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Nuclear reactions are responsible for the energy production in stars and
related nucleosynthesis processes. For this reason, an accurate knowledge of
their rates at the energies of interest is required. The Trojan Horse Method
has been introduced to overcome the experimental difficulties arising from
the small cross sections involved in reactions induced by charged particles
at astrophysical energies. This is done by measuring the quasi-free cross
section of an appropriate three body process. The basic theory of the
Trojan Horse Method will be presented together with a review of some
recent experimental results.
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1. Introduction

The interconnection between macro- and micro-cosmos has been officially
established in the famous B2FH paper [1], considered as the greatest gift of
nuclear astrophysics to modern civilization. In particular, the elements com-
posing everything, from planets to life, were forged inside earlier generations
of stars, and nuclear reactions are responsible for both energy production
and creation of the elements. It becomes thus important to determine their
reaction rates down to the energy range of astrophysical importance, that
for charged particles is represented by the so-called “Gamow peak” [2]. The
Gamow peak is the result of the convolution of the higher energy tail of the
Maxwell–Boltzmann distribution, describing the velocity of the nuclei in the
stellar plasma, and of the Gamow factor, exp(−2πη), that is a good approx-
imation of the penetration factor through the Coulomb barrier at such low
energies. This is the region where the measurement should be carried out,
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but it is usually far below the Coulomb barrier of the interacting nuclei.
Because of that, the cross section σb(E) of these reactions drops exponen-
tially with decreasing center-of-mass energy: σb(Ecm) ∼ exp(−2πη), where
η is the Sommelfeld parameter, η = Z1Z2/(hv), depending on the charge
numbers Z1, Z2 of the colliding nuclei and on their relative velocity v in the
entrance channel. This makes the direct experiments challenging and the
standard way to proceed is to measure the cross section over as wide a range
as possible, then extrapolate down to the Gamow peak using the definition
of the astrophysical factor, as given by

Sb(E) = Eσb(E) exp(2πη) (1)

which is a smoothly varying function of the energy than the cross section,
with the inverse of the Gamow factor introduced to remove the dominant
energy dependence of the bare nucleus cross section σb(E) due to the barrier
penetrability. However, extrapolation can be a source of additional uncer-
tainty due, for example, to unknown resonances or tails of sub-threshold
resonances at stellar thermonuclear energies that can be missed [2, 3].

In addition, the few accurate direct measurements close to the Gamow
peak experience the electron screening effect due to the electrons surrounding
the interacting ions [4]. Electron screening acts in a way to produce an
enhancement of the cross section at ultra-low energy, thus preventing one
to measure the bare nucleus cross section. The cross section rise is usually
parameterized by means of the so-called screening factor

flab(E) = σs(E)/σb(E) ∼ exp(πηUe/E) (2)

with σs(E) and σb(E) the cross sections of shielded and bare nuclei, respec-
tively, and Ue the electron screening potential energy.

One has to notice that laboratory screening is different from that in
stellar plasma, thus the relevant parameter to evaluate correctly the reac-
tion rate is σb. Obviously, one needs to know Ue to access σb from the
experimental σs. However, experimental studies of reactions involving light
nuclides have shown that the observed exponential enhancement of the cross
section at low energies were in all cases significantly larger (about a factor
of two) than it could be accounted for from available atomic-physics model
using the adiabatic limit of Ue. This means that in spite of the several ef-
forts, σb (or equivalently Sb(E)) cannot be measured at the Gamow peak,
rather its behavior has to be extrapolated from the higher energies, usually
with the help of theoretical arguments. To overcome all these experimental
difficulties, indirect methods [5] such as the Coulomb Dissociation [6], the
Asymptotic Normalization Coefficients [7], and the Trojan Horse Method
(THM) [8–14] have been developed in the last twenty years. They make it
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possible not only to measure cross sections at never reached energies but also
to determine the electron screening potential when direct data are available
at those energies. Here, we recall the basic ideas of the THM together with
some recent results.

