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LOW-ENERGY η-NUCLEAR SCATTERING
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IN LIGHT NUCLEI∗

J.A. Niskanen

Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland

(Received January 7, 2014)

The connection of the binding energy and width of possible bound
η-mesic states is given to the complex scattering length for s-states in
the hope that, with knowledge of the final state interaction, this could
be useful in searches of these states. In spite of the strong direct potential
dependence of both observables, this connection is seen to be very model
independent even for various nuclei once the influence of also the effective
range is considered. The importance of this term is pointed also for data
analyses. Although the nucleus considered here is 12C, extension to other
nuclei is implied in the background work.
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1. Introduction

As discussed in some other talks in this symposium, low-energy final state
scattering parametres have been the target of intense analyses of η-meson
production in recent years. Mostly, the investigations aim at the extraction
of the complex scattering length a, where the real part is connected to the
existence or nonexistence of a bound state. The definition common in meson
physics

q cot δ =
1

a
+

1

2
r0q

2 (1)

requires a negative real part and |aR| > aI (more precisely including also
the effective range R[a3(a∗ − r∗0)] > 0 [1, 2]). However, unfortunately, the
scattering cross section data alone cannot give just the sign of this quantity.

Nevertheless, the magnitude of the energy of a bound state (or a virtual
state) can be estimated from final state interaction (FSI) effects, though the
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existence cannot. This was the original idea of Ref. [1] studying the relation
in 3He provided a bound state would exist. This work was recently extended
to heavier nuclei [2], where the existence of bound states is less controversial
and experiments are being performed (see e.g. [3–5]).

Particularly suggestive is the possibly rapid change of the scattering
lengths in 3He and 4He discussed by Machner at the first symposium of this
series [6]. There, the latter scattering length appears significantly smaller
than the large a3Heη, which would hint to a change of the sign (of the real
part), since one would expect more attraction in the heavier nucleus and
thus either even larger scattering length (for the nonbinding situation) or a
binding strength with undetermined size of the cross section and scattering
length. However, the results seem to depend strongly on whether they are
obtained with or without the effective range term of the low-energy expan-
sion. This is discussed in Subsec. 3.2

The aim of this paper is to review and summarize the numerical relation
of the complex binding energy to the complex scattering length and effective
range. At the end, some speculative extrapolation possibility is shortly
played with.

2. Formalism

The basic idea is to employ various nuclear charge distributions ρ(r) in
simple optical potentials

Vopt = −4π(VR + iVI)ρ(r)/(2µηN ) , (2)

where for each nucleus the strength parameters (VR, VI) are freely varied to
get a sufficient coverage to present the binding energy and width as contours
in the (aR, aI) plane. The normalization of the profiles, shown in Fig. 1, is
chosen to the mass number as 4π

∫∞
0 ρ(r) r2 dr = A, so that in the simple

impulse approximation optical model the strength (VR, VI) would correspond
to the elementary scattering length aηN (r given in fm). However, it should
be stressed that no claim is made about any absolute strength of the poten-
tial as in microscopic model works. The main purpose is to get the numerical
connection of binding energies and widths to the scattering parameters, so
that if the latter can be extracted from data, then a preliminary estimate
could be obtained for the former. Possibly, this would be useful for planning
experiments. In the spirit of the shape independence of NN forces, one
might expect a more density profile independent connection between these
quantities than in the direct relation to the potential of either of them.

If the effective range term is included, then also the energy relation
should include this and the low (complex) energy relation would be

1/a = −
√
−2µηAE/~2 − r0 µηAE/~2 (3)
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Fig. 1. The density profiles of the nuclei used in Refs. [1] and [2].

with µηA the reduced mass of the system. In comparison with the actual
exact results from solving equations of motion, this relation was found to be
much more accurate than keeping the first term alone. For binding energies
up to |E| ≈ 10 MeV and even beyond the accuracy of Eq. (3) was a few
percent for the real part and about ten percent for the imaginary (E and r0
taken from the calculation). This success can be attributed to the inclusion
of a non-zero effective range r0 and can be considered as an indication of
the necessity of its inclusion also in data analyses.

