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We present results of systematic calculations of the isospin-symmetry-
breaking corrections to the superallowed I = 0+, T = 1 → I = 0+, T = 1
β-decays, based on the self-consistent isospin- and angular-momentum-pro-
jected nuclear density functional theory (DFT). We discuss theoretical un-
certainties of the formalism related to the basis truncation, parametriza-
tion of the underlying energy density functional, and ambiguities related
to determination of Slater determinants in odd–odd nuclei. A generaliza-
tion of the double-projected DFT model towards a no core shell-model-like
configuration-mixing approach is formulated and implemented. We also
discuss new opportunities in charge-symmetry- and charge-independence-
breaking studies offered by the newly developed DFT formalism involving
proton–neutron mixing in the particle–hole channel.
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1. Introduction

Isospin impurities in nuclear wave functions resulting from the isospin-
symmetry non-conservation are of the order of a few percent. Still, they
impact a plethora of nuclear phenomena, especially in self-conjugate nuclei.
Of particular importance are the ∆T = 0 electric dipole transitions (E1)
in N = Z nuclei, which, in the long-wavelength approximation, are isospin
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forbidden [1–3], and thus can proceed only via the isospin mixing. This offers
a method that allows for an empirical assessment of the isospin-symmetry
breaking (ISB).

In the case of the Fermi and Gamow–Teller β-decay transitions, the se-
lection rules are ∆T = 0 and ∆T = 0,±1, respectively, except for the
0+ → 0+ transitions that are pure Fermi decays [4]. Although the influ-
ence of the ISB corrections on β-decay rates is generally small, their pre-
cise knowledge is critically important for the superallowed Fermi β-decays
I = 0+, T = 1→ I = 0+, T = 1 between the isobaric analogue states (IAS)
and, to a somewhat lesser degree, for the decays between the T = 1/2 mirror
nuclei. The reason is that these transitions provide the most precise data
on the vector (Fermi) coupling constant GV and the leading element Vud
of the Cabibbo–Kobayashi–Maskawa (CKM) flavour-mixing matrix. This
allows for testing the unitarity of the CKM matrix, violation of which may
indicate a new physics beyond the Standard Model of particle physics, see
Ref. [5] and references quoted therein.

Because of the smallness of isospin impurities, their accurate microscopic
calculation is a challenging task. The reason is that they result from a
subtle balance between the isospin-symmetry conserving short-range strong
interaction and the ISB long-range Coulomb interaction that polarizes the
entire nucleus. Capturing that balance is possible only within the no core
approaches, which, in heavier nuclei, reduces the possible choices to the nu-
clear DFT. The DFT, however, cannot be directly used to compute isospin
impurities because of the unphysical isospin mixing caused by the sponta-
neous violation of isospin [6]. This obstacle hindered the progress in the
field for decades. Only very recently, we have developed the isospin- and
angular-momentum projected DFT approach capable of treating rigorously
the (conserved) rotational symmetry and, at the same time, tackle the ex-
plicit breaking of the isospin symmetry due to the Coulomb field [7–10].

The aim of this work is to present a brief overview of recent results for the
isospin mixing and ISB corrections to the I = 0+, T = 1 → I = 0+, T = 1
β-decays, focusing on theoretical uncertainties and limitations of the em-
ployed isospin- and angular-momentum-projected DFT framework. All cal-
culations presented here were obtained by using the DFT solver hfodd version
(2.249t) or higher [11, 12]. The paper is organized as follows. Basic features
of the formalism are summarized in Sec. 2. Section 3 discusses the ISB
corrections to superallowed β-decays, focusing on theoretical uncertainties.
A dynamic variant of the model, which involves the configuration mixing,
is presented in Sec. 4 together with preliminary applications. Section 5
overviews new opportunities in studying the ISB mechanism offered by the
newly developed proton–neutron-symmetry-breaking DFT. Finally, Sec. 6
summarizes the main findings of this work.
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2. Isospin and angular momentum projected DFT model

