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The Skyrme energy density formalism (SEDF) is used to study the effect
of deformation on the fusion barriers and fusion cross-sections. Proximity
based potentials like AW 95, Bass 80 and Denisov DP are also used for
a comparative analysis. In this paper, deformation enters via deformed
Coulomb potential between the two colliding nuclei. Our detailed study
reveals that the deformed Coulomb potential alone can affect interaction
potential significantly in the inner region as well as fusion probabilities at
below barrier energies.
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1. Introduction

The study of heavy-ion collisions gives us a possibility to examine nu-
clear interactions in the form of ion–ion potential as well as fusion [1] at low
incident energies and in the form of multi-fragmentation [2], nuclear flow [3]
etc. at intermediate incident energies. The shape of the nuclei participating
in a reaction affects the barrier height, which is of great significance for sub-
barrier fusion reactions. A number of studies have been carried out in the
recent past on the role of deformation in the sub-barrier fusion cross-section
using quantum diffusion approach [4]. At low incident energies, many poten-
tials are available to calculate the nuclear part of the interaction potential
like proximity based potential models [1, 5]. As far as Coulomb part of
the interaction potential is concerned, a very few efforts have been made to
modify it [6]. So in the present study, only Coulomb deformation effects are
taken into account.
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2. Methodology

The total interaction potential VT(R) can be calculated using the relation
[1–5]

VT(R) = VN(R) + VC(R) , (1)

here, VN(R) is the nuclear part and VC(R) is the Coulomb part of total
interaction potential.

2.1. Nuclear potential

We have employed two models to calculate the nuclear potentials.

2.1.1. Skyrme energy density formalism

In this model, the nuclear part of the interaction potential VN(R) is
defined as the difference between the energy expectation value E of two
colliding nuclei at a finite distance R and at infinity [5]

VN(R) = E(R)− E(∞) . (2)

The energy E at infinity represents the binding energy of a nucleus in isola-
tion. The energy expectation value E is given by

E =

∫
H(~r )d~r . (3)

The energy density function H is a function of nucleonic density ρ, kinetic
energy density τ and spin density ~J . The nuclear potential VN(R) is the
sum of spin-independent part VP (R) and spin-dependent part VJ(R)

VN(R) = VP (R) + VJ(R) . (4)

2.1.2. Proximity potential

The interaction potential VN(R) between two colliding surfaces therefore,
is given by [1]

VN = 4πγbCΦ

(
R− C1 − C2

b

)
MeV , (5)

where, C (= (C1C2)/(C1 + C2 )), b and R are the reduced radius, surface
width and central separation, respectively. Here, C is the central radius and
Φ is the universal nuclear function [7]. The surface energy coefficient γ has
the form

γ = γ0

[
1− ks

(
N − Z
A

)2
]
. (6)
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Here, γ0 and ks are the surface energy coefficient and surface asymmetry
constant, respectively. The details on AW 95, Bass 80 and Denisov DP
potentials can be found in Ref. [1].

2.2. Deformed Coulomb potential

The expression for the Coulomb interaction VC(R, θ) between two de-
formed colliding nuclei is given by Ref. [8]

VC(R, θ) =
Z1Z2e

2

R
+

√
9

20π

Z1Z2e
2

R3

2∑
i=1

R2
i β2iP2(cos θi)

+
3

7π

Z1Z2e
2

R3

2∑
i=1

R2
i [(β2iP2(cos θi)]

2 , (7)

where θi is the angle between the radius vector ~R and the symmetry axis
of the ith nucleus and Ri being the effective sharp radius of ith nucleus.
The values of quadrupole deformation parameter (β2i) for the present study
are borrowed from Ref. [9]. As the colliding nuclei may have many possible
orientations (θ1, θ2) during the experiment, we have taken average over all
possible relative orientations of two deformed colliding nuclei while studying
the fusion between them. Once total interaction potential VT(R) is calcu-
lated, the barrier height VB, barrier position RB and fusion cross-section can
be calculated using the methods mentioned in Ref. [1].

3. Results and discussions

We have calculated the fusion barriers and fusion probabilities for the
reactions of 58Ni+74Ge, 40Ca+96Zr, 64Ni+74Ge and 16O+76Ge. Depending
upon the shapes of the projectile–target, these reactions are grouped un-
der different categories: spherical–oblate (S+O), spherical–prolate (S+P),
oblate–oblate (O+O) and prolate–prolate (P+P).

In Fig. 1, we display the total interaction potential VT [MeV] as a
function of internuclear distance R [fm] for the reactions of 58Ni+74Ge
and 40Ca+96Zr. In the figure, grey lines correspond to the total interac-
tion potential calculated by assuming the colliding nuclei to be spherical
(i.e. β21 = β22 = 0). On the other hand, black lines represent the total in-
teraction potential calculated by taking into consideration the deformation
of the colliding nuclei.

Now in Fig. 1, the projectile (58Ni) is spherical and target (74Ge) is
oblate deformed, whereas, the projectile (40Ca) is spherical and the target
(96Zr) is prolate deformed. Both SEDF as well as proximity based potentials
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Fig. 1. Total interaction potential VT [MeV] as a function of internuclear distance
R [fm] for the reactions of 58Ni+74Ge and 40Ca+96Zr. The upper panels (a) and
(b) display the calculations of SEDF (using different Skyrme forces) and the lower
panels (c) and (d) display the calculations corresponding to AW 95, Bass 80 and
Denisov DP. Various lines are explained in the text.

results in similar trends. From Fig. 1, we observed that the total interaction
potential in the inner region gets modified by adding deformation to the
Coulomb potential. It is noticed that the depth of the fusion pocket for the
fusion of S+O colliding nuclei is more than for the (spherical–spherical) S+S
reaction. Similar trend is also observed for the reaction of O+O (64Ni+74Ge
and 28Si+62Ni). These reactions are not displayed here. Whereas, the fu-
sion pocket becomes shallower for the fusion of S+P reaction compared to
the S+S reaction. This trend is also observed for P+P (16O+76Ge and
16O+92Zr) reactions. These reactions are not shown here.
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In Fig. 2, we display the fusion cross-section σfus [mb] as a function of
center-of-mass energy Ecm [MeV]. Various lines have the same meaning as
in Fig. 1. In Fig. 2, we noticed that there is a slight increase in the fu-
sion probability for S+O (58Ni+74Ge) reaction compared to the S+S case
at sub-barrier energies. Similar trend is also observed for the reaction of
O+O (64Ni+74Ge). However, we observe that there is a decrease in the
fusion probability for S+P (40Ca+96Zr) reaction than for the S+S reac-
tion. Similar trend is noticed in P+P (16O+76Ge). The reaction of O+O
(64Ni+74Ge) and P+P (16O+76Ge) are not displayed here. One clearly ob-
serves that there is an increase in the fusion probabilities for spherical–oblate
and oblate–oblate deformed nuclei and decrease for the spherical–oblate and
oblate–oblate deformed nuclei compared to the spherical–spherical case at
sub-barrier energies.
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Fig. 2. The fusion cross-section σfus [mb] as a function of centre-of-mass energy
Ecm [MeV] for the reactions of 58Ni+74Ge and 40Ca+96Zr. Various lines have the
same meaning as in Fig. 1.
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4. Summary

In this paper, we studied the role of the deformed Coulomb potential on
fusion probabilities using the Skyrme energy density formalism and other
proximity based potentials such as AW 95, Bass 80 and Denisov DP. We
found that the fusion probabilities at sub-barrier energies differ for deformed
colliding nuclei compared to spherical colliding nuclei and these differences
are observed to be smaller compared to differences due to different choices
of nuclear potential for these selected reactions. A study of other reactions
of heavily deformed nuclei, where we have observed that this difference in-
creases with increase in the value of quadrupole deformation parameter, is
still under progress. Hence, the fusion probabilities at below barrier energies
has a strong dependence on the shape of the colliding nuclei.
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