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In a series of recent papers it was shown that, when the attractive
s-wave interaction is dominant, the spin-orbit coupled fermions form a
bound state. Attributed to a convenient momentum representation, it be-
came a common condition of agreement to express the bound state as a
function of the center-of-mass momentum Q. In this paper, we prove that
the bound state of Rashba fermions does not depend on the chosen repre-
sentation. That is, all the states characterized by nonzero Q fail to obey
the translation symmetry.
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1. Introduction

The role of a bound state is in the spotlight of neutral Fermi atoms. The
motives of research, technical possibilities and important physical issues are
discussed in many papers [1–7] where — among other celebrated results —
the existence of a bound state is determined by establishing the poles of
the Fourier transform of Green’s function. One can also explore a free two-
particle Green’s function in deriving the so-called self-consistency condition
which is just the weak (or distributional) solution to the Schrödinger equa-
tion [6]. Although trivial in many applications, the pole itself is insufficient
to determine the bound state. According to the Aronszajn–Donoghue spec-
tral theory of rank one perturbations [8, 9] (s-wave interaction is exactly
rank one), the derivative of the free Green’s function with respect to (w.r.t.)
the eigenvalue must be finite. Otherwise, the spectral points are in the sin-
gular continuous spectrum. This is exactly the case when one says [6] that
the bound state ceases to exist.
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The single-particle Rashba Hamiltonian in L2(R
2; C2) =: X, of a particle

with mass m and Rashba spin-orbit coupling α (we use the ~ = c = 1 units)
is invariant under Euclidean moves. If parametrized in terms of the center-
of-mass ~R ∈ R2 and the relative ~r ∈ R2 coordinates, the same applies to the
Hamiltonian in (X, d2 ~R)⊗ (X, d2~r ) which describes the two interacting par-
ticles. For the dominant s-wave interaction, with the interaction strength γ,
the Euclidean group is naturally reduced to the translation group. The lat-
ter is represented as a tensor product of two two-dimensional groups whose
irreducible representations act on ~R and ~r, respectively. Due to the in-
teraction, it is clear that the two-particle Hamiltonian commutes with the
generator ~P ⊗ I, where i ~P is the gradient in ~R and I is the identity opera-
tor in (X, d2~r ), whereas it does not commute with the generator in ~r. The
commutation relation indicates that the eigenspace of the Hamiltonian is a
dense subset in the domain of the closure of the generator in the Sobolev
norm (apply e.g. [10, Corollary A.7.3.6]). Subsequently, the generalized
eigenvectors of the Hamiltonian are labeled by its spectral points λ along
with the spectral points ~Λ ∈ R2 of the closure of ~P .

In this paper, we shall prove that only the translation invariant eigenvec-
tors, that is those with ~Λ = ~0, are the eigenvectors of the two-particle Rashba
Hamiltonian with point-interaction. For other two-particle interactions, this
is not necessarily the case though (see discussion in Sec. 6).

2. Translation symmetry

Consider an arbitrary f = f(~R,~r ) in the Schwartz space D(R4; C4) of
smooth functions with compact support. Then f has a Fourier transform
χ = χ( ~Q,~k), where ~Q ∈ R2 denotes the center-of-mass momentum and
~k ∈ R2 is the relative momentum.

Since D(R4; C4) is a dense subspace of the Hilbert space L2(R
4; C4),

denoted Xo, and X⊗ X is isomorphic to Xo, one can restate the irreducible
representation exp(i ~P ·~a)⊗I (all ~a ∈ R2) of the translation group by simply
writing exp(i ~P · ~a). Suppose that ~Λ ∈ R2 and that f solves (~P − ~Λ)f = ~0.
Then f is of the form

f
(
~R,~r

)
= ei(

~Λ·~R )ϕ(~r ) , ϕ ∈ D
(
R2; C4

)
, (2.1)