3. Numerical results

3.1. Case of 12C

Going to heavier nuclei from 3He carbon may be a representative compro-
mise between the experimentally studied helium and magnesium isotopes.
Figure 2 shows the binding energy contours for five choices up to 20 MeV.
Also shown are the zero energy limit and the borderline, where |ER| > |EI|.
The latter is of interest as a measure of actually distinguishing any peak. To
facilitate the complete connection, Fig. 3 shows also the contours of constant
half-widths (−EI).

The behaviour for a real potential is quite clear and understandable, but
some peculiar features appear for strongly absorptive interactions. Absorp-
tion, described by the imaginary part, acts in the bound system like a repul-
sion eating away the wave function in the attractive region: less wave func-
tion −→ less attraction. So for increasing absorption, the strength of also
the attractive real part must be increased to stay on the equal-energy con-
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Fig. 2. The s-wave binding energy EB = −ER contours for 1, 2, 5, 10 and 20 MeV
in the complex (aR, aI) plane. The solid line shows the zero energy, i.e. above it
there is no binding. Below the dashed line |ER| > |EI|.
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Fig. 3. The same as Fig. 2 but for the imaginary part of the bound state energies
−EI, i.e. half widths.

tours. However, as shown in Ref. [2], the effect of the imaginary part of the
potential saturates in the scattering length and aI is not even monotonously
increasing. Therefore, the calculated points for the equidistant mesh of the
potential strength become denser and denser with increasing absorption (and
stronger real part to remain at the same binding energy), and eventually the
contours turn back to the left. However, in this region, the states are so wide,
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anyway, that they may not be of experimental interest. Furthermore, it may
be worth noting that in the proximity of zero binding the widths tend to be
large, significantly larger than the binding energy for the same VR without
imaginary part at all. Therefore, near threshold bound states may be hard
to distinguish.

To get a more detailed picture of that behaviour and the general trend
of increasing binding energies, Fig. 4 shows a magnified detail of Fig. 2. It
can be seen that the “weak potential branch” comes lower and lower in the
aI direction, and the opening angle between the “branches” decreases until
they cross over at about 9 MeV binding. So the 10 MeV contour below the
formal strong potential zero line belongs actually to the weaker couplings
and 20 MeV has gone even further.
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Fig. 4. Magnified detail of Fig. 2.

The behaviour seen in Figs. 2 and 3 is very similar to that of 3He [1] and
also 4He and 24Mg [2] especially for large |a| (> 4 fm) and “weak potential
branch” dictated mainly by just the binding energy term in Eq. (3). The
next section discusses the potential dependence through the effective range,
which, in turn, depends naturally on the size of the nucleus.

3.2. Significance of the effective range

From relation (3), it is clear that at least with “realish” (dominantly real)
quantities for a negative E (consequently, also negative a) and a positive
effective range the two terms on the left-hand side tend to cancel making
1/a smaller and a bigger. Due to this cancellation, a is quite sensitive on
the inclusion of the second term. This expectation is actually seen in drastic
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changes of the data analyses from Refs. [7–9] giving the scattering lengths
shown in Table I. Clearly, leaving the effective range out may give scattering
lengths even less than one half of their true values and consequently grossly
overestimated binding energies. This is confirmed in the calculations and by
Eq. (3).

TABLE I

Scattering lengths in fm from data without and with the effective range term.

System aR aI Ref.

η(3He) ±(2.9± 2.7) 3.2± 1.8 [7]
η(3He) ±(10.7± 0.9) 1.5± 2.6 [8]
η(4He) ±(3.1± 0.59 0± 0.5 [9]
η(4He) ±(6.2± 1.9) 0.01± 6.5 [9]

Consequently, it is clear that consistency in estimating the possible bind-
ing energy from the more advanced scattering analyses needs also the effec-
tive range term. If one takes, for example, the scattering lengths for η4He
above, leaving that away and making the standard estimate for possible
binding energy, the first one (without r0) would give about 4 MeV and the
second (with r0) 1 MeV. However, from Fig. 2 the results for these two a’s
would be 10 MeV and 2 MeV, correspondingly, the second being preferable.
(The result for 4He, Fig. 8 of Ref. [2], is very nearly the same as 12C for
such weak binding due to shape independence. Practically, only the region
of the “turning point” tends to move left towards larger |aR| with increasing
A and right for decreasing.)

Because of the apparent importance of the effective range, Ref. [2] gives
a parametrization of the complex r0 in terms of the real and imaginary parts
of the scattering length.

3.3. Prospect of extrapolation

Although the aim of this paper is not to promote a definite potential
model, it may still be tempting to speculate by interpreting the strength
parametres VR and VI in Eq. (2) to be the real and imaginary parts of the
basic ηN scattering length aηN in a first order optical potential as done
in e.g. Ref. [10]. (Or they might represent some more general strengths
perhaps extracted from microscopic nuclear models.) Then, the strength
VR = 0.33 fm, VI = 0 fm would support a barely bound state in 4He, which
would mean that all standard values of Re aηN ranging roughly between
0.4 fm and 0.7 fm could have the potential for binding in this nucleus. For
this basic strength, the binding energy in 12C would be 8 MeV and in 24Mg
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14 MeV. To produce a barely bound state in the three nuclei considered
above, the fitted strength VR = 0.86× A−0.7 fm would be needed as shown
by the squares and the dashed curve in Fig. 5 (also 3He is shown).
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Fig. 5. Dependence of the binding limit on the mass number. Squares and dashed
line for real potentials, dots and solid curve for VI = VR/2.

However, aηN is complex and as another example, assuming more realisti-
cally VI = 0.5VR (roughly true for most aηN in the literature), VR = 0.47 fm
would just bind the η4He system and the corresponding binding energies
would be 15 MeV and 22 MeV for 12C and 24Mg, respectively. Their half-
widths would be about the same as their binding energies; in the case of 4He
the half-width would be 12 MeV. In this case, the barely binding strength
could be parametrized as VR = 1.25 × A−0.7 fm (the circular dots and the
solid curve). It may be of further interest to remind that the depth of a
square well potential producing a zero binding energy should behave like
R−2 ∝ A−2/3.

4. Conclusion

In this work, a phenomenological connection between the low energy
scattering length and the complex binding energy of possible eta-nuclear
bound states has been studied in a simple but probably realistic model. The
hope is that the results could be useful in searches of these bound states,
if more easily accessible final state data are available to make predictions
where to look for the states. The binding energies are explicitly presented
as contours in the complex a plane for the 12C (also for 4He and 24Mg
in Ref. [2]). It is seen that the connection is very closely the same and
systematic for relatively different density profiles, from which it is easy to
interpolate and even extrapolate to other nuclei.
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The calculations suggest that for even relatively moderate values of the
absorptive potential and of the imaginary parts of the scattering lengths, the
states can be wide, especially compared with the real depths of the states.
In view of also many other theoretical results, starting from the elementary
ηN scattering and predicting negative real parts for the scattering length
but with rather large imaginary parts, the observation of such bound states
might be difficult or even impossible. However, in the minireview [11] of the
situation, a reanalysis of the existing data on η3He final states made very
small values of the imaginary part appear plausible, so that also the possible
bound states may not necessarily be as wide as most theoretical works would
indicate.

In our work, for aI less than 2 fm with aR larger than, say, 5 fm a bound
state should be recognizable. In the case of more likely smaller scattering
lengths, aI < 1 fm would be necessary. For the assessment of possible dis-
tinguishable bound states, Fig. 2 indicates the region where the half width
is less than the binding energy. Experimentally, in this respect the result
aR = ± 6.2 ± 1.9 fm and aI = 0.001 ± 6.5 fm for 4He of Ref. [9] is quite
interesting and suggestive. If |aR(η4He)| is really larger than for η3He scat-
tering, it is difficult to see how this could be true for a more attractive but
still unbinding system.

The relation between a and E is very robust against potential differences
even between different nuclides over a wide range once also the non-zero effec-
tive range is taken into account. Therefore, due to this shape independence,
one may trust the results to be valid by interpolation also for the A = 7
nuclei of recent experimental interest [12].

I thank Paweł Moskal for the invitation and kind hospitality at the Sym-
posium and the Helsinki Institute of Physics (HIP) for a travel grant.
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