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This paper obtains the exact 1-soliton solution to the chiral nonlinear
Schrödinger’s equation. There are three types of integration architectures
that are implemented in this paper. They are the functional variable ap-
proach, first integral method as well as the ansatz method. These soliton
solutions are obtained. There are constraint conditions that also fall out
which must remain valid in order for the solitons and other solutions to
exist.
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1. Introduction

The study of chiral solitons arises in the context of nuclear physics with
the chiral nonlinear Schrödinger’s equation (CNLSE). This equation is the
outcome of the Jackiw–Pi Model. CNLSE has been studied in the past
few decades. There are several aspects of CNLSE that has been addressed
in the past few decades. They are traveling wave solutions, conservation
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laws, perturbation theory, integrability with semi-inverse variational princi-
ple, and several others [1–28]. This paper will also address the integrability
aspects of the CNLSE and the generalized CNLSE with constant as well
as time-dependent coefficients. There are three types of integration tools
that will be adopted to integrate and obtain soliton solutions to the model.
They are the functional variable method, first integral approach, and the
ansatz method. These machineries will reveal solitons, topological solitons
and singular soliton solutions to CNLSE.

2. Governing equations

The dimensionless form of generalized CNLSE with time-dependent co-
efficients is given by

i (qm)t + a(t) (qm)xx + ib(t) (qq∗x − q∗qx) qm = 0 , (1)

where the dependent variable q represents the complex wave profile, while
x and t are the independent variables that respectively represent the spatial
and temporal variables. Moreover, a(t) and b(t) are all functions of t and
m is a positive real number that makes the CNLSE general. For a(t) = a
and b(t) = b, Eq. (1) reduces to the generalized CNLSE [1]

i (qm)t + a (qm)xx + ib (qq∗x − q∗qx) qm = 0 . (2)

For m = 1, we get the regular CNLSE with time-dependent coefficients [2]

iqt + a(t)qxx + ib(t) (qq∗x − q∗qx) q = 0 , (3)

and when a(t) = a and b(t) = b, then Eq. (3) reduces to the regular CNLSE
that was first proposed by Jackiw and Pi [3, 4].

The three integration tools that will be adopted in order to address
these generalized form of CNLSE are going to be individually studied in the
following three sections.

3. Functional variable method

We first describe the functional variable method [5–7], then apply it to
construct the nontopological 1-soliton solution of the generalized CNLSE [1]
in the following form

i (qm)t + a (qm)xx + ib (qq∗x − q∗qx) qm = 0 . (4)

This method by itself is well known. In fact, the method banks on the fact
that an ODE of the form u′′ = f(u) can be integrated by the introduction of
an integration function that is alternately known as functional variable [29].
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Cevikel et al. [7] used the functional variable method to obtain exact so-
lutions of Zakharov–Kuznetsov modified equal width (ZK-MEW), the modi-
fied Benjamin–Bona–Mahony (mBBM) and the modified KdV-Kadomtsev–
Petviashvili (KdV-KP) equations. This method definitely can be applied to
nonlinear PDEs which can be converted to a second order ODE through the
traveling wave transformation.

This method definitely can be applied to nonlinear PDEs which can be
converted to a second order ordinary differential equations (ODE) through
the traveling wave transformation.

3.1. Detailed description of the method

Let us consider a NLEE with independent variables x, t and dependent
variable u as

P (u, ut, ux, utt, uxx, uxt, . . . ) = 0 , (5)

where P is a polynomial in u and its partial derivatives.
To find the traveling wave solution of Eq. (5), we introduce the wave

variable ξ = x− ct so that

u(x, t) = U(ξ) . (6)

The nonlinear partial differential equation can be converted to an ODE as

Q
(
U,U ′, U ′′, . . .

)
= 0 , (7)

where Q is a polynomial in U and its total derivatives and ′ = d
dξ .

Let us make a transformation in which the unknown function U(ξ) is
considered as a functional variable in the form

Uξ = F (U) (8)

and some successively derivatives of U are

Uξξ = 1
2

(
F 2
)′
,

Uξξξ = 1
2

(
F 2
)′′√

F 2 ,

Uξξξξ = 1
2

[(
F 2
)′′′
F 2 +

(
F 2
)′′ (

F 2
)′]

, (9)

where ′ = d
dU .

