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The use of scattering length of particle–target interaction due to real-
valued potential to study the bound states of the particle–target system is
well known in nuclear and atomic physics. In view of the current interest in
using η-nucleus scattering length to infer the existence of η-mesic nucleus,
we derive general analytic expressions that relate the binding energy and
half-width of an unstable bound state to the complex-valued scattering
length due to the same particle-target interaction.
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1. Introduction

The existence of eta-mesic nucleus, a novel nucleus with an excitation
energy of about 540 MeV, first predicted more than 25 years ago [1], has led
to several theoretical studies [2, 3] aimed at understanding the underlying
interaction between an eta (η) meson and a nucleus. While there is difference
of opinion on the size of the nucleus in which the η can be bound, there is
general agreement that theoretical calculations, irrespective of the formalism
and ηN interaction model used, provide compelling reason to believe that
η-mesic nucleus does indeed exist with nuclear mass number greater than
10 [2].
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Since 1986, the search for η-mesic nucleus has been conducted at various
laboratories in the USA, Europe and Japan. The most promising indication
of the existence of η-mesic nucleus comes from an experiment performed at
COSY-GEM (Jülich) [4] using the (p,3He) reaction on 27Al. This experimen-
tal result has, in turn, further encouraged efforts in searching the possibility
of forming η-mesic nucleus in light nuclei such as 3,4He [3–5], as advocated
by some researchers. Clearly, this latter possibility is directly related to the
magnitude of the η-nucleus scattering length a.

In a recent work, Niskanen and Machner [6] explored the relation between
the binding energy and width of an η-mesic nucleus and the complex-valued
η-nucleus scattering length. One of the underlying ideas of such study is that
an experimental determination of a via final-state interaction between η and
a nucleus would indicate the existence or nonexistence of an η-nucleus s-wave
bound state. Independent of the way how the scattering length or the bind-
ing energy is modeled or measured, we will see that the functional relation
between these two observables is, in fact, model-independent. Hence, this
dependence is an interesting subject on its own. In this paper, we present
the model-independent features of this functional dependence.

2. Polar representation of observables

The s-wave scattering amplitude is given by

f =
e2iδ − 1

2ik
=

1

k cot δ − ik
, (1)

where δ is the phase shift which is complex-valued when an optical potential
is used in calculating it and k is the final-state channel momentum. For
exponentially bound potentials,

k cot δ =
1

a
+

1

2
rk2 + . . . , (2)

where a is the scattering length and r is the effective range. In the limit
k → 0, the first term dominates, i.e.,

k cot δ =
1

a
, (3)

and
f =

1

1/a− ik
. (4)

The bound-state pole occurs at kpol = −i/a which leads to

k2pol = −
1

a2
. (5)
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It is useful to use the polar representation in the complex a plane so that

a = |a| exp(iγ) ≡ x+ iy , (6)

with

x = Re[a] = |a| cos γ , y = Im[a] = |a| sin γ , γ = arctan
(y
x

)
. (7)

It follows that

k2pol = −
1

|a|2
exp(−2iγ) . (8)

The complex energy B is, therefore, given by

B =
k2pol
2µ

= −|B| exp(−2iγ) , (9)

where µ is the reduced mass of the bound particle and

|B| = 1

2µ|a|2
. (10)

In the Cartesian representation,

B ≡ E − iΓ
2
≡ u+ iv , (11)

where E and Γ/2 denote, respectively, the binding energy and half-width of
the bound state. It follows from Eqs. (6) and (7) that

u ≡ E = −x
2 − y2

2µ|a|4
, (12)

v ≡ −Γ
2

=
2xy

2µ|a|4
. (13)

The polar representation in the a-plane, equation (6), was used by
Balakrishnan et al. [7] to calculate the energies and widths of bound states
as functions of complex scattering lengths in multi-channel atom-molecule
collisions. In Section 3 we expand the polar representation to include the
kpol- and B-planes, and determine the respective physical domains. Using
these domains, we solve in Section 4 the inverse problem, namely, finding
the value of complex a for a given value of complex energy B.
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3. Physical domains on the complex planes

If we denote
kpol = R + iI , (14)

then
k2pol = R2 − I2 + 2iRI . (15)

Hence, we obtain from Eqs. (9) and (11)

2µE = R2 − I2 = − 1

|a|2
cos 2γ , (16)

2µ

(
Γ

2

)
= −2RI = − 1

|a|2
sin 2γ . (17)

Because E < 0 (the bound state) and Γ > 0 (by definition), Eqs. (16) and
(17) are, respectively, equivalent to(

R2 − I2
)
< 0 and RI < 0 . (18)

The first inequality requires |R| < |I|. Since a bound state has I > 0
(i.e. a decaying outgoing wave), the second inequality then requires R < 0.
In summary, the requirements |R| < |I|, I > 0 and R < 0 indicate that the
bound-state (in the literature it is also called quasi-bound state) poles are
situated in the second quadrant (but above the diagonal line) of the complex
kpol-plane.

Equations (16) and (17) further indicate that E < 0 and Γ > 0 re-
quire, respectively, that cos 2γ > 0 and sin 2γ < 0. This, in turn, requires
3π/2 < 2γ < 2π or 3π/4 < γ < π. The complex scattering length, a, is
therefore situated in the second quadrant but below the diagonal line in
the complex a-plane. In other words, on the a-plane the scattering length
satisfies simultaneously

Im[a] > 0 , Re[a] < 0 , |Im[a]| < |Re[a]| . (19)

The third inequality was also shown in Ref. [2]. The physical domains in
the a-, kpol-, and B-planes are shown in Figs. 1–3, respectively. When the
polar angle, γ, in the a-plane turns counter clockwise, the corresponding
polar angles in the kpol- and B-planes turns in the opposite direction (see
Section 5.1).
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Fig. 1. The complex scattering length plane. The physical domain is the entire
lower triangular region of the 2nd quadrant. The meaning of the solid circles and
the crosses are given in the text.

