At low temperatures, quark Boltzmann factors are small e−Ep/T � 1,
and the quark contribution to the action becomes small

Sq[Ω] = −2Nf

∫
d3xd3p

(2π)3

[
TrcΩ(x) + TrcΩ

†(x)
]
e−Ep/T + . . . (96)

Thus, one has

ZCQM =

∫
DΩ e−(Sq [Ω]+SG[Ω]) =

〈
e−Sq [Ω]

〉
G

=
〈
1− Sq[Ω] + 1

2Sq[Ω]2 + . . .
〉
G
, (97)

where 〈 〉G incorporates besides the group integration measure a gluon piece
which needs not be specified at this point. This expansion corresponds to
a partonic expansion in terms of constituents q, q̄, q̄q, . . . The lowest non-
vanishing q̄q contribution reads

Zq̄q = (2Nf )2

∫
d3x1d

3p1

(2π)3

∫
d3x2d

3p2

(2π)3
e−E1/T e−E2/T

〈
TrcΩ(~x1)TrcΩ

†(~x2)
〉
G︸ ︷︷ ︸

e−σ|~x1−~x2|/T

= (2Nf )2

∫
d3x1d

3p1

(2π)3

d3x2d
3p2

(2π)3
e−H(x1,p1;x2,p2)/T , (98)
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where the q̄q Hamiltonian reads

H(x1, p1;x2, p2) = E1 + E2 + V12 . (99)

Note that in the CM frame, we get the same Salpeter equation we discussed
previously. Quantization in the CM frame p1 = −p2 ≡ p leads to(

2
√
p2 +M2 + Vqq̄(r)

)
ψn = Mnψn , (100)

and boosting the CM to any frame with momentum P , we get the result

Zq̄q →
∑
n

∫
d3Rd3P

(2π)3
e−
√
M2
n+P2

T , (101)

which corresponds to the lowest order in a gas of non-interacting mesons [125].
We have checked that this equivalence holds up to q̄qq̄q contributions, but
fails for higher Fock state components [37]. The reason has to do with an
ambiguity on what states should be considered colour irreducible, i.e. those
in which all constituents are needed to screen the source, without additional
constituents forming a colour singlet by themselves. Our analysis faces, once
more, the difficulties in making a clear cut definition of a hadronic state out
of multiparton states.

The Polyakov loop can be treated in a similar way

1

Nc
〈TrcΩ〉 = 2Nf

∫
d3x d3p

(2π)3
e−Ep/T

1

Nc

〈
TrcΩ(~x0)TrcΩ

†(~x )
〉
G︸ ︷︷ ︸

e−σ|~x0−~x|/T

+ . . .

=
2Nf

Nc

∫
d3x d3p

(2π)3
e−H(~x,~p )/T →

2Nf

Nc

∑
n

e−∆n/T , (102)

where we have quantized the heavy–light ground state system as

H(p, x)ψn =
(√

p2 +m2
q + σr

)
ψn = ∆nψn . (103)

In previous works, the quantization of the quark motion was not considered,
and as a consequence, we failed to see the connection to the HRG. In particu-
lar, we found that LT ∼ e−M0/T so we proposed to determine the constituent
quark mass from an analysis of the Polyakov loop on the lattice at low tem-
peratures9. While fits along these lines turned out to provide too large a
constituent mass we preferred to keep the LT ∼ e−M0/T behaviour with a

9 As we have noted above, in the heavy-quark limit one has LT ∼ e−mQ/T .
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suitable proportionality factor [119]. As we have seen here, the Boltzmann
factor contains the gap ∆ (the heavy–light meson mass) which according
to our discussion above corresponds to twice the constituent quark mass, so
that LT ∼ e−2M0/T and now the value forM0 from the lattice is phenomeno-
logically acceptable.

A similar argument holds for the correlation function between Polyakov
loops. This requires an assumption for a four-point correlator in the pure
gluonic theory which at low temperature we assume to be〈

TrcΩ(~x )†TrcΩ(0)TrcΩ(~x1)†TrcΩ(~x2)
〉
G

= e−σr/T e−σr12/T

+ e−σ|~x−~x1|/T e−σr2/T + e−σ|~x−~x2|/T e−σr1/T (104)

and satisfies cluster decomposition properties. This yields a disconnected
piece due to the effect of the quark determinant〈

TrcΩ(~x )TrcΩ
†(0)

〉
=

e−σr/T [1 + Zq̄q + . . . ] + |〈TrcΩ〉|2

1 + Zq̄q + . . .

= e−σr/T + |〈TrcΩ〉|2 . (105)

This reproduces the free energy formula Eq. (55) based on a avoided crossing
structure of the Q̄Q energy levels, see Fig. 5, and yields the result for F1(r, T )
sketched in Fig. 6.