2. Basic ideas of the Trojan Horse Method

The THM makes use of the quasi-free (QF) contribution of an appro-
priate A + a → C + c + s three-body reaction, the Trojan Horse (TH)
reaction, performed at energies well above the Coulomb barrier to extract
the cross section of a charged particle A+ x→ C + c two-body reaction [8]
at astrophysical energies free of Coulomb suppression [15, 16]. The scientific
background of the THM is in the theory of QF reaction mechanisms. Its
application to nuclear astrophysics is an extension to the low energies of two
decades of well assessed higher energy QF measurements [17, 18]. In partic-
ular, the THM has been successfully applied to determine the bare nucleus
cross section of several reactions between charged particles of astrophysical
relevance (see Table I for relevant references). Besides, several tests have
been performed to explore the full capabilities of the method: the possible
use of virtual neutron beams to study neutron induced reactions on stable
[20, 21] and in the future on radioactive nuclei; the spectator invariance
of the reaction amplitude for the two-body reaction of interest, comparing
results obtained from 2H and 3He break-up [22, 23] and from 6Li and 3He
break-up [24, 25, 37].

The first assumption of the THM is that nucleus a is described in terms
of the x⊕ s cluster structure. In many applications [15, 32, 39, 44, 46], this
is trivially fulfilled: a = deuteron, x = proton, s = neutron. The energy
for the A+ a relative motion is chosen to be above the Coulomb barrier in
such a way that the two body interaction can be considered as taking place
inside the nuclear field, without experiencing either Coulomb suppression
or electron screening effects. The A+ a relative motion is compensated for
by the x–s binding energy, determining the so-called “quasi-free two-body
energy” given by

Eqf = EAa −Bx−s , (3)

where EAa represents the beam energy in the center-of-mass system and
Bx−s is the binding energy for the x–s system. In Eq. (3), Eqf is not changed
varying the projectile energy. What is done is to keep the beam energy at a
fixed value and to vary the relative momentum pxs from its QF value to an
upper limit given by κxs =

√
2µxsBxs that represents the on-energy-shell

(OES) a = (x s) bound state wave number [26]. This upper limit is usually
few tens of MeV/c. This little variation is linked to the x–s intercluster
motion inside a and it is taken on the ps variable, the momentum of the
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spectator particle (in the laboratory system ~pxs = ~px = −~ps) and/or on its
emission angle, both measured or easily reconstructed. This brings to the
following formula

EQF =
mx

mx +mA
EA −

p2s
2µxs

+
~ps · ~pA

mx +mA
−Bxs . (4)

Thus, the cutoff in the momentum distribution fixes the range of energies
around the “quasi-free two-body energy” accessible in the astrophysical rel-
evant reaction. In the Impulse Approximation either in Plane Wave or in
Distorted Wave (this does not change the energy dependence of the two-
body cross section but only its absolute magnitude), the three-body cross
section can be factorized as

d3σ

dEcdΩcdΩC
∝

[
KF |ϕa(psx)|2

] ( dσ

dΩcm

)HOES

, (5)

where KF is a kinematical factor containing the final state phase-space fac-
tor. It is a function of the masses, momenta and angles of the outgoing
particles [39]; ϕa(psx) is proportional to the Fourier transform of the radial
wave function χ(r) for the x–s inter-cluster relative motion; (dσ/dΩcm)HOES

is the half-off-energy-shell (HOES) differential cross section for the binary
reaction at the center-of-mass energy Ecm determined from the relative en-
ergy of the outgoing particles c and C, the decay products of the virtual
two-body reaction of interest, once their energies are measured

Ecm = EcC −Q2b . (6)

Q2b is the Q-value of the binary reaction.
Equation (5) can be provided by a schematic pole diagram with two ver-

texes, shown in Fig. 1. In the upper vertex, a breaks up into its components,
while the lower vertex refers to the two-body reaction of interest that takes
place once x is transferred.

Fig. 1. Diagram representing the quasi-free A+ a→ C + c+ s reaction; nucleus A
interacts only with cluster x, leaving particle s as a spectator to the process.
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In a typical THM experiment, nuclei c and C are detected and identified
by means of telescopes (silicon detector or ionization chamber as ∆E step
and position sensitive detector as E step) placed at the so-called quasi-free
angles. High energy and angular resolutions are required and typical values
are of the order of 1%. A number of steps are involved in the data analysis
before the two-body cross section of astrophysical relevance can be extracted.
These steps include:

1. identification of events belonging to the A+ a→ C + c+ s three-body
reaction of interest;

2. tests of the QF mechanism and selection of QF events;
3. extraction of the A+x→ C+c two-body cross section, σb(E), from the

measured three-body one in arbitrary units; the two-body cross section
below the Coulomb barrier needs to be corrected for the penetrability;

4. normalization procedure to obtain σb(E) in absolute units;
5. validity tests to verify that direct data are reproduced both in the exci-

tation function, including resonances, and in the angular distributions;
6. evaluation of the electron screening potential when direct measure-

ments are available at ultra-low energies.