The ODE (7) can be reduced in terms of U, F and its derivatives upon
using the expressions of Eq. (9) into Eq. (7) gives

R
(
U,F, F ′, F ′′, F ′′′, . . .

)
= 0 . (10)
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The key idea of this particular form Eq. (10) is of special interest because it
admits analytical solutions for a large class of nonlinear wave type equations.
After integration, the Eq. (10) provides the expression of F , and this, in turn,
together with Eq. (8) give the relevant solutions to the original problem.

3.2. Application to generalized CNLSE

We apply the functional variable method to construct the nontopological
1-soliton solution of the generalized CNLSE (4). We use the wave transfor-
mation

q(x, t) = U(ξ)ei(−κx+ωt+θ) , ξ = x− vt , (11)

where κ represents the wave number of the soliton, while ω is the frequency
of the soliton and θ is the phase constant, and finally v is the velocity of the
soliton, all of them are to be determined later.

Thus, from Eq. (11), we have

(qm)t =
{
−v (Um(ξ))′ + imωUm(ξ)

}
eim(−κx+ωt+θ) , (12)

(qm)xx =
{
(Um(ξ))′′ − 2imk (Um(ξ))′ −m2κ2Um(ξ)

}
eim(−κx+ωt+θ) , (13)

and
qq∗x − q∗qx = 2iκU2(ξ) . (14)

Substituting Eqs. (11)–(14) into Eq. (4), and then decomposing into real
and imaginary parts respectively yields

v = −2amκ , (15)

and
a (Um(ξ))′′ −

(
mω + am2κ2

)
Um(ξ)− 2κbUm+2(ξ) = 0 . (16)

Now, we use the transformation

U(ξ) = V
1
m (ξ) (17)

that will reduce Eq. (16) into the ODE

aV ′′ −
(
mω + am2κ2

)
V − 2κbV 1+ 2

m = 0 . (18)

According to Eq. (9), we get from Eq. (18) the expression for the function
F (V ) that reads

F (V ) =

√
m (ω + amκ2)

a
V

√
1 +

2κb

(m+ 1) (ω + amκ2)
V

2
m . (19)
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After making the change of variables

Z = − 2κb

(m+ 1) (ω + amκ2)
V

2
m (20)

and using the relation Vξ = F (V ), the solution of the Eq. (18) is in the
following form

V (ξ) =

{
(m+ 1)

(
ω + amκ2

)
2κb

csch2
(√

ω + amκ2

ma
ξ

)}m
2

. (21)

Using the transformation (17), we can obtain the following exact 1-soliton
solutions of Eq. (4):
Soliton solution:

q1(x, t) =

√
−(m+ 1) (ω + amκ2)

2κb
sech

(√
ω + amκ2

ma
(x+ 2amκt)

)
×ei(−κx+ωt+θ) ; (22)

Singular soliton solution:

q2(x, t) =

√
(m+ 1) (ω + amκ2)

2κb
csch

(√
ω + amκ2

ma
(x+ 2amκt)

)
×ei(−κx+ωt+θ) , (23)

for ω+amκ2

a > 0; it is easy to see that solutions (22) and (23) can reduce to
periodic solutions as follows

q3(x, t) =

√
−(m+ 1) (ω + amκ2)

2κb
sec

(√
−ω + amκ2

ma
(x+ 2amκt)

)
×ei(−κx+ωt+θ) , (24)

and

q4(x, t) =

√
−(m+ 1) (ω + amκ2)

2κb
csc

(√
−ω + amκ2

ma
(x+ 2amκt)

)
×ei(−κx+ωt+θ) , (25)

for ω+amκ2

a < 0.