and the Fourier transform reads

χ
(
~Q,~k

)
= (2π)2δ

(
~Q− ~Λ

)
ϕ̂
(
~k
)
, (2.2)

where ϕ̂ ∈ D(R2; C4) is the Fourier transform of ϕ and δ(·) is a two-
dimensional Dirac distribution. It appears from (2.2) that the Fourier trans-
form χ represents a singular distribution, the existence of which is predeter-
mined by the relation ~Q = ~Λ. In particular, (2.1) implies that for ~Λ = ~0, f is
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translation invariant. In general, it also follows from (2.1) that f is labeled
by the spectral point ~Λ, while ϕ is independent of ~Λ.

3. Green’s function

The single-particle Rashba Hamiltonian in X is realized through the dif-
ferential expression −(2m)−1∆+αU , where U := −i(∇yσx−∇xσy). Based
on the relation U2 = −∆, the associated Green’s function can be obtained
in an extremely elegant way [11]. In coordinate representation, it is a linear
combination of the Bessel functions of the second kind. It can be shown1

that the single-particle Green’s function is sufficient to recover the spectrum
of the two-particle Rashba Hamiltonian with point-interaction. The bound
state λ corresponds to the Fourier transform of the Hamiltonian with ~Q = ~0.
More precisely, givenm = 1/2, α > 0, γ < 0, a single bound state is found to
be equal to λ = −α2/(2 sin2 ω), where the parameter −π/2 < ω < 0 solves
the transcendental equation jγ + ln(α/4) = ln|sinω| − ω|tanω|, where one
defines jγ := 4π/|γ|−Ψ(1), and Ψ(1) is the digamma function. The result is
in exact agreement with the associated self-consistency condition (see the in-
tegral in [6, Eq. (31)]) obtained by considering the free two-particle Green’s
function in momentum representation. Moreover, the above equation allows
one to evaluate the characteristic radius of the interaction potential which
is found to be exp(−Ψ(1))/2 ' 0.89 (all α > 0, all γ < 0).

Let g0µ( ~Q,~k) be the free two-particle Green’s function in momentum rep-
resentation projected onto the singlet basis [6]; µ ∈ C\[−α2m,∞). Then g0µ
is a bounded everywhere defined function on R4. The function gµ( ~Q,~k) cor-
responding to the projected integral kernel of the two-particle Hamiltonian
with point-interaction fulfills the resolvent identity

gµ

(
~Q,~k

)
= g0µ

(
~Q,~k

)
(1− γg̃µ(Q)) ,

where

g0µ

(
~Q,~k

)
:= (ε− µ)

(
(ε− µ)2 − α2Q2

) (
(ε− µ)4

−4α2mε(ε− µ)2 + 4α4
(
~Q · ~k

)2)−1
,

ε(Q, k) :=
k2

m
+
Q2

4m
,

g̃µ(Q) :=

∫
k≤C

d2~k

(2π)2
gµ

(
~Q,~k

)
. (3.1)

1 In preparation.



880 R. Juršėnas

The condition k ≤ C, where C is the UV cutoff, ensures that the integral
exists and the obtained natural logarithm is finite.

It appears from the resolvent identity that the (projected) Green’s func-
tion

gµ

(
~Q,~k

)
=

g0µ

(
~Q,~k

)
1 + γg̃0µ(Q)

, (3.2)

where g̃0µ is defined similar to g̃µ but with gµ replaced by g0µ. Then the
denominator of the gµ determines the bound state solution unless |(∂/∂µ)g̃0µ|
is sufficiently large at µ = λ (where λ solves 1+γg̃0λ = 0). We use the notion
“sufficiently large” rather than “infinite” because one accounts for k ≤ C but
not for k <∞ in the integral in (3.1). By (3.2), the bound state solution is
a function of the center-of-mass momentum, λ = λ(Q). The solution agrees
with that obtained from the single-particle Green’s function only if Q = 0.
By using a more general Aronszajn–Donoghue spectral theory, it will be
shown hereafter that the values of Q other than zero do not represent bound
state solutions.

4. Nevanlinna function

In virtue of (3.1), equation (3.2) points to g̃µ = g̃0µ/(1 + γg̃0µ). In turn,
the expression for g̃µ alludes to a well-known Aronszajn–Krein formula for
the symmetric rank one bounded perturbation of a self-adjoint operator in
the Hilbert space. Without referring to the extension theory of symmetric
operators, one can show [8, Theorem 1.1.1] that, if given a self-adjoint op-
erator H, then the subtraction of the resolvents of the perturbed operator
Hγ := H + γ〈δ, ·〉δ and that of H is proportional to 1/(1 + γFµ), where
Fµ := 〈δ, (H − µ)−1δ〉 is known as the Borel transform of a measure, and
it belongs to the Nevanlinna class (that is, the complex conjugate Fµ = Fµ
and the imaginary part Im Fµ/Imµ ≥ 0, provided µ is in the resolvent set
of Hγ). Here, δ is the Dirac distribution and 〈·, ·〉 denotes the scalar product
in a concrete Hilbert space.

Let us study the function Fµ, applied to our case, in a more detailed
fashion. For this, let H be a free two-particle Rashba Hamiltonian in the
Hilbert space Xo. H is parametrized in terms of the center-of-mass ~R and the
relative ~r coordinates. Then the s-wave interaction can be estimated using
the Dirac distribution δ at the relative coordinate ~r ∈ R2 (the interaction
strength is γ). As a result, the form sum Hγ describes the two-particle
system with point-interaction. To see this explicitly, it suffices to note that
for f = f(~R,~r ) in the domain of H, it holds 〈δ, f〉δ = f(~R,~0)δ = fδ. The
Aronszajn–Krein formula reads [9, Eq. (11.13)]

(Hγ − µ)−1 = (1 + γFµ)
−1(H − µ)−1 . (4.1)
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It takes little effort to verify that equation (4.1) eventually leads to the
expression of the Green’s function gµ in (3.2) but with g̃0µ replaced by F̃µ,
where F̃µ denotes the Nevanlinna function Fµ projected onto the singlet
basis. By inspection, the Fourier transform

̂((H − µ)−1δ)
(
~Q,~k

)
= (2π)2δ

(
~Q
)
Ĝ0
µ

(
~0,~k

)
, (4.2)

where Ĝ0
µ is the Green’s function of H in momentum representation. The

projection of the Green’s function onto the singlet basis is given by g0µ.
By (4.2) and the fact that the norm of arbitrary f ∈ Xo coincides with
the norm of its Fourier transform, one easily deduces that the Nevanlinna
function

F̃µ = g̃0µ(0) . (4.3)

Bringing together (3.2) and (4.3), one figures out that the zero-range inter-
action δ admits only the bound state that corresponds to Q = 0, while the
free Green’s function g0µ (recall the definition in (3.1)) accepts all possible
values ~Q ∈ R2. The affirmation of the result for other types of spin-orbit
coupling comes from the Nevanlinna function, for the reason that the Green’s
function was not specified when deriving (4.3).

The obtained result, (4.3), is not accidental, as it is closely related to the
eigenvectors obeying the translation symmetry.

5. Eigenspace

The fact that the bound state of two interacting Rashba particles exists
only for the zero-valued center-of-mass momentum can be affirmed by the
commutation property of the Hamiltonian Hγ with the generator ~P of the
translation group. The commutation relation designates the spectral points
~Λ ∈ R2 of ~P to the eigenspace of Hγ . As a result, the eigenvectors of the
Hamiltonian are of the form of (2.1). Since the Hamiltonian is defined as the
operator in the Hilbert space Xo, it should be emphasized that in this case,
equation (2.1) (as well as (2.2)) is understood in the generalized sense; by the
density result [10], the Schwartz space can be extended to the appropriate
domain of definition of Hγ .

Let Ω be the projection onto the singlet basis. In virtue of (2.1)–(2.2),
vectors f in the eigenspace Ker(Hγ − λ) fulfill the eigenvalue equation

ϕ̂
(
~k
)
+ γĜ0

λ

(
~Λ,~k

)∫
R2

d2~k′

(2π)2
Ωϕ̂

(
~k′
)
= 0 . (5.1)
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By the fact that ϕ is independent of ~Λ, equation (5.1) yields (∂/∂ ~Λ)Ĝ0
λ = ~0.

That is, Ĝ0
λ(
~Λ,~k) is a constant w.r.t. ~Λ ∈ R2. The only one nontrivial

solution to the latter equation w.r.t. ~Λ ∈ R2 reads Λ = 0. By (2.1), this
implies that f = ϕ or else, the space of translation invariant eigenvectors
is reduced from L2(R

4; C4) to L2(R
2; C4). The cancellation of one spatial

vector becomes clear recalling that Xo is isomorphic to the tensor prod-
uct of spaces (X, d2 ~R) ⊗ (X, d2~r ). The Hamiltonian in the Hilbert space
(X, d2 ~R) is parametrized in terms of the center-of-mass coordinate ~R and it
does not have bound states, while the Hamiltonian in the space (X, d2~r ) is
parametrized in terms of the relative coordinate ~r and it has a bound state
due to the Dirac distribution at ~r. This latter space is exactly the one where
the eigenspace of the two-particle Rashba Hamiltonian is situated.

6. Conclusion and discussion

An attempt to clarify the issue regarding the bound state of spin-orbit
coupled fermions was the primary intent of this note. The results of this
paper clearly demonstrate that the eigenvector of the two-particle Rashba
Hamiltonian with point-interaction δ is translation invariant. The associated
bound state exists only for the zero-valued center-of-mass momentum Q.

The main conclusion of the present report is that, if the two-particle
Hamiltonian Hγ , where γ is the strength of interaction, possesses transla-
tion symmetry, then for any two-particle interaction of rank one, the bound
state exists only for the zero-valued center-of-mass momentum Q. The same
applies to other types of spin-orbit coupling. On the other hand, if the
Hamiltonian is not translation invariant, the conclusion does not necessarily
hold. To explain this, let us give some examples.

The rank one perturbation to the free Hamiltonian H is characterized
by the term γ〈φ, ·〉φ, where φ need not be the unit vector in Xo; it even need
not be in the Hilbert space [8, 9, 12]. In this case, the Nevanlinna function
Fµ reads 〈φ, (H − µ)−1φ〉. For the proper potential (that is, the vector φ),
one can possibly derive bound states with nonzero Q. For example, let φ be
summable on rectangle R2 × R2. Then an easy calculation shows that

̂((H − µ)−1φ)
(
~Q,~k

)
= φ̂

(
~Q,~k

)
Ĝ0
µ

(
~Q,~k

)
, (6.1)

where φ̂ is the Fourier transform of φ = φ(~R,~r ). It is clear from (6.1) that
whenever φ(~R,~r ) = φ(~r ), that is, when the two-particle Hamiltonian is
invariant under translations, it always holds

̂((H − µ)−1φ)
(
~Q,~k

)
= (2π)2δ

(
~Q
)
φ̂
(
~k
)
Ĝ0
µ

(
~0,~k

)
(6.2)
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hence Q = 0, no matter what type of interaction between two particles is
specified, viz. zero-range or short-range. In particular, choosing φ = δ, (6.2)
formally coincides with (4.2). On the other hand, if, for example, given
the vector φ(~R,~r ) = exp(i(~a · ~R))δ(~r ) for some ~a ∈ R2, one obtains from
(6.1) that ~Q = ~a, and thus the bound state depends on the controllable
parameter a; in this case, the two-particle Hamiltonian is not translation
invariant and the (projected) Nevanlinna function F̃µ = g̃0µ(a).
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