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The measurement of the β-decay scheme of 85Ga triggered questions
on the properties of the low-lying states in 85Ge. In order to inspect the
sensitivity of the results to the neutron d5/2 and s1/2 single-particle states,
we performed an analysis of the level structure in the N = 51 83Ge and
N = 53 85Ge isotopes.
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1. Introduction

Decay studies of radioactive nuclei far away from the valley of beta-
stability offer important test data and guidance for the further development
of nuclear models of exotic nuclei. Particularly interesting is the evolution
of single-particle levels with increasing neutron number in the 78Ni region,
which was analyzed, e.g., by Otsuka et al. [1–3]. Recently, experiments
confirmed the postulated evolution of single-particle levels, for example the
increasing energy of proton p3/2–p1/2 and f7/2–f5/2 spin–orbit partners split-
ting, when the g9/2 neutron shell is filling up [4–6]. The crossing of the low
lying 1f5/2 and 2p3/2 orbitals [5–7] in neutron-rich Cu nuclei is one of the
consequences of this process. For neutron-rich nuclei beyond N = 50 in
the 78Ni region, shell-model calculations are using different values for the
single-particle energy of the 3s1/2 neutron orbital with respect to the 2d5/2
near the Fermi surface [8, 9]. Furthermore, it is predicted that by adding a
few protons and neutrons to the doubly magic 78Ni core, deformation can
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set up quickly [10]. In this work, we performed shell-model calculations for
83,85Ge in order to analyze the energies, spin and structure of N = 51 83Ge
and N = 53 85Ge. We mainly investigate the change of relative energies of
neutron s1/2 and d5/2 orbitals.

2. Comparison of experimental results with
shell-model calculations

In our recent work [11], we proposed a partial level scheme for the nuclei
populated in the β and β–n decay of 85Ga. The spins and parities were
deduced from systematics and experimental information.

To inspect further the properties of low-lying excited states and ground
state in 85Ge, we performed shell-model calculations with a closed 78Ni core
and the N3LO nucleon–nucleon interaction [12, 13]. The valence space used
in the calculations contains all orbitals active outside 78Ni core, the 1f5/2,
2p3/2, 2p1/2, 1g9/2 for protons and 2d5/2, 3s1/2, 1g7/2, 2d3/2, 1h11/2 for neu-
trons. The values of single-particles energies used in these analysis are re-
ported in Table I.

TABLE I

Proton and neutron single-particle energies, ε, used in the shell-model calculations.
These values were adopted from [14, 15] and [9]. See the text for details.

π orbital ε [MeV] ν orbital ε [MeV]

1f5/2 0.0 2d5/2 0.0
2p3/2 1.1 3s1/2 1.3
2p1/2 2.5 1g7/2 1.8
1g9/2 4.5 2d3/2 2.4

1h11/2 3.0

We also performed calculations for 83Ge (N = 51) in order to understand
better the evolution of level structure in odd-mass Ge isotopes. From the
beta decay of Iπ = 5/2− 83Ga ground state [16], we expect to populate
mainly 3/2, 5/2 and 7/2 states in 83Ge. The results of the calculations are
presented in Figs. 1 and 2 in comparison with the respective experimental
level schemes [11, 14].

From the results of the shell-model calculations, we expect 5/2+, 1/2+
and 3/2+ as the g.s. and first excited states in 83Ge, respectively. The p3/2
and f5/2 protons are the most abundant in all wave functions. Additionally,
the 5/2+ ground state is dominated by one neutron on νd5/2 (90%), while
the other two states have admixture with the νs1/2 or the νd3/2 orbitals,
respectively. The wave function of the 1/2+ level corresponds to one neutron
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Fig. 1. Experimental [14] and shell model excited states in 83Ge. All energies are
given in keV. See the text for details.
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Fig. 2. Experimental [11] and shell model excited states in 85Ge. All energies are
given in keV. See the text for details.
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TABLE II

Wave function of the excited states in 85Ge nucleus predicted in the shell-model
calculations; the values correspond in % the occupation of 4π and 3ν. See the text
for details.

Iπ state Orbital Configuration

3/2+ π 1g9/2 1f5/2 2p3/2 2p1/2
3.8% 44.3% 41.9% 10.00%

ν 1h11/2 1g7/2 2d5/2 2d3/2 3s1/2
1.6% 2.4% 72.4% 8.0% 15.6%

5/2+ π 1g9/2 1f5/2 2p3/2 2p1/2
4.0% 44.0% 42.2% 9.8%

ν 1h11/2 1g7/2 2d5/2 2d3/2 3s1/2
1.8% 3.2% 73.4% 8.6% 13.0%

3/2+ π 1g9/2 1f5/2 2p3/2 2p1/2
3.3% 47.0% 40.0% 9.7%

ν 1h11/2 1g7/2 2d5/2 2d3/2 3s1/2
1.7% 12.7% 53.8% 16.5% 15.3%

1/2+ π 1g9/2 1f5/2 2p3/2 2p1/2
3.1% 44.4% 42.2% 10.3%

ν 1h11/2 1g7/2 2d5/2 2d3/2 3s1/2
1.6% 4.3% 63.5% 12.6% 18.0%

on the νd5/2(52%) and νs1/2 (43%), while the 3/2+ state to νd5/2(56%)
and νd3/2(26%). The calculated energy for all states is higher than the
experimental results (see Fig. 1). In order to reproduce the experimental
value of the Iπ = 1/2+, E∗ = 248 keV level in 83Ge, we modified the
neutron s1/2 single-particle energy to the value Eνs1/2 = 0.7 MeV. Note that
decreasing the energy difference between νd5/2–νs1/2 to 0 creates a 1/2+

state as the ground state and 5/2+ at ∼ 100 keV in 83Ge, which does not
agree with the experiment results.

The addition of two neutrons to 83Ge reduces the predicted energy be-
tween the first 3/2+ and 5/2+ states in 85Ge to 231 keV, and changes the
order of the states. Furthermore, the first 1/2+ state in 85Ge is expected as
the fourth excited state at E∗ = 778 keV (Fig. 2). This can indicate that
the νs1/2 single-particle energy used in the calculation (see Table I) is too
high. Using the reduced value of Eνs1/2 = 0.7 MeV did not influence signifi-
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cantly the values of the predicted energy of excited states in 85Ge; only the
sequence of the states is slightly different: now the second 3/2+ is expected
100 keV above the first 1/2+.

The inspection of the 3/2+, 5/2+ and 1/2+ wave function for 85Ge
(Table II) shows that these states belong to the νd35/2 multiplet with about
15% admixture of the νs1/2 state. Changing the neutron single-particle
d5/2–s1/2 energy gap from 1.3 MeV to zero pushes down the predicted en-
ergy for the first 1/2+ level from 800 keV to 690 keV. Experimental results
point towards the lower value of 250 keV for the same state [11, 17].

3. Summary

We have investigated the low-lying structure of the very neutron-rich
83,85Ge by means of shell-model calculations. We propose (3/2+) as the
ground state for 85Ge on the basis of the experimental tentative assignment
(3/2+,5/2+), of the two sets of shell-model calculations from this work and
from [11], and of systematics of N = 53 isotones [18]. The shell-model
calculations shown in Fig. 2 reproduce the experimental trend in low lying
excited states in 85Ge. The addition of two neutrons to the N = 51 83Ge
in the νd5/2 orbital, changes the ordering of the low-lying levels: the first
excited state in 85Ge is no longer 1/2+ as in 83Ge, but (5/2+). The predicted
position of the first 1/2+ level in 85Ge is not very sensitive to the energy
difference of the νd5/2–νs1/2 orbitals because of the admixed configuration
of the states involved. We also need to keep in mind that in this region of the
chart of nuclei, low-excited states start to show a degree of collectivity [18].

We wish to acknowledge the Holifield Radioactive Ion Beam Facility
(HRIBF) staff for their assistance with the experiments and for providing
excellent quality neutron-rich radioactive beams. This research is sponsored
by the Office of Nuclear Physics, U.S. Department of Energy and supported
under U.S. DOE grants DE-AC05-00OR22725 and DE-FG02-96ER40983
National Nuclear Security Administration Grant No. DE-FG52-08NA28552,
DE-FC03-03NA00143, and the National Science Centre of the Polish Min-
istry of Science and Higher Education, Grant No. 2011/01/B/ST2/02476.

REFERENCES

[1] T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).
[2] T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).
[3] T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).
[4] K.T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009).

http://dx.doi.org/10.1103/PhysRevLett.87.082502
http://dx.doi.org/10.1103/PhysRevLett.95.232502
http://dx.doi.org/10.1103/PhysRevLett.104.012501
http://dx.doi.org/10.1103/PhysRevLett.103.142501


228 A. Korgul, R. Grzywacz, K.P. Rykaczewski

[5] S.V. Ilyushkin et al., Phys. Rev. C80, 054304 (2009).
[6] S.V. Ilyushkin et al., Phys. Rev. C83, 014322 (2011).
[7] K. Sieja, F. Nowacki, Phys. Rev. C81, 061303(R) (2010).
[8] K. Sieja, F. Nowacki, K. Langanke, G. Martinez-Pinedo, Phys. Rev. C79,

064310 (2013).
[9] S. Padgett et al., Phys. Rev. C82, 064314 (2010).
[10] K. Sieja, T.R. Rodriguez, K. Kolos, D. Verney, Phys. Rev. C88, 034327

(2013).
[11] A. Korgul et al., Phys. Rev. C88, 044330 (2013).
[12] M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995).
[13] R. Machleidt, arXiv:0704.0807 [nucl-th].
[14] J.S. Thomas et al., Phys. Rev. C76, 044302 (2007).
[15] J. Duflo, A.P. Zuker, Phys. Rev. C59, R2347 (1999).
[16] J.A. Winger et al., Phys. Rev. C81, 044303 (2010).
[17] K. Miernik et al., Phys. Rev. Lett. 111, 132502 (2013).
[18] T. Rzaca-Urban et al., Phys. Rev. C88, 034302 (2013).

http://dx.doi.org/10.1103/PhysRevC.80.054304
http://dx.doi.org/10.1103/PhysRevC.83.014322
http://dx.doi.org/10.1103/PhysRevC.81.061303
http://dx.doi.org/10.1103/PhysRevC.79.064310
http://dx.doi.org/10.1103/PhysRevC.79.064310
http://dx.doi.org/10.1103/PhysRevC.82.064314
http://dx.doi.org/10.1103/PhysRevC.88.034327
http://dx.doi.org/10.1103/PhysRevC.88.034327
http://dx.doi.org/10.1103/PhysRevC.88.044330
http://dx.doi.org/10.1016/0370-1573(95)00012-6
http://dx.doi.org/10.1103/PhysRevC.76.044302
http://dx.doi.org/10.1103/PhysRevC.59.R2347
http://dx.doi.org/10.1103/PhysRevC.81.044303
http://dx.doi.org/10.1103/PhysRevLett.111.132502
http://dx.doi.org/10.1103/PhysRevC.88.034302

	1 Introduction
	2 Comparison of experimental results withshell-model calculations
	3 Summary