Remark I: Bright solitons are also known as bell-shaped solitons. These
kinds of solitons are modeled by the sech function.
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4. First integral method

In this section, we introduce a simple description of the first integral
method [8–15] and then apply it to construct the topological soliton solution
of the CNLSE with time-dependent coefficients [2] in the following form

iqt + a(t)qxx + ib(t) (qq∗x − q∗qx) q = 0 . (26)

This method is much more advanced but less standard. The basic idea
of this method starts with the assumption that a second order nonlinear
ODE has a first integral in the form of a polynomial of dependent variable
and its first derivative. Then, treating the original second order equation
as the first prolongation of the first integral, it is assumed that the first
prolongation is another polynomial proportional to the first one, such that
it is automatically zero for the solution. This assumption is not true in a
general scenario. However, for specific problems, this can be valid. The first
integral can be then found explicitly by comparing coefficients, namely by
purely algebraic means. Besides, by considering higher degree polynomials,
one can find solutions of increasing generality.

Recently, this useful method is widely used in many papers e.g. in [9–15]
and the references therein. Lu [9] proposed the first integral method to solve
some nonlinear fractional PDEs such as nonlinear fractional Klein–Gordon
equation, Generalized Hirota–Satsuma coupled KdV system of time frac-
tional order and nonlinear fractional Sharma–Tasso–Olever equation. Bekir
and Unsal [10] solved combined KdV–mKdV equation, Pochhammer–Chree
equation, and coupled nonlinear evolution equations using the first integral
method. Tascan and Bekir [11] used the first integral method to obtain ex-
act solutions of the modified Zakharov–Kuznetsov equation and ZK–MEW
equation. Aslan and Mirzazadeh [12–16] proposed the first integral method
to obtain exact solutions of some complex nonlinear PDEs.
Remark II: Biswas et al. [1] showed that for the generalized CNLSE, the
topological solitons would exist only for m = 1 and no other value of m can
be permitted for the topological soliton solutions to be valid.

4.1. Details of the method

Tascan et al. [11] summarized the main steps for using the first integral
method, as follows:
Step I: Suppose a NLEE with independent variables x, t and dependent
variable u as

P (u, ut, ux, utt, uxt, uxx, . . . ) = 0 (27)
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can be converted to an ODE

Q

(
U(ξ),

dU(ξ)

dξ
,
d2U(ξ)

dξ2
, . . .

)
= 0 , (28)

using a traveling wave variable u(x, t) = U(ξ), ξ = x− ct, where the prime
denotes the derivation with respect to ξ. If all terms contain derivatives,
then Eq. (28) is integrated where integration constants are considered zeros.
Step II: Suppose that the solution of ODE (28) can be written as follows:

u(x, t) = U(ξ) . (29)

Step III: We introduce a new independent variable

X(ξ) = U(ξ) , Y (ξ) =
dU(ξ)

dξ
, (30)

which leads to a following system

dX(ξ)

dξ
= Y (ξ) ,

dY (ξ)

dξ
= F (X(ξ), Y (ξ)) . (31)

Step IV: According to the qualitative theory of ordinary differential equa-
tions [17], if we can find the integrals to (31) under the same conditions, then
the general solutions to (31) can be solved directly. However, in general, it
is really difficult for us to realize this even for one first integral, because for
a given plane autonomous system, there is neither a systematic theory that
can tell us how to find its first integrals, nor is there a logical way for telling
us what these first integrals are. We shall apply the Division Theorem to
obtain one first integral to (31) which reduces (28) to a first-order integrable
ordinary differential equation. An exact solution to (27) is then obtained by
solving this equation. Now, let us recall the Division Theorem:
Division Theorem: Suppose that P (w, z) and Q(w, z) are polynomials in
C[w, z]; and P (w, z) is irreducible in C[w, z]. If Q(w, z) vanishes at all zero
points of P (w, z) , then there exists a polynomialG(w, z) in C[w, z] such that

Q(w, z) = P (w, z)G(w, z) .

4.2. Application to CNLSE with time-dependent coefficients

In this subsection, we study the CNLSE with time-dependent coefficients

iqt + a(t)qxx + ib(t) (qq∗x − q∗qx) q = 0 . (32)
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We use the wave transformation

q(x, t) = U(ξ)ei(−κx+ω(t)t+θ) , ξ = x− v(t)t , (33)

where v(t) is the soliton velocity, κ is the wave number of the soliton, while
ω(t) is the frequency of the soliton velocity and finally θ is the phase constant,
all of them are to be determined.