The calculation starts with solving Skyrme–Hartree–Fock (SHF) equa-
tions without pairing using a Hamiltonian that consists of the isospin-invar-
iant kinetic energy and Skyrme interaction, and Coulomb force being the
only explicit source of isospin-symmetry violation in the model. The re-
sulting self-consistent Slater determinant |ϕ〉 breaks rotational and isospin
invariance but conserves the third component Tz of the isospin. It is used as
a reference to create a basis of good-isospin–good-angular-momentum states

|ϕ; IMK; TTz〉 =
1√

Nϕ;IMK;TTz

P̂ TTz ,Tz P̂
I
M,K |ϕ〉 , (1)

where P̂ TTz ,Tz and P̂ IM,K stand for the standard isospin and angular-momen-
tum projection operators [13], respectively. The set (1) is, in general, over-
complete because the intrinsic quantum number K is not conserved. In
order to overcome this difficulty, a norm matrix of states (1) is built and di-
agonalized for each I and T . The eigenstates η(i) of the norm matrix having
non-zero eigenvalues ni > 0 are used next to construct a subset of linearly
independent states called natural states

|ϕ; IM ; TTz〉(i) =
1
√
ni

∑
K

η
(i)
K |ϕ; IMK; TTz〉 , (2)

which span a subspace dubbed collective space. The procedure is described in
detail in Ref. [14]. Finally, the Hamiltonian is rediagonalized in the collective
space and the resulting eigenfunctions are

|n; ϕ; IM ; Tz〉 =
∑

i,T≥|Tz |

a
(n;ϕ)
iIT |ϕ; IM ;TTz〉(i) , (3)

where index n labels the eigenstates in ascending order of energies. The
isospin impurities are defined as: αnC = 1 −

∑
i |a

(n;ϕ)
iIT |2, where the sum

is performed for a fixed value of the isospin T that dominates the wave
function (3). The impurities αnC are free from the spurious isospin mixing.

The isospin impurities can be studied using the isospin-only-projected
variant of the approach, which is free from singularities [7–9] plaguing angu-
lar-momentum or particle-number projections [15–19]. The calculated im-
purities are consistent with the recent data extracted from the giant-dipole-
resonance decay studies in 80Zr [20] and isospin-forbidden E1 decay in
64Ge [21]. Both data points disagree with the standard mean-field (MF)
results, which are lower by almost 30% due to spurious contaminations.
The agreement shows that our model is capable of quantitatively capturing
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the magnitude of the isospin mixing. This is of particular importance in
the context of applying it to the determination of the ISB corrections to the
superallowed Fermi β-decay which are, to a large extent, governed by the
impurities.

3. Isospin-symmetry-breaking corrections
to superallowed β-decay

The projected DFT method allows for a rigorous quantum-mechanical
calculation of the I = 0+, T = 1 → I = 0+, T = 1 Fermi matrix element
using the bare isospin operators T̂±, that is,

|〈I = 0, T ≈ 1, Tz = ±1; ϕ|T̂±|I = 0, T ≈ 1, Tz = 0; ψ〉|2 ≡ 2(1− δC) . (4)

On the one hand, the state |I = 0, T ≈ 1, Tz = ±1; ϕ〉 is approximated
by a double-projected state (3), where the self-consistent Slater determi-
nant |ϕ〉 represents the ground state (g.s.) of even–even nucleus. The
wave function |ϕ〉 is uniquely determined by occupying pairwise the de-
formed single-particle (s.p.) orbitals from the bottom of a potential well
up to the Fermi level. On the other hand, the double-projected state
|I = 0, T ≈ 1, Tz = 0; ψ〉 represents the anti-aligned exited state of the
odd–odd N = Z system. The anti-aligned configuration [10] is obtained by
placing the odd neutron and odd proton in the lowest available time-reversed
(or signature-reversed) s.p. orbitals |π〉 ⊗ |ν̄〉 (or |π̄〉 ⊗ |ν〉). Such arrange-
ment manifestly breaks the isospin symmetry. Projecting out the T = 1
component of the determinant |ψ〉 is essentially the only way of reaching
the |T ≈ 1〉 configurations in N = Z nuclei. Indeed, these states are not at
all representable by single Slater determinants built by occupying unmixed
proton and neutron s.p. wave functions.