8.5. Gluon models with Polyakov loop

Wemay introduce gluon fields besides those involved by the Polyakov line
variable. A particularly interesting case is gluodynamics. At one loop, the
effective potential has been computed in [126]. More recently, one loop gluon
actions with Polyakov loops in the adjoint representation were suggested in
Refs. [127–130], where the background gauge for the classical gluon-field was
assumed and a Polyakov gauge for the quantum fluctuations in the field. We
consider this form of dynamics but keeping our interpretation of a quantum
and local Polyakov loop variable. The partition function is

Z =

∫
DΩw[Ω]Z[Ω] ≡ 〈Z[Ω]〉 , (106)

where we assume the two-point correlation function to be

〈TrAΩ(~x )TrAΩ(~y )〉 = e−σA|~x−~y |/T . (107)

According to our previous discussion and foreseeing the quantization of par-
tonic degrees of freedom, we write in compact form the action as follows (see
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also [37])

logZ[Ω] = −Tr log
(

1− e−h/T
)
, (108)

where Tr =
∫
d3xTrA

∑
λ=± and the single particle Hamiltonian is given by

h = p− igA0(~x ) , Ω(~x ) = eigA0(~x )/T . (109)

The interpretation of the previous formula is that of a particle in a random
purely imaginary gluon field with given correlation functions, and it has been
written in a way that preserves large gauge invariance in the Polyakov gauge.
In the semiclassical approximation, we can replace the quantum mechanical
trace as we already did before10

logZ[Ω] = −2

∫
d3xd3p

(2π)3
TrA log

(
1− e−p/TΩ(~x )

)
, (110)

where the factor 2 comes from the two spin states. In the limit of a classical
and global Ω, we get the action of Refs. [127–130]. The similar criticisms on
the ambiguities on the choice of group coordinates at the mean field level
apply here. The compact notation in Eq. (108) is extremely useful to carry
out the partonic expansion analysis at low temperatures, and pursue the
mapping to the glueball gas. Thus, we have to compute

Z =
〈

exp
[
Tr log

(
1− e−h/T

)]〉
(111)

in a power expansion of e−h/T . At lowest order, we have 〈Tr e−h/T 〉 = 0,
and the next order yields

1

2

〈(
Tr e−h/T

)2
〉

=
g2

2

∫
d3x1d

3p1

(2π)3

d3x2d
3p2

(2π)3
e−H(p1,x1;p2,x2)/T

→ Tr2 e
−H2/T , (112)

where H2 is the two-gluon Hamiltonian whose spectrum provides the two-
gluon glueballs discussed in the previous section, and Tr2 is the trace in
the corresponding two-gluon Hilbert space. Note that the factor 1/2 corre-
sponds to the correct Boltzmann counting which originates in the quantum
statistical mechanics to avoid the Gibbs paradox in the high-temperature
limit [131]. Following similar steps as before, we can obtain the gluelump
representation of the Polyakov loop in the adjoint representation. One can

10 Note that we have scalar gluons with 2 spin states. This is not 3 spin-1 states nor 2
helicity states.
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analyze what happens for higher Fock states since the glueball gas corre-
sponds to having

logZ = −
∑
n

Trn log
(

1− e−Hn/T
)
, (113)

where here Tr =
∑

n Trn represents the trace over the whole multigluon
Hilbert space. Pursuing the low temperature expansion to higher orders, we
have checked that up to three gluons included, the mapping with the glueball
mass works but ambiguities arise for 4-gluon states, where the possibility of
forming separate and weakly interacting 2-gluon glueballs first arises. We are
facing again the concept of colour irreducible clusters inside colour neutral
states [37] and the very definition of a hadron.

9. Conclusions

Quark–hadron duality at finite temperature is the statement that at low
temperatures hadrons can be considered a complete basis of states. The
naive hadron resonance gas, while simple minded, works well enough at
sufficiently high temperatures as to deserve dedicated attention on why be-
comes this picture invalid. This success remains a mystery over the years
since Hagedorn first proposed it.

The listed PDG states incorporate currently just the qq̄ or qqq states
which fit into the conventional quark model, but what is the nature of
states that are needed when approaching the crossover from below? As
we have seen, saturating at subcritical temperatures requires many hadronic
states, and so the excited spectrum involves relativistic effects even for heavy
quarks. This point makes relativistic quark models a potential source for
investigation of the hadron spectrum from a global and thermodynamic per-
spective since the number of needed excited states challenges any lattice
QCD calculation. Moreover, the hadronic mapping of Polyakov loops in fun-
damental and higher SU(Nc) colour group representations allows to deduce
multiquark states, gluelumps and hybrid states, containing one or several
heavy quark or gluon sources. This goes beyond the models and opens up
the possibility of a Polyakov loop spectroscopy including exotics. While the
question on what is the complete hadronic particle spectrum remains still
open, we envisage the possibility of grasping the yet unknown physics of the
phase transition by enquiring this question at the lowest possible tempera-
ture where the hadron resonance gas picture fails.
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