Thus, from Eq. (33), we obtain

qt =

{
i

(
t
dω(t)

dt
+ω(t)

)
U(ξ)−

(
t
dv(t)

dt
+v(t)

)
dU(ξ)

dξ

}
ei(−κx+ω(t)t+θ) ,

(34)

qxx =

{
d2U(ξ)

dξ2
− 2iκ

dU(ξ)

dξ
− κ2U(ξ)

}
ei(−κx+ω(t)t+θ) , (35)

and
qq∗x − q∗qx = 2iκU2(ξ) . (36)

Substituting Eqs. (33)–(36) into Eq. (32), and equating the real and imagi-
nary parts, yields the following pair of relations

t
dv(t)

dt
+ v(t) + 2κa(t) = 0 , (37)

and

a(t)
d2U(ξ)

dξ2
−
(
κ2a(t) + t

dω(t)

dt
+ ω(t)

)
U(ξ)− 2κb(t)U3(ξ) = 0 . (38)

Then, integrating Eq. (37), we obtain

v(t) = −2κ

t

∫
a(t)dt . (39)

Using (30), we get

dX(ξ)

dξ
= Y (ξ) , (40)

dY (ξ)

dξ
=

(
κ2a(t) + tdω(t)dt + ω(t)

a(t)

)
X(ξ) +

2κb(t)

a(t)
X3(ξ) . (41)

According to the first integral method, we suppose that X(ξ) and Y (ξ)
are nontrivial solutions of (40), (41), and q(X,Y ) =

∑m
i=0 ai(X)Y i is an

irreducible polynomial in the complex domain C[X,Y ] such that

q (X(ξ), Y (ξ)) =

m∑
i=0

ai(X(ξ))Y i(ξ) = 0 , (42)
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where ai(X), i = 0, 1, ...,m, are polynomials of X and am(X) 6= 0. Equa-
tion (42) is called the first integral to (40)–(41). According to the division
theorem, there exists a polynomial T (X,Y ) = g(X)+h(X)Y in the complex
domain C[X,Y ] such that

dq

dξ
=

dq

dX

dX

dξ
+
dq

dY

dY

dξ
= (g(X) + h(X)Y )

m∑
i=0

ai(X)Y i . (43)

In this example, we take two different cases, by assuming m = 1 and m = 2
in Eq. (42).
Case I: Suppose m = 1. By equating the coefficients of Y i, i = 0, 1, 2, on
both sides of Eq. (43), we have

ȧ1(X) = h(X)a1(X) , (44)
ȧ0(X) = g(X)a1(X) + h(X)a0(X) , (45)

a1(X)Ẏ =a1(X)

((
κ2a(t) + tdω(t)dt + ω(t)

a(t)

)
X +

2κb(t)

a(t)
X3

)
=g(X)a0(X).

(46)
From Eq. (44), we obtain a1(X) = c0e

∫
h(X)dX , where c0 is an integration

constant. As a1(X) and h(X) are polynomials, we deduce that h(X) = 0
and a1(X) must be a constant. For simplicity, we can take a1(X) = 1.
Balancing the degrees of g(X) and a0(X), we conclude that deg(g(X)) = 1
only. Suppose that g(X) = A1X +B0, and A1 6= 0, then we find

a0(X) =
A1

2
X2 +B0X +A0 . (47)

Substituting a0(X), a1(X) and g(X) in Eq. (46), and setting all the coef-
ficients of powers X to be zero, we obtain a system of nonlinear algebraic
equations and by solving it, we get

A1 = 2

√
κb(t)

a(t)
, B0=0 , ω(t)=−1

t

∫ {
κ2a(t)− 2A0

√
ka(t)b(t)

}
dt ,

(48)

A1 = −2

√
κb(t)

a(t)
, B0=0 , ω(t)=−1

t

∫ {
κ2a(t) + 2A0

√
ka(t)b(t)

}
dt ,

(49)

where A0 and κ are arbitrary constants.
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Substituting (48) into Eq. (42), we obtain

Y (ξ) = −

√
κb(t)

a(t)
X2(ξ)−A0 . (50)

Combining (50) with (40), we obtain the exact solution to Eq. (38) and then
exact solutions for the CNLSE with time-dependent coefficients (32) can be
written as:
When A0

√
κb(t)
a(t) < 0, we have:

Topological soliton solution:

q1(x, t) = −

√
−
A0

√
κa(t)b(t)

κb(t)

× tanh

√−A0

√
κa(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)−2A0

√
κa(t)b(t)

}
dt+θ

)
; (51)

Singular soliton solution:

q2(x, t) = −

√
−
A0

√
κa(t)b(t)

κb(t)

× coth

√−A0

√
κa(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)−2A0

√
κa(t)b(t)

}
dt+θ

)
. (52)

When A0

√
κb(t)
a(t) > 0, we can obtain the following periodic solutions

q3(x, t) =

√
A0

√
κa(t)b(t)

κb(t)

× tan

√A0

√
κa(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)−2A0

√
κa(t)b(t)

}
dt+θ

)
, (53)
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q4(x, t) = −

√
A0

√
κa(t)b(t)

κb(t)

× cot

√A0

√
κa(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)−2A0

√
κa(t)b(t)

}
dt+θ

)
. (54)

Remark III: The topological solitons are also known as dark solitons (in
the context of nonlinear optics) or simply topological defects. These kinds
of solitons are modeled by the tanh functions.

Similarly, in the case of (49), from Eq. (42), we obtain

Y (ξ) =

√
κb(t)

a(t)
X2(ξ)−A0 , (55)

and then the exact solutions to the CNLSE with time-dependent coeffi-
cients (32) can be written as:

When A0

√
κb(t)
a(t) > 0, we have:

Topological soliton solution:

q5(x, t) = −

√
A0

√
κa(t)b(t)

κb(t)

× tanh

√A0

√
κa(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)+2A0

√
κa(t)b(t)

}
dt+θ

)
; (56)

Singular soliton solution:

q6(x, t) = −

√
A0

√
κa(t)b(t)

κb(t)

× coth

√A0

√
κa(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)+2A0

√
κa(t)b(t)

}
dt+θ

)
. (57)
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When A0

√
κb(t)
a(t) < 0, we can obtain the following periodic solutions

q7(x, t) =

√
−
A0

√
κa(t)b(t)

κb(t)

× tan

√−A0

√
ka(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)+2A0

√
κa(t)b(t)

}
dt+θ

)
, (58)

q8(x, t) = −

√
−
A0

√
κa(t)b(t)

kb(t)

× cot

√−A0

√
ka(t)b(t)

a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei

(
−κx−

∫ {
κ2a(t)+2A0

√
κa(t)b(t)

}
dt+θ

)
. (59)

Remark IV: The topological soliton solution (56) that we obtained for
Eq. (32) is exactly the same as the one that was obtained by Biswas [2] who
used the solitary wave ansatz method.
Case II: Suppose m = 2. By equating the coefficients of Y i, i = 0, 1, 2, 3
on both sides of Eq. (43), we have

ȧ2(X) = h(X)a2(X) , (60)
ȧ1(X) = g(X)a2(X) + h(X)a1(X) , (61)

ȧ0(X) = −2a2(X)

((
κ2a(t) + tdω(t)dt + ω(t)

a(t)

)
X +

2κb(t)

a(t)
X3

)
+g(X)a1(X) + h(X)a0(X) , (62)

a1(X)Ẏ =a1(X)

((
κ2a(t) + tdω(t)dt + ω(t)

a(t)

)
X +

2κb(t)

a(t)
X3

)
=g(X)a0(X) .

(63)
Since a2(X) is a polynomial of X, then from Eq. (60) we deduce that a2(X)
is a constant and h(X) = 0. For simplicity, we take a2(X) = 1. Balancing
the degrees of g(X), a0(X) and a0(X), we conclude that deg(g(X)) = 1
only. Suppose that g(X) = A1X + B0, then we find a1(X) and a0(X) as
follows

a1(X) = 1
2A1X

2 +B0X +A0 , (64)



Soliton Solution of Generalized Chiral Nonlinear Schrödinger’s Equation . . . 861

a0(X) =

(
A2

1

8
− κb(t)

a(t)

)
X4 +

B0A1

2
X3

+

(
−
κ2a(t) + tdω(t)dt + ω(t)

a(t)
+
B2

0

2
+
A0A1

2

)
X2 +A0B0X + d . (65)

Substituting a0(X), a1(X) and g(X) in Eq. (63) and setting all the coef-
ficients of powers X to be zero, we obtain a system of nonlinear algebraic
equations and by solving it with aid Maple, we obtain

A1 = 4

√
κb(t)

a(t)
, A0 =

κ2a(t) + tdω(t)dt + ω(t)√
κa(t)b(t)

, B0 = 0,

d =

(
κ2a(t) + tdω(t)dt + ω(t)

)2
4κa(t)b(t)

, (66)

A1 = −4

√
κb(t)

a(t)
, A0 = −

κ2a(t) + tdω(t)dt + ω(t)√
κa(t)b(t)

, B0 = 0,

d =

(
κ2a(t) + tdω(t)dt + ω(t)

)2
4κa(t)b(t)

. (67)

Now, taking the Eqs. (66)–(67) into account, Eq. (42) becomes

(
κ2a(t) + tdω(t)dt + ω(t)

)2
4κa(t)b(t)

+

(
κ2a(t) + tdω(t)dt + ω(t)

)2
a(t)

X2 +
κb(t)

a(t)
X4

±

(
κ2a(t) + tdω(t)dt + ω(t)√

κa(t)b(t)
+ 2

√
κb(t)

a(t)
X2

)
Y + Y 2 = 0 (68)

which is a first integral of Eqs. (40)–(41). Solving Eq. (68), we get

Y (ξ) = ± 1

2
√
κa(t)b(t)

[
κ2a(t) + t

dω(t)

dt
+ ω(t) + 2κb(t)X2(ξ)

]
. (69)

Combining (69) with (40), we obtain the exact solution to Eq. (38) and then
exact solutions to the CNLSE with time-dependent coefficients (32) can be
written as:

When κ2a(t)+t
dω(t)
dt

+ω(t)

a(t) < 0, we have:
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Topological soliton solutions:

q9,10(x, t) = ±

√
−
κ2a(t) + tdω(t)dt + ω(t)

2κb(t)

× tanh

√−κ2a(t) + tdω(t)dt + ω(t)

2a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei(−κx+ω(t)t+θ) ; (70)

Singular soliton solutions:

q11,12(x, t) = ±

√
−
κ2a(t) + tdω(t)dt + ω(t)

2κb(t)

× coth

√−κ2a(t) + tdω(t)dt + ω(t)

2a(t)

(
x+ 2κ

∫
a(t)dt+C1

)
×ei(−κx+ω(t)t+θ) . (71)

When κ2a(t)+t
dω(t)
dt

+ω(t)

a(t) > 0, we can obtain the following periodic solutions

q13,14(x, t) = ±

√
κ2a(t) + tdω(t)dt + ω(t)

2κb(t)

× tan

√κ2a(t) + tdω(t)dt + ω(t)

2a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei(−κx+ω(t)t+θ) , (72)

q15,16(x, t) = ±

√
κ2a(t) + tdω(t)dt + ω(t)

2κb(t)

× cot

√κ2a(t) + tdω(t)dt + ω(t)

2a(t)

(
x+ 2κ

∫
a(t)dt+ C1

)
×ei(−κx+ω(t)t+θ) . (73)

Remark V: The derivation of the soliton solution for the CNLSE with
constant coefficients was carried out by Nishino et al. [18]. It is important
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to consider the time-dependent coefficients to the CNLSE as this is more
close to reality. It will be seen that the only criterion for the chiral solitons
to exist is that the dispersion coefficient must be Riemann integrable.

By using the Eqs. (51), (56) and (70), the topological soliton solutions
of the CNLSE

iqt + aqxx + ib (qq∗x − q∗qx) q = 0 (74)

are in the following forms:

q1(x, t) = −

√
−A0

√
κab

κb
tanh

√−A0

√
κab

a
(x+ 2κat+ C1)


×ei(−κx−{κ2a−2A0

√
κab}t+θ), (75)

q2(x, t) = −

√
A0

√
κab

kb
tanh

√A0

√
κab

a
(x+ 2κat+ C1)


×ei(−κx−{κ2a+2A0

√
κab}t+θ), (76)

and

q3,4(x, t) = ±
√
−κ

2a+ ω

2κb
tanh

[√
−κ

2a+ ω

2a
(x+ 2κat+ C1)

]
×ei(−κx+ωt+θ). (77)

The dark soliton solution (76) that we obtained for Eq. (74) is the same
with the solution that was obtained by Biswas [1] who used the solitary
wave ansatz method.

5. Ansatz approach

This section will utilize the ansatz method to solve the chiral NLSE
with constant coefficients. This method consist of guessing the correct func-
tional dependence such that only constraints remain to be determined. This
method is not general since one knows the solution structure, more or less,
in advance. The focus will be on equation (3) with m = 1. Therefore, the
governing equation of study here is

iqt + aqxx + ib (qq∗x − q∗qx) = 0 . (78)

The singular soliton solutions to (78) will be obtained by the aid of ansatz
method. The starting point is the assumption

q(x, t) = P (x, t)eiφ(x,t) , (79)
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where P (x, t) is the amplitude part and the phase component φ(x, t) is
given by

φ(x, t) = −κx+ ωt+ θ . (80)
In (80), κ represents the soliton wave number, while ω is the frequency and
θ is the phase constant. Substituting (79) into (78), and decomposing into
real and imaginary parts yield

v = −2aκ (81)

and (
ω + aκ2

)
P + 2bκP 3 − a∂

2P

∂x2
= 0 . (82)

For singular soliton, the hypothesis is

P (x, t) = A cschpτ , (83)

where
τ = B(x− vt) . (84)

The value of the unknown exponent p will fall out during the course of
derivation of the soliton solutions. Also A and B are free parameters, while
v is the speed of the soliton. Substution of (83) into the real part equation
given by (82) leads to(
ω + aκ2 − ap2B2

)
cschpτ+2bκ2 csch3pτ−ap(p+1)B2 cschp+2τ = 0 . (85)

From (85), the balancing principle yields

p = 1 . (86)

Next, from (85) setting the coefficients of the linearly independent functions
to zero implies

A =

√
ω + aκ2

bκ
, (87)

and

B =

√
ω + aκ2

a
. (88)

Equations (87) and (88) prompts the constraints

bκ
(
ω + aκ2

)
> 0 (89)

and
a
(
ω + aκ2

)
> 0 , (90)

respectively. Thus, the 1-soliton solution to (78) is given by

q(x, t) = A csch[B(x− vt)]ei(−κx+ωt+θ) , (91)

where the free parameters A and B are respectively given by (87) and (88)
with the constraints (89) and (90). The velocity of the soliton is seen in (81).
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6. Results and discussion

The results of this paper on chiral solitons are interesting. There are
three independent integration tools that are applied to extract the solutions
of the model equation that was studied in this paper. These integration
architectures revealed several solutions that are generalized forms of results
reported earlier in the literature. The functional variable method, first in-
tegral method and the ansatz approach are all indeed powerful tools that
reveal several solutions to the CNLSE. The results of this paper thus sup-
plement the existing material in the literature of chiral solitons in nuclear
physics.

7. Conclusions

This paper studied the CNLSE as well as the generalized CNLSE with
time-dependent coefficients by three methods of integration. There are the
soliton as well as singular periodic solutions that are obtained. The con-
straint conditions fell out as necessary conditions of integrability as well
as existence of soliton solutions. These interesting results are going to be
profoundly useful and will thus set a foundation stone for further research
activities in this avenue. There are several additional aspects that will be
considered in future. The perturbation term will be considered. Instead
of time-dependent coefficients, the stochastic coefficients will be taken into
consideration. Additionally, stochastic perturbation terms will be studied
and these results will be reported in future publications.
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