Calculation of matrix elements (4) requires both the isospin and angular-
momentum projections [9, 10]. Since for density-dependent interactions the
angular momentum projection is ill-defined [15, 18], the method can be used
only for functionals originating from the true interaction. This is a severe
limitation that eliminates all modern density-dependent Skyrme functionals
and forces us to use the only available density-independent parametrization
SV [23]. Poor spectroscopic properties of SV result in uncertainties of indi-
vidual δC corrections. To assess these uncertainties, we developed the new
density-independent Skyrme force SHZ2 by fitting its parameters to the se-
lected bulk and s.p. properties of light doubly magic nuclei up to 100Sn, see
Ref. [10]. Data in light nuclei poorly constrain isovector properties of the
force. As a consequence, the symmetry energy of SHZ2 is asym = 42.2 MeV
exceeding the commonly acceptable value by almost 30%. This property
precludes applications of SHZ2 in nuclear structure studies, but it offers an
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opportunity to study the sensitivity of ISB corrections with respect to the
symmetry energy, which governs response of the system against isovector
distortions.

Differences between the ISB corrections calculated using the double-
projected DFT with the SV and SHZ2 functionals are shown in Fig. 1 (a).
The error bars include two sources of theoretical uncertainties: (i) the error
due to the basis cutoff and (ii) the error resulting from averaging over the
values obtained for different relative orientations of the nuclear shapes and
currents associated with the valence neutron–proton pairs [10]. The error
due to the basis size is rather conservatively estimated to be of the order of
∼10%. It can be, in principle, reduced by taking a larger basis set. How-
ever, within the present formalism, ambiguities related to the shape and
current orientations cannot be reduced further without taking into account
the configuration mixing.

Fig. 1. (a) Differences between the ISB corrections to the twelve accurately mea-
sured superallowed 0+ → 0+ β-transitions (excluding A = 38) calculated using
the double-projected DFT approach with the SV and SHZ2 functionals. (b) Dif-
ferences between the double-projected DFT results obtained with the SV func-
tional and those of Ref. [22]. Circles and dots label the Tz = −1 → Tz = 0

and Tz = 0 → Tz = 1 decays, respectively. Shaded bands mark the estimated
theoretical errors.

Surprisingly, the large difference between symmetry energies of SV and
SHZ2 has very modest impact on the calculated values of δC. Only for
the heaviest nuclei considered, the values of δC calculated using SHZ2 are
somewhat reduced as compared to the SV results. The two sets of the
calculated ISB corrections to the I = 0+, T = 1 → I = 0+, T = 1 Fermi
decay lead to |Vud| = 0.97397(27) and |Vud| = 0.97374(27), for SV and
SHZ2, respectively [10]. Both values result in the unitarity of the CKM
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matrix up to 0.1% and both are fully consistent with the result obtained
by Towner and Hardy (TH) [22] using different methodology based on the
nuclear shell-model combined with MF wave functions. It is gratifying to
see that also individual SV values of δC are consistent within 2σ with the
values calculated in Ref. [22], see Fig. 1 (b). Two exceptions are the ISB
corrections to 10C→10B and 62Ga→62Zn transitions. Mutually consistent
DFT and TH results are at variance with the RPA-based study of Ref. [24].

4. Beyond multi-reference DFT

As discussed in the previous section, the double-projected DFT model
involves a single self-consistent Slater determinant, representing the ground
state of an even–even Tz = ±1 nucleus, and a single Slater determinant ψ,
representing the anti-aligned configuration in an odd–odd Tz = 0 system.
Owing to the ambiguities in choosing shape and current orientations, the lat-
ter configuration is not uniquely defined. To estimate associated uncertain-
ties, one can average over results obtained for different reference states [10].

