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1. Introduction

By starting from a geometrodynamic approach in which the entropy
of a quantum system is expressed by a metric in a manifold of different
Boltzmann entropies, Bohm’s quantum potential (QP) appears under the
constraint of a minimum condition of Fisher information as a non-Euclidean
deformation of the entropic space. In this picture, the difference between
classical and quantum information is similar to the difference between Eu-
clidean and non-Euclidean geometry in the parameter space determined by
the quantum entropy [1, 2].

(885)
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On the other hand, starting from the work of Vigier there was recognized
a strong formal analogy between the QP and the most radical and powerful
tool in theoretical physics, the Feynman path integrals approach [3, 4]. In
spite of the fact that the two approaches seem to originate from different
visions, both the paths of Bohm and the Feynman ones underline the “non-
mechanical” character of a quantum object, taking into account explicitly the
non-locality which derives from the global “interweaving” of dynamic stories
in a “context” or “environment” via superposition and entanglement. In
other words, the concept of trajectory emerges only in appropriate conditions
that can be strictly defined in terms of Quantum Field Theory. This is the
conceptual limit of any “geometrodynamics” [5, 6]. The link between Bohm’s
quantum potential and Feynman’s path integrals is explored here within a
new formalism based on quantum entropy as deformation of the geometry
of the configuration space.

The paper is structured as follows. In Section 2, after a brief review of the
most important features of Bohm’s quantum potential, we will analyse a def-
inition of quantum entropy as a constraint on different Boltzmann entropies
and derive the quantum potential as extremal of Fisher information on quan-
tum entropy manifold. In Section 3, we will outline the connection between
Bohmian paths and Feynman’s path integral approach, in the light of some
recent research. In Section 4, we will analyse the link between the quantum
information as a deformation of the geometry and Bohm–Feynman’s path
integrals. Finally, in Section 5 we will derive a new minimum principle which
allows us to obtain quantum mechanics.

2. Quantum potential as Fisher information in entropy space

The starting point to introduce the notion of geometric quantum in-
formation is the analysis of the general features of quantum potential, the
non-local “brick” of the D. Bohm theory. As is known, in his classic works of
1952, Bohm showed that if one interprets each individual physical system as
composed by a corpuscle and a wave guiding it, by writing its wave function
in polar form and decomposing the Schrödinger equation, the movement of
the corpuscle under the guide of the wave happens in agreement with a law
of motion which assumes the following form

∂S

∂t
+
|∇S|2

2m
− ~2

2m

∇2R

R
+ V = 0 , (1)

where R is the amplitude and S is the phase of the wave function, ~ is
Planck’s reduced constant,m is the mass of the particle and V is the classical
potential. This equation is equal to the classical equation of Hamilton–
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Jacobi, except for the appearance of the additional term

Q = − ~2

2m

∇2R

R
(2)

having the dimension of an energy and containing the Planck constant
and, therefore, appropriately defined quantum potential. If we consider a
wave function ψ = R(~x1, . . . ~xN , t)e

iS(~x1,...~xN ,t)/~, defined on the configura-
tion space R3N of a system of N particles, inside Bohm’s interpretation of
non-relativistic quantum mechanics the movement of this system under the
action of the wave ψ happens in agreement to the quantum Hamilton–Jacobi
law of motion

∂S

∂t
+

N∑
i=1

|∇iS|2

2mi
+Q+ V = 0 , (3)

where

Q =
N∑
i=1

− ~2

2mi

∇2
iR

R
(4)

is the many-body quantum potential [7–10]; for a general review, see [11].
For our purposes here, it will be sufficient to refer to the first Bohm,

still influenced by the ideas of de Broglie and influenced by the attempt to
describe the quantum phenomena in a spatio-temporal arena. Later, his
ideas will go more and more in the direction of a topological non-locality
described with algebraic methods in a pre-space [12, 13].

A fundamental trait which emerges from the formalism of non-relativistic
de Broglie–Bohm theory is the non-locality. In the expression of the quan-
tum potential, the appearance of the amplitude of the wave function in the
denominator also explains why the quantum potential can produce strong
long-range effects that do not necessarily fall off with distance and so the
typical properties of entangled wave functions. Thus, even though the wave
function spreads out, the effects of the quantum potential need not neces-
sarily decrease. This is just the type of behaviour required to explain the
EPR effect. In virtue of the quantum potential, Bohm’s interpretation of
quantum phenomena has the merit to include non-locality ab initio rather
than to come upon it as an a posteriori statistical “mysterious weirdness” [1].

Moreover, the expression of the quantum potential implies that the quan-
tum potential has a contextual nature, namely brings a global information
on the process and its environment by individuating an infinite set of phase
paths; and it is active information in the sense that it modifies the behaviour
of the particle. In a double-slit experiment, if one of the two slits is closed,
the quantum potential changes, and this information arrives instantaneously
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to the particle, which behaves consequently. The active information of the
quantum potential is deeply different from classical one: it is, in fact, intrin-
sically not-Shannon computable [14].

An essential key for the relations between quantum potential, system’s
geometry and information is provided by the Fisher information, which plays
the role of a natural tile to build a metric able to connect the system’s
statistical outcomes and its global geometry. In the recent paper [2], the
authors showed that the quantum potential expresses how the quantum ef-
fects deform the configuration space of processes in relation to the number
of the microstates of the system under consideration. The quantum poten-
tial emerges as an information channel determined by the quantum entropy
space given by the manifold of different Boltzmann entropies

S1 = k logW1(θ1, θ2, . . . θp)
S2 = k logW2(θ1, θ2, . . . θp)

. . .
Sn = k logWn(θ1, θ2, . . . θp)

, (5)

where W are the number of the microstates for the same parameters θ as
temperatures, pressures, etc. . . . and k is Boltzmann’s constant. In this
picture, quantum effects are equivalent to a geometry which is described by
equation

∂

∂xk
+

∂2Sj
∂xk∂xp

∂xi

∂Sj
=

∂

∂xk
+
∂ logWj

∂xh
=

∂

∂xk
+Bj,h , (6)

where
Bj,h =

∂Sj
∂xh

=
∂ logWj

∂xh
(7)

is a Weyl-like gauge potential [15–17].
The change of the geometry corresponds with a non-local deformation

of the moments stated by the quantum action

A =

∫
ρ

[
∂A

∂t
+

1

2m
pipj + V +

1

2m

(
∂ logWk

∂xi

∂ logWk

∂xj

)]
dtdnx . (8)

The quantum action assumes the minimum value when

δ

∫
ρ

[
∂A

∂t
+

1

2m
pipj + V

]
dtdnx+ δ

∫
ρ

2m

∂ logWk

∂xi

∂ logWk

∂xj
dtdnx = 0

(9)
and thus
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∂A

∂t
+

1

2m
pipj +V +

1

2m

(
1

W 2
k

∂Wk

∂xi

∂Wk

∂xj

)
=
∂Sk
∂t

+
1

2m
pipj +V +Q , (10)

where Q is the Bohm quantum potential derived from Fisher information as
extremal, that is a measure of distance in the entropy space [1].

On the basis of the formalism described by equations (5)–(10), it be-
comes permissible the following re-reading of the mathematical formalism
in non-relativistic Bohmian quantum mechanics: the distribution probabil-
ity of the wave function determines the functions Wk defining the number
of microstates of the physical system under consideration, a quantum en-
tropy is fixed by these functions Wk given by equations (5), by determining
a change of the geometry — with respect to the Euclidean space of classical
physics — expressed by the Weyl-like gauge potential (7) and characterized
by the deformation of the moments (8). Moreover, on the basis of equa-
tion (10), one can interpret Bