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For a system of two-oscillator, we introduce a basis labelled by the sum
and the difference between the occupation quantum numbers of the oscil-
lators. It forms a basis for the SU(2) bosonic representation. This basis
could be useful in the studies of coupled oscillator systems when the total
occupation quantum number of the systems is a constant of motion, for
example, in the weak coupling limit. Using this basis, we are able to show
that the positive partial transpose criterion is necessary and sufficient for
the separability of general mixed states in the subspaces with fixed total
occupation quantum number. We find that mixed states that are diagonal
in this basis are the only separable states in this subspace. The result is
consistent with the fact that the identification of entanglement in infinite
dimensional systems can be reduced to a problem in finite dimensions. Ex-
amples of quantum states that belong to these subspaces are the so-called
N00N -states and the SU(2) coherent states used in the studies of quan-
tum optical systems, quantum information science and quantum nonlinear
rotators.
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1. Introduction

Systems of two or more oscillators are intrinsically interesting in their col-
lective properties such as their energy eigenvalues [1], symmetries [2, 3], and
the identification of entanglement between them [4, 5]. The systems form
the basis for the description of various physical systems, such as two-mode
Gaussian states [4], two-mode squeezed states [6], and coupled rotators [7].
Their response as a collective system to external influence also received much
attention, for example, the decoherence or generation in the entanglement
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of two-mode oscillators in a thermal bath [8–11], and the coupling of the
pump and signal mode to the idle mode as described by the trilinear boson
model [12, 13].

A common basis that is used to represent the two-oscillator states is
the tensor product of the occupation quantum number states, or the Fock
space, of both oscillators. In certain settings, such as due to the nature of the
interactions between a pair of coupled oscillators [14], under the rotating-
wave approximation [15, 16], or when a pair of oscillators is weakly coupled
to a field as in the trilinear boson model [17], the so-called virtual processes in
which the quanta of both oscillators are simultaneous created or annihilated
are absent. As a result, the total occupation quantum number of the two-
oscillator system becomes a constant of motion of the dynamics.

In this situation, it becomes natural to introduce a basis labelled by
the sum, N , and the difference, r, of the occupation quantum number of
both oscillators. The space is then divided into subspaces with different N .
This basis can be used to furnish the SU(2) bosonic representation [18]. It
is a variant of the basis that was used to study the dynamical aspects of
unstable quantum systems in the Liouville space [19, 20]. The introduction
of this basis is in analogy to the introduction of the total and difference in
the momentum of a system of two particles when the total momentum is
conserved during the interaction, or the introduction of the center of mass
and relative coordinates between two particles when the total mass of the
system is much larger than the reduced mass, and hence the center-of-mass
coordinate can be assumed to be stationary in comparison to the relative
coordinate.

As far as we know, this basis has not been used explicitly in the liter-
ature, including the field of quantum information science. When we apply
this basis to the study of the separability of two-oscillator states in the sub-
space of fixed N , we find that the partial positive transpose (PPT) criterion
[21, 22] is necessary and sufficient for the separability of the two-oscillator
states, i.e., the only separable states in this subspace are the states that are
diagonal in this basis. The condition for separability of general density ma-
trices (including mixed states) in this subspace has not been demonstrated
before. In view of the fact that the identification of entanglement in infinite
dimensions can be reduced to a problem in finite dimensions [23], our result
could be useful in this respect.

The class of states we consider are subclass of bipartite non-Gaussian
states. Examples of these states are the so-called N00N -states [24–26],
which are generalizations of the Bell’s states |1, 0〉 ± |0, 1〉, and the SU(2)
coherent states [7, 27–29], where both states have been realized in the labo-
ratory. They are used in quantum optical lithography [24], quantum optical
metrology [26], and in the theoretical studies of quantum information pro-
cessing [30] and quantum nonlinear rotators [7].
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The PPT criterion is one of the most commonly used condition in testing
the separability of quantum states. It is a necessary and sufficient condition
for the separability of bipartite Gaussian states [31, 32]. As for general
bipartite non-Gaussian states such as those we consider, this criterion, in
general, leads to an infinite series of inequalities of higher order moments [33].
The PPT criterion can also be used together with the uncertainty relations
[34–36] to generate entanglement conditions. There are also other methods
that give rise to separability tests of quantum states, for instance, through
entanglement witness [32, 37–39], local unitary relations [40, 41], cross-norm
and realignment maps and their generalizations [42–44], and general entropy
functions [45].

2. The basis

Rather than working in the usual number basis of the oscillators,
|n1, n2〉 ≡ |n1〉 ⊗ |n2〉, we introduce a basis labelled by the sum and the
difference between the occupation quantum numbers of both oscillators, de-
fined respectively by

N ≡ n1 + n2 , r ≡ n1 − n2 . (1)

We denote the new basis by |uNr 〉 ≡ |n1, n2〉. This basis is mathematically
analogous to the total angular momentum basis of integer spin systems [46].
In fact, it provides a natural basis for the bosonic representation of SU(2)
[18]. In the density matrix space, we denote the basis as

f (N,M)
r;s ≡

∣∣uNr 〉 〈uMs ∣∣ , (2)

where r and s have the ranges −N ≤ r ≤ N and −M ≤ s ≤M . They form
a complete and orthogonal set of states.

By writing the density matrix ρ as a linear combination of f (N,M)
r;s ,

ρ =

∞∑
N,M=0

N∑
r=−N

M∑
s=−M

c(N,M)
r;s f (N,M)

r;s , (3)

we arrange the real diagonal coefficients c(N,N)
r;r , which represent the prob-

ability elements, and the complex coefficients, c(N,M)
r;s , which represent the

quantum correlation between both oscillators, in the following way
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ρ =



c
(0,0)
0;0 c

(0,1)
0;1 c

(0,1)
0;−1 c

(0,2)
0;2 · · ·

c
(1,0)
1;0 c

(1,1)
1;1 c

(1,1)
1;−1 c

(1,2)
1;2 · · ·

c
(1,0)
−1;0 c

(1,1)
−1;1 c

(1,1)
−1;−1 c

(1,2)
−1;2 · · ·

c
(2,0)
2;0 c

(2,1)
2;1 c

(2,1)
2;−1 c

(2,2)
2;2 · · ·

...
...

...
...

. . .


. (4)

Notice that the coefficients with different (N,M) indices lie in separate
blocks, and each block represents different (N,M)-subspaces. For example,
the 2× 2 block in the middle of the matrix (4) refers to the (1, 1)-subspace.
The value of N or M increases by 1 when we move to the next subspace
lying below or to the right, respectively. Within each subspace, r or s de-
creases by 2 when we move to the next entry lying below or to the right in
the sequence, respectively.

3. Partial transpose of two-oscillator states

A density matrix of two-oscillator state is separable [47] if it can be
written as a convex combination of the tensor product of the density matrices
of both oscillators, labelled by ρ1 and ρ2, respectively

ρ =
∑
i

ciρ1,i ⊗ ρ2,i , (5)

where
∑

i ci = 1 and ci > 0. Separable states possess only classical correla-
tion and are therefore not entangled.

A partial transpose on the second oscillator is a non-completely positive
map defined by [21, 22]

[|n1〉〈m1| ⊗ |n2〉〈m2|]T2 = |n1〉〈m1| ⊗ |m2〉〈n2| . (6)

For separable states (5), the partial transpose of ρ remains a density ma-
trix. Hence, ρ remains positive. Consequently, the positivity of the partial
transpose is a necessary condition for separable states. This is the posi-
tive partial transpose (PPT) criterion for separable states [21]. For discrete
states, the criterion is also a sufficient condition for 2 ⊗ 2 or 2 ⊗ 3 systems
only [22], whereas for infinite dimensional systems, it is a sufficient condition
for bipartite Gaussian states [31, 32].

In terms of the f (N,M)
r;s basis, the partial transpose on the second oscillator

translates into the following form[
f (N,M)
r;s

]T2

= f (N+,N−)
r+,r− , (7)
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where

N± = 1
2(N +M)± 1

2(r − s) , (8)
r± = 1

2(r + s)± 1
2(N −M) . (9)

As a result, the respective coefficients of the basis in matrix (4) are trans-
formed to their respective new positions.

We now restrict our attention to density matrices within the (N,N)-sub-
space only

ρ(N,N) =
N∑

r,s=−N
c(N,N)
r;s f (N,N)

r;s . (10)

For example, the N00N -states [24–26]

|ψ〉 =
1√

1 + |η|2
(|N, 0〉+ η|0, N〉) , (11)

and the SU(2) coherent states [7, 27–29]

|τ〉N =
(
1 + |τ |2

)−N
2

N∑
n=0

√(
N
n

)
τn|n,N − n〉 , (12)

where η and τ are complex numbers, belong to this subspace.
By denoting ν ≡ r − s, we find that

N± = N ± 1
2ν , (13)

r̄ ≡ r+ = r− = 1
2(r + s) , (14)

where the ranges of N± and r̄ are given respectively by

0 ≤ N± ≤ 2N , (15)
−N ≤ r̄ ≤ N . (16)

4. Separability of mixed states in the fixed N subspace

We now show that when at least one of the off-diagonal coefficients of
any mixed states in the fixed N , or (N,N)-subspace, is non-zero, the states
have negative partial transpose and are therefore inseparable or entangled
by the PPT criterion.

After a partial transpose, the elements in the (N,N)-subspace of the
original matrix are transformed to the other subspaces with labels ranging
from 0 to 2N , see Eq. (15). We find that each of the columns and rows of
the partial transposed matrix contains no more than one non-zero element
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based on the following facts, which cover all the elements in this subspace
and are therefore complete. Coefficients on the diagonal have ν = 0, whereas
coefficients with the same non-zero ν are aligned in parallel to the diagonal.

1. Diagonal coefficients (ν = 0) remain unchanged under the partial
transpose.

2. Off-diagonal coefficients with the same ν (6= 0) are transformed to the
same off-diagonal (N+, N−)-subspace, where N± 6= N .

3. Coefficients associated with different ν ′ (6= ν) are transformed to dif-
ferent subspaces with labels N ′+(6= N+) and N ′−(6= N−), respectively,
that do not equal to each other.

4. Within each (N+, N−)-subspace, the transformed coefficients are lo-
cated at different (r̄, r̄) positions in the matrix, (see Eq. (14) for r̄)
so that no two coefficients occupy the same row or column in each
(N+, N−)-subspace.

As a result, each row and column of the partial transposed matrix [ρ(N,N)]T2

contains no more than one coefficient.
The characteristic matrix [ρ(N,N)]T2 can subsequently be brought into a

block diagonal form that consists of three types of blocks

∣∣∣∣[ρ(N,N)
]T2

− λI
∣∣∣∣ =


A

B1

B2

. . .
C

 . (17)

There is one copy of (N+1)-dimensional square matrix A = diag(a−λ, b−λ,
c−λ, . . . ), where a, b, c, . . . are the diagonal elements of ρ. There are at most
N(N + 1)/2 copies of 2-dimensional square matrix

Bi =

(
−λ αi

α∗i −λ

)
, (18)

where αi are the non-zero off-diagonal elements of ρ(N,N). The rest of the
infinite number of zero elements make up an infinite-dimensional square
matrix C = diag(−λ,−λ, · · · ). Since each Bi matrix gives rise to a separate
negative eigenvalue −|αi| of [ρ(N,N)]T2 , we conclude that, in general, density
matrices in the (N,N)-subspace are inseparable whenever they have at least
a non-zero off-diagonal element.
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5. Examples

Let us use some simple examples to illustrate our result and its limitation.
Consider a density matrix with elements in the (0, 0)-, (1, 1)- and (2, 2)-
subspace

χ =


d 0 0 0 0
0 a c 0 0
0 c∗ b 0 0
0 0 0 0 0
0 0 0 0 e

 , (19)

where we omit the rest of the zero coefficients of the infinite dimensional
matrix for simplicity. The positivity of χ requires that |c|2 ≤ ab, and that
a, b, d, e are all non-negative and sum up to unity for normalization. Notice
that χ is effectively a 2 ⊗ 2 bipartite system where each oscillator consists
of the |0〉 and |1〉 states only.

Under a partial transpose, see Eqs. (7) to (9), we have

χT2 =


d 0 0 0 c∗

0 a 0 0 0
0 0 b 0 0
0 0 0 0 0
c 0 0 0 e

 . (20)

The characteristic matrix can then be brought into the form (17)

∣∣χT2 − λI
∣∣ =


a− λ 0 0 0 0

0 b− λ 0 0 0
0 0 d− λ c∗ 0
0 0 c e− λ 0
0 0 0 0 −λ

 . (21)

If the initial state lies entirely in the (1, 1)-subspace, i.e., when d =
0 = e, then our result shows that the state is entangled since χT2 has
a negative eigenvalue −|c| whenever |c| 6= 0. When an element from the
(0, 0)- or (2, 2)-subspace is included, i.e., either d or e is non-zero, one of
the eigenvalues of χT2 , either d/2−

√
(d/2)2 + |c|2 or e/2−

√
(e/2)2 + |c|2,

respectively, is negative when |c| 6= 0. The state therefore remains entangled.
However, when d and e are both non-zero, |c| 6= 0 no longer guarantees
that one of the eigenvalues is negative. In fact, χT2 becomes non-negative
whenever |c|2 ≤ de. In this situation, even though χ’s off-diagonal element c
is non-zero, the state is separable according to the Peres–Horodecki criterion
[21, 22], for the 2⊗ 2 bipartite system.
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The above examples illustrate the fact that our result is applicable to the
individual (N,N)-subspace only. For general density matrices that involve
the linear combination of various subspaces, the entanglement property of
quantum states in the (N,N)-subspace is altered. The maximally mixed
state serves as another example. For bipartite states in finite dimensional
space, it is known that there exists a small neighbourhood of separable states
around the maximally mixed state [48, 49]. However, in the system consid-
ered here, an infinite dimensional maximally mixed state is not normalizable,
whereas its finite dimensional truncated version necessarily spans over two
or more subspaces with different total occupation quantum numbers. Our
result is therefore not applicable to the separability of states around the
neighbourhood of the maximally mixed state.

6. Conclusion

We introduce a basis for two-oscillator systems that is labelled by the
sum and the difference between the occupation quantum numbers of both
oscillators. It is a natural basis for systems in which the total occupation
quantum number of both oscillators is a constant of motion. This represen-
tation enables us to show that the PPT criterion is necessary and sufficient
for the separability of two-oscillator mixed states lying in the subspace with
fixed total occupation quantum number. We find that in this subspace, the
only separable states are those diagonal in this basis. Our result for finite
dimensional subspaces is relevant since the entanglement of infinite dimen-
sional systems can be reduced to a problem in finite dimensions. The result
and the extension of the basis to systems of three or more oscillators could
be useful in the future studies of coupled oscillator systems.
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