0 Re(kpol)

Im(kpol)

Fig. 2. The complex momentum plane. The physical domain is the entire up-
per triangular region of the 2nd quadrant. The arc near the origin indicates the
corresponding polar-angle range.
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Fig. 3. The binding-energy plane. The physical domain is the entire 3rd quadrant.
The arc indicates the polar-angle range. The trajectories shown by the downward
dashed line and the horizontal linked-dotted line are explained in the text.

4. Inverse mapping

From Eqs. (10), (12), and (13), we get

u = −2µ|B|2
(
x2 − y2

)
(20)

and
v = 2µ|B|2(2xy) . (21)

The inverse mapping is obtained by solving the above coupled equations
and the result is

x =

(
− 1

2|B|√µ

)√
−u+

√
u2 + v2 , (22)

y =

(
1

2|B|√µ

)√
u+

√
u2 + v2 . (23)

In choosing the branch of the square roots, the properties associated with the
physical domains discussed in Section 3 have been used. For bound states,
u < 0. Hence, u = −|u| in the last two equations.
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5. Results and discussion

5.1. Application of the inverse mapping

As examples of the application of the inverse mapping, we have con-
sidered two cases. The departing trajectories on the B-plane are shown in
Fig. 3. Case I corresponds to fixing E but varying Γ/2 in the direction given
by the downward arrow along the dashed line. Case II corresponds to fixing
the value of Γ/2, while varying E along the horizontal linked-dotted line in
the direction shown by the leftward arrow. The resulting a (calculated with
2µ = 5 fm−1) are shown, respectively, as the left-to-right solid circles and
the descending crosses in Fig. 1. One notes that the polar angles, γ, of the
successive left-to-right solid circles in Fig. 1 turn clockwise, while those of
the original B-points along the downward dashed line in Fig. 3 turn counter
clockwise. This reversal of the sense of the turning is a consequence of the
opposite signs in front of the polar angles in Eqs. (6) and (9).

5.2. Role of nuclear mass in the binding of η

From Eqs. (22) and (23), one notes that the magnitudes of the real and
imaginary parts of the scattering length a are inversely proportional to √µ.
For η-mesic nucleus, µ is the reduced mass of η, which increases as nuclear
mass increases. This, in turn, indicates that for η to have a given binding
energy |E| in a lighter nucleus, it requires a larger |Re[a]| than that for η
to have the same binding energy |E| in heavier nuclei. This is why the ηN
model of Ref. [1] does not predict the existence of 3,4Heη, while models giving
larger |aηN | (and, hence, larger |aηA| ) do predict these light η-mesic nuclei.

5.3. Remark on the sign convention of the scattering length

The scattering length approximation is often written as

k cot δ = −1

a
. (24)

To avoid confusion, let us denote −a = A in Eq. (24). The polar represen-
tation of a, Eq. (6), then leads to the following equations

A = −|a|eiγ = |a|ei(π+γ) = |a|eiθ , (25)

where we have defined θ = π + γ. By repeating the algebra leading Eq. (3)
to Eq. (19), we have noted that the forms of Eqs. (8), (9), (16), (17) remain
unchanged, except that in these equations the variable 2γ will be replaced
by 2θ. However, this variable change has no consequence on the final results
because cos 2θ = cos 2γ and sin 2θ = sin 2γ. In other words, when one goes
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from (Re[a], Im[a]) to determine (E,Γ/2), the result is independent of the
sign of the scattering length, a. This is because k2pol is independent of the sign
of a. However, because −a = A, the physical domain on the A-plane will be
the upper triangular region of the 4th quadrant. If we define A = x′ + iy′,
then x′ = −x and y′ = −y, with the x and y given, respectively, by Eqs. (22)
and (23). However, we will still have the inequality |Im[A]| < |Re[A]|, the
same as the third inequality in Eq. (19).

6. Summary

We have studied the complex mappings a → B and B → a. By using
the physics implied by the momentum of a bound state, we have determined
the physical domain of a (Fig. 1). The a satisfies the properties given in
Eq. (19).

Our analytic expressions (Eqs. (22) and (23)) are interaction-model in-
dependent so long as the potential of the particle-target interaction belongs
to the class of exponentially bound potentials so that the low-energy expan-
sion, Eq. (2), can be made. The only kinematic approximation used in our
derivation is k2pol/2µ '

√
k2pol + µ2 − µ which is a very good approximation

for binding energies. We emphasize that the model dependence of the in-
teraction dynamics does come into play when one theoretically calculates
the scattering length, a, and the binding energies, B. However, once one of
these two observables is calculated (or measured), then the remaining one is
determined by Eqs. (16) and (17) or, vice versa, by Eqs. (22) and (23). These
analytic expressions offer, therefore, a means of making consistency test of
interaction models or measurements. We mention, among others, that these
analytical expressions can be calculated readily by means of hand calcula-
tors. Finally, they can be used to gain insight into the trend of bound-state
formation as elucidated by the example discussed in Section 5.2.

We would like to thank Ariel Fragale, a senior physics major at Ford-
ham University for her assistance with the figures. One of us (Q.H.) would
like to thank Professor Paweł Moskal of the Jagiellonian University for the
hospitality extended to him during his stay at Kraków.
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