After the selection of the reaction channel, the most critical point is to select
the quasi-free mechanism, often overlapping with other reaction mechanisms
feeding the same particles in the final state, e.g. sequential decay and direct
break-up. An observable which is very sensitive to the reaction mechanism
is the shape of the experimental momentum distribution of the spectator,
|ϕ(pxs)|2. It is determined using a standard procedure applied to each pair
of coincidence detectors that selects the coincidence yield in narrow rela-
tive energy windows, ∆E 50 to 100 keV, and center-of-mass angular range
∆θcm 0.5 to 2◦, where dσ

dΩcm

HOES can be considered constant. Thus, the mo-
mentum distribution can be retrieved simply dividing the coincidence yield
by the kinematical factor

|ϕ(pxs)|2 =
Yd
KF

. (7)

The extracted experimental momentum distribution is then compared with
the theoretical one that in Plane Wave Impulse Approximation (PWIA) rep-
resents the Fourier transform of the radial x–s bound state wave function.
To check if the simple PWIA approach gives an accurate description of the
momentum distribution, the Distorted Wave Born Approximation (DWBA)
distribution is usually evaluated also by means of the FRESCO code [27],
with optical potential parameters taken from the Perey and Perey compi-
lation [28]. A comparison between the two behaviors and the experimental
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momentum distribution is shown in Fig. 2 referring to the study of the
17O(p, α)14N reaction by means of the 17O(d, α14N)n three body process.
Data are reported as black solid dots, with the PWIA distribution as black
solid line and the DWBA one as dash-dotted (blue) line. From compari-

Fig. 2. Experimental momentum distribution from the 17O(d, α 14N)n QF reaction
(as black solid dots) compared with the theoretical ones: for Plane Wave Impulse
Approximation in terms of a Hulthén function (black solid line) and for Distorted
Wave Born Approximation evaluated using the FRESCO code (see the dotted (red)
line in [52] for further details).

son, one can state that for a neutron momentum |ps| ≤ 30 MeV/c, a good
agreement between DWBA and PWIA is present. This is a validation that
the PWIA approach is viable for the experimental study under investiga-
tion and that in the selected kinematical region the QF mechanism gives
the main contribution to the 17O + d interaction. Data analysis is usually
limited to the region where the agreement between the distributions exists.
Usually, a window not more than few tens of MeV/c is chosen, according to
the prescriptions of [26]. Therefore, (dσ/dΩcm)HOES can be extracted from
the three-body coincidence yield by simply inverting Eq. (5). In a final step,
the HOES cross section has to be related to the relevant on-energy-shell
(OES) cross section by applying the corresponding corrections. In a simple
approach, this consists, essentially, in replacing the Coulomb suppression in
the HOES cross section, by means of the penetrability factor

Pl(kAxR) =
1

G2
l (kAxR) + F 2

l (kAxR)
(8)

with Fl and Gl regular and irregular Coulomb wave functions. It was demon-
strated that there is no Coulomb barrier in the two-body amplitude ex-
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tracted from the TH reaction [29] and this is due to the virtuality of par-
ticle x. This seems to be the only consequence of off-energy-shell effects as
suggested by the agreement between HOES and OES cross sections for the
6Li(n, α)3H reaction [20]. This procedure does not allow us to extract the
absolute value of the two-body cross section. However, this is not a real
problem since the absolute magnitude can be derived from a scaling to the
direct data available at higher energies. Recently, a well assessed THM the-
ory for multi resonance reactions has been developed [29, 48], which allows
one to determine the resonance strength in a model independent way. It is
called a generalized R-matrix approach as it considers the HOES character
of the TH cross section. According to this THM theory for resonant reac-
tions, the resonance strength of the ith resonance, (ωγ)i, is related to the
area under each peak, Ni, by easily calculable factors thus ruling out any
dependence on the spectroscopic factors

(ωγ)i =
1

2π
ωiNi

ΓAx
dσA(a,c)C

dΩn

(9)

with dσA(a,c)C

dΩn
the transfer reaction differential cross section taken in the

Distorted Wave Born Approximation form as reported in [48]. The spectro-
scopic factor for the ith resonance does not appear because it cancels out in
the ΓAx

dσA(a,c)C/dΩn
ratio, both involved factors being proportional to it.