To overcome such difficulties, we have implemented an extended ver-
sion of the model that allows for mixing of states projected from different
self-consistent Slater determinants ϕi representing low-lying (multi)particle-
(multi)hole excitations in a nucleus of interest. The extension can be viewed
as a variant of the no core shell-model, with two-body effective interaction
(including the Coulomb force) and a basis-truncation scheme dictated by
the self-consistent deformed Hartree–Fock solutions. The scheme proceeds
as follows:

• A set of low-lying (multi)particle–(multi)hole SHF states {ϕi} is cal-
culated along with their HF energies e(HF)

i . These states form a basis
of reference states for a subsequent projection.

• The projection techniques are applied to the set of states {ϕi} to cal-
culate a family {Ψ (α)

I , E
(α)
I } of good-angular momentum states with

K-mixing and isospin mixing treated properly. The states {Ψ (α)
I } are,

in general, non-orthogonal.

• The mixing of states {Ψ (α)
I } is performed by solving the Hill–Wheeler

equation in the collective space spanned by the natural states corre-
sponding to non-zero eigenvalues of the norm matrix, that is, by ap-
plying the same technique which is used to handle the K-mixing [14].
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The model can be used to calculate spectra and transitions in any nu-
cleus, irrespectively of its neutron- and proton-number parities. It can be
also applied to compute β-decay matrix elements between different nuclei.
In particular, it opens up a possibility of detailed studies of isovector sec-
tor of the underlying energy density functionals (EDF) [25]. The numerical
stability of the method is, however, affected by truncation errors. Namely,
the numerically unstable solutions are removed from the model space by
truncating either the high-energy states {Ψ (α)

I } or the natural states cor-
responding to small eigenvalues of the norm matrix, or by applying both
truncations simultaneously. This procedure is not fully satisfactory, but it is
relatively reliable for energy values. Estimated errors on stable eigenvalues
rarely exceed ±150 keV.

The source of the obtained instabilities is not fully recognized. They
could be related to the zero range of the Skyrme force. Indeed, it is well
known that the Dirac-delta force is unstable in three dimensions and re-
quires regularization [26]. Work along these lines with finite-range density-
independent EDFs [27] is under way. Moreover, it is not clear whether EDFs
or two-body interactions fitted at the MF level are realistic enough to be
used in a beyond-multi-reference DFT theory.

At present, calculations can be performed only for the SV Skyrme inter-
action. First results communicated in Refs. [25, 28] are encouraging. Here,
we present further applications of the formalism. Table I illustrates prelim-
inary results for the ISB corrections in light nuclei for A < 42 calculated
using the extended model. In these calculations, we mixed states projected
from the |ψ(X)〉, |ψ(Y )〉, and |ψ(Z)〉 Slater determinants obtained in Ref. [10],
which correspond to three different orientations of the s.p. alignment with re-
spect to principal axes of the core. The results of such configuration-mixing
calculations are shown in the first column of the table, including the error
bars that are estimated to be of the order of 10% for numerically stable
solutions and 20% for cases requiring regularization. The new results are
fully consistent with the average values quoted in Ref. [10].

Recently, Melconian et al. [30] performed high precision measurement
of the γ yields following the β-decay of I = 1+, T = 1 state in 32Cl to its
isobaric analogue state in 32S reporting for the Fermi branch an anomalously
large value of δC ≈ 5.3(9)%. The physical reason for this enhancement can
be traced back to a near-degeneracy of the T = 1 isobaric analogue state at
7002 keV and the T = 0 state at 7190 keV [29].

As discussed in Ref. [10], owing to ambiguities in choosing the reference
Slater determinant, the static projected DFT approach is not sufficient to
give a reliable prediction for δC. The case of 32Cl provides an excellent play-
ground for testing the dynamical variant of our model involving configura-
tion mixing. This nucleus is a relatively weakly bound odd–odd system with
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TABLE I

The ISB corrections δC (in %) in light nuclei corresponding to measured (top) and
unmeasured (bottom) superallowed β-decays in selected parent nuclei. Shown are
the results of dynamical calculations performed in this work, δ(mix;SV)

C ; double-
projected DFT method with SV and SHZ2 obtained in Ref. [10]; and the ISB
corrections δ(TH)

C of Ref. [22].