3. Recent results

The THM has been applied to many charged particle reactions involved
in the Big Bang and stellar elemental nucleosynthesis [30]. A list of them
is given in Table I together with the relevant references. A number of re-
actions belonging to the nucleosynthesis path of 19F in Asymptotic Giant
Branch (AGB) stars, have been recently investigated using the THM. In
spite of being the less abundant among the stable nuclides with mass num-
ber 12 ≤ A ≤ 22, its abundance can be used to constrain AGB models as it
is sensitive to the efficiency of the dredge-up and to the physical conditions
in the deep layers of the stars (Lugaro et al. 2004). When the abundances
predicted by the current models are compared with the observed ones, an
unacceptable discrepancy shows up even when model parameters are varied
in a reasonable range. A possible explanation can be found in a redeter-
mination of the nuclear reaction rates involved in the fluorine production
and destruction. Some of them are affected by large uncertainties mainly
due to the fact that they are dominated by the strengths of low-lying res-
onances, whose resonance parameters are far from being well determined.
In addition, the presence of low-lying resonances prevents any extrapolation
procedure to be reliable. This is the case of the 19F(p, α0)16O reaction, the
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TABLE I

Two-body reactions studied via the THM with measured two-to-three TH reaction
and relevant references for each reaction.

Direct reaction TH reaction Ref.
7Li(p, α)4He 7Li(d, α α)n [19]
7Li(p, α)4He 7Li(3He, α α)2H [22]
6Li(d, α)4He 6Li(6Li, α α)4He [31]
6Li(p, α)3He 6Li(d, α 3He)n [32]
11B(p, α)8Be 11B(d,8Be α)n [39]
10B(p, α)7Be 10B(d,7Be α)n [40, 41]
9Be(p, α)6Li 9Be(d,6Li α)n [42, 43]
2H(3He, p)4He 6Li(3He, p α)4He [44]
2H(d, p)3H 2H(6Li, t p)4He [45]
15N(p, α)12C 15N(p, α12C)n [46]
18O(p, α)15N 18O(p, α15N)n [47, 48]
1H(p, p)1H 2H(p, p p)n [15, 16]
2H(d, p)3H 2H(3He, t p)1H [49, 50]
2H(d, n)3He 2H(3He,3He n)1H [49, 50]
19F(p, α)16O 2H(19F, α16O)n [51]
17O(p, α)14N 2H(17O, α14N)n [52]
4He(12C,12C)4He 6Li(12C, α12C)2H [53]
n(6Li, t)4He 2H(6Li, t 4He)1H [20, 21]
11B(p, α)8Be 2H(11B, α8Be)n [54]
13C(α, n)16O 6Li(13C, n16O)2H [55]

main 19F destruction channel in the range of temperatures 0.01 ≤ T9 ≤ 0.1,
with T9 = T/109 K, where T is the temperature of the astrophysical site.
Available experimental data have allowed the computation of the rate for
T9 ≥ 0.3. Below this temperature, the rate was determined mainly from
the non-resonant (p, α0) channel, causing an increase of the uncertainties
up to 50% at the lowest temperatures. To determine the contribution of
low-lying resonances at astrophysical energies and evaluate their impact on
astrophysics, the 19F(p, α0)16O astrophysical S(E)-factor has been measured
by means of the THM applied to the 2H(19F, α0

16O)n reaction at 50 MeV
of beam energy. The normalized coincidence yield of the 2H(19F, α0

16O)n
reaction shows several peaks, corresponding to the population of a number
of states of 20Ne at 12.96, 13.05, 13.25 (three not resolved states at 13.222,
13.224 and 13.226 are contributing to this peak) and 13.6 (also here three
not resolved states at 13.529, 13.586 and 13.642 contribute). For a detailed
analysis, see [51]. The OES S(E)-factor resulting from the R-matrix pa-
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rameterization using the γp and γα0 from [51] is shown in Fig. 3. Above
0.6 MeV, the reduced partial widths were obtained through an R-matrix fit
of direct data (solid black dots and squares data from [59] and [60] respec-
tively). Since the TH cross section gives the resonance contribution only,

Fig. 3. R-matrix parameterization of the 19F(p, α0)16O S(E)-factor (grey/green
line). The grey/green band shows the region allowed by the uncertainties on the
fitting parameters. Black symbols represent direct data from [59] (circles) and [60]
(squares).

the non- resonant part of the cross section was taken from Angulo et al.
1999. The middle grey/green curve represents the S(E)-factor obtained us-
ing the parameters from the best fit, while the grey/green band arises from
the uncertainties in the resonance parameters of the 12.957, 13.048, 13.222,
13.224, and 13.226 MeV 20Ne states (see [51] for details). The main result
of the present work is the estimate of the contribution of the 12.957 MeV
level of 20Ne to the total astrophysical factor, as it is associated to a reso-
nance at 113 keV, well inside the energy range of astrophysical interest. The
energy resolution was not enough for achieving a good separation between
resonances around a 19F–p relative-energy of 400 keV, thus preventing an
accurate estimate of their total widths. Thus, the interesting results already
achieved call for improved investigations in the full energy region with a bet-
ter energy resolution to perform more accurate spectroscopy of the involved
resonances.

Another interesting reaction that has been investigated using the THM
is the 17O(p, α)14N that plays a key role in novae nucleosynthesis and in
γ-ray astronomy. 17O is processed in the CNO cycles and it is important
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for the subsequent formation of the short-lived 18F radioisotope, of special
interest in novae observations in the γ-ray wavelengths. The cross section of
the 17O(p, α)14N reaction at low energy is dominated by two resonances at
17O–p relative energies of 65 keV and 183 keV, whose strengths are still quite
uncertain due to the strong Coulomb suppression at those energies. For this
reason, the study of the 17O(p, α)14N reaction at low-energies was performed
by means of the THM applied to the 2H(17O, α14N)n reaction [7]. The re-
sulting 17O(p, α)14N cross section is shown in Fig. 4 as black solid dots.
The solid (black) line represents the fit of the two-body cross section us-
ing three Gaussian functions (dashed (blue) lines) to describe the resonant
behavior (which account for the finite energy resolution of the detectors)
and a straight line (dash-dotted (blue) line) to account for the non-resonant
contribution to the cross section. This analysis does not take into account
interference effects since the natural widths of the resonances (eV) are much
smaller than their energy separation (keV). Because of the energy resolution
(20 keV), the resonance at 65 keV was not well separated from the high en-
ergy tail of the −3 keV sub-threshold state, corresponding to the 5.603 MeV
level of 18F. The sub-threshold as well as the non-resonant contributions were
evaluated so that the experimental TH angular distributions for the 183 keV
resonance were in agreement with the experimental ones [56] and with the
theoretical prediction for both the 65 keV and the 183 keV resonances based
on the general theory reported in [57]. The resulting TH strength of the
65 keV resonance was used to calculate its contribution to the total reaction

Fig. 4. Cross section of the TH reaction (solid (black) dots). The full line represents
the result of a fit including three Gaussian curves (dashed (blue) lines) and a 1st

order polynomial (dash-dotted (blue) line) to take into account the non-resonant
contribution to the cross section.
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rate providing a 20% decrease when compared with previous estimates as
reported in [56]. A possible explanation of such discrepancy can be found
in the electron screening effect that was not taken into account in the direct
measurement [58]. When a reaction cross section is dominated by narrow
resonances, as in the present case, the electron screening correction depends
on the relative magnitude of the incoming and outgoing partial widths and
its theoretical treatment is more complicated than in “non-resonance”/“broad
resonance” case. Further work in this sense is presently being undertaken.

This work was supported in part by the Italian Ministry of Education,
University and Research under Grant ASTROF.NUC.MIUR/0000.
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