Nucleus δ
(mix;SV)
C δ

(SV)
C δ

(SHZ2)
C δ

(TH)
C

Tz = −1 :
10C 0.668(67) 0.65(14) 0.462(65) 0.175(17)
14O 0.303(30) 0.303(30) 0.480(48) 0.330(25)
22Mg 0.268(54) 0.301(87) 0.342(49) 0.380(22)
34Ar 0.87(17) 1.11(29) 1.08(42) 0.665(56)

Tz = 0 :
26Al 0.329(66) 0.370(95) 0.307(62) 0.310(18)
34Cl 0.75(15) 1.00(38) 0.83(50) 0.650(46)

Tz = −1 :
18Ne 1.38(28) 1.41(46) 0.72(30) 0.565(39)
26Si 0.427(85) 0.47(10) 0.529(77) 0.435(27)
30S 1.24(25) 1.42(26) 0.98(21) 0.855(28)

Tz = 0 :
18F 1.22(24) 1.25(42) 0.42(24)
22Na 0.257(26) 0.35(14) 0.216(86)
30P 0.98(20) 1.16(27) 0.60(20)

tentative spin assignments for all but 1+ states, see discussion in Ref. [29].
Figure 2 compares calculated and empirical spectra of the low-spin I = 0+,
1+, 2+, and 3+ states in 32Cl. In our calculations, nine 1p–1h configura-
tions were considered. We see that the level of agreement is quite good and
that the theory is capable of capturing the main features of experiment, in
particular, the placement of I = 0+ and I = 1+ states.

Similar dynamical calculations for 32S (with six 1p–1h configurations
included) indicate that the theory reproduces quite well the energy splitting
between the isobaric analogue states I = 1+, T = 1 and I = 1+, T = 0 —
critical for a reliable estimate of δC. As shown in Fig. 3, in our calculations
the splitting is overestimated only by ∼ 160 keV and total excitation energy
of the isobaric analogue state is underestimated by ∼ 1.3 MeV. Furthermore,
the theory well captures the ISB effects in the I = 1+ states in 32S and 32Cl.
Indeed, the calculated value of the ISB correction to the Fermi decay between
the isobaric analogue states is δC ≈ 6(2)%. Large error bar accounts for
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the effect of regularization and for asymmetry in the number and structure
of the 1p–1h configurations included in dynamical calculations in 32S and
32Cl. We stress that our calculations contain no free parameters that can be
readjusted to improve the agreement between the theory and experiment.
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Fig. 2. Low-spin I = 0+, 1+, 2+, and 3+ states in odd–odd nucleus 32Cl plotted
relative to the lowest 1+. Theoretical levels are marked by solid lines. Dashed lines
indicate empirical data taken from Ref. [29]. Note, that for all but 1+ states, the
empirical spin assignments are uncertain.
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Fig. 3. Theoretical and empirical spin 1+ states in 32S (left) and 32Cl (right). The
spectra in 32S are normalized to the isobaric analogue 1+ state and consist of states
above it. In the calculations, six (nine) low-lying 1p–1h configurations were taken
into account for 32S (32Cl), respectively.
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5. DFT with broken neutron- and proton-number symmetries

The nucleon–nucleon (NN) strong force V NN
12 is dominated by the iso-

spin-invariant part ∼ α + β~τ (1) · ~τ (2). There exists, however, firm ex-
perimental evidence that the NN force also contains charge independence
breaking (CIB) components ∼ τ

(1)
z τ

(2)
z and two types of charge symmetry

breaking (CSB) components ∼ (τ
(1)
z + τ

(2)
z ) (causing no isospin mixing) and

∼ α(τ
(1)
z −τ (2)z )+β[~τ (1)×~τ (2)]z (producing isospin mixing) [31]. The exper-

imental evidence for these terms comes, among the others, from differences
in nn, pp and np phase shifts and scattering lengths; differences in neu-
tron/proton analyzing powers in np scattering; binding energy differences in
mirror nuclei; and binding energy differences of isobaric analogue states.

The isospin structure of the NN force can be reexpressed in terms of the
two-body spherical tensors in isospace including the isoscalar, isovector and
isotensor components. In the DFT-rooted formalisms, which are not directly
linked to the NN interaction, one often uses isoscalar functionals, which are
bilinear (or higher order) in isoscalar and isovector one-body densities and
currents [8, 32].

The dominant part of the ISB effect in the atomic nucleus is due to the
Coulomb interaction. In fact, in most of the applications involving DFT-
rooted approaches, the Coulomb force is the only term violating the isospin
symmetry. This is in spite of the perpetual problems in reproducing the
binding-energy differences in mirror nuclei. This problem, known under the
name of Nolen–Schiffer anomaly [33], is rather well studied, and it is gener-
ally agreed that its explanation requires CSB strong interaction [34], which
appears to almost exactly cancel the Coulomb exchange contribution [34, 35].

The effect of CIB (or isotensor) interaction can be seen in triplet binding
energy differences (TED) [36], which are defined as TEDI ≡BEI,T=1,Tz=−1+
BEI,T=1,Tz=+1 − 2BEI,T=1,Tz=0. As mentioned in Sec. 3, the TEDs cannot
be assessed by using the conventional MF, because the |I, T = 1, Tz = 0〉
states are not representable by a single Slater determinant built of unmixed
proton and neutron states. Recently, we have extended the DFT formalism
by breaking the neutron–proton symmetry at the particle–hole level [37].
Therein, we have demonstrated that such a generalized DFT is capable of
describing the isobaric analogue |T = 1, Tz = 0〉 states by evolving the
|T = 1, Tz = ±1〉 solutions by means of the tilted-axis cranking method
in isospace. This will allow us to assess the effects of CSB and CIB strong
interactions on ISB corrections to the superallowed 0+ → 0+ decays.

Results of our preliminary calculations for TEDs are shown in Fig. 4.
Calculations were performed by using two different isospin-invariant Skyrme
EDFs SV and SLy4 [38]. It is seen that the isotensor component of the
Coulomb interaction is not strong enough to explain the experimental data.
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The systematic difference between the data and calculations can be viewed
as an analog of the Nolen–Schiffer anomaly in mirror energy differences. The
effect is, most likely, due to a missing CIB strong interaction components.
It is interesting to observe that the unaccounted effect ∼ 450 keV is almost
A- and Skyrme-force independent. Systematic studies of the TED anomaly
are in progress.
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Fig. 4. Calculated triplet energy differences relative to experimental data. Filled
and open circles mark calculations done with the SLy4 and SV EDFs, respectively.

6. Summary and outlook

The ISB corrections to the 0+ → 0+ superallowed Fermi β decays ob-
tained within the isospin- and angular-momentum projected DFT are crit-
ically overviewed. The dynamical extension of the model is proposed that
promises to cure deficiencies of the previous approach by introducing con-
figuration mixing. The dynamic model is applied, for the first time, to com-
pute: (i) the ISB corrections in light nuclei by mixing states projected of
the Slater determinants in the odd–odd N = Z nuclei obtained in Ref. [10];
(ii) the low-spin spectra in 32Cl; (iii) the I = 1+ states above the isobaric
analogue state in 32S; and (iv) and the ISB correction to the 32Cl→32S
Fermi β-decay branch between the isobaric analogue I = 1+ states. In spite
of outstanding problems related to the numerical stability of the method,
our first results are encouraging. Indeed, our parameter-free calculations
are able to capture the main empirical features. Finally, the Nolen–Schiffer
anomaly for the isotensor CIB components of the NN interaction is formu-
lated and discussed. Such advanced analysis was made possible by extending
the standard nuclear DFT to the variant that includes the mixing of proton
and neutron wave functions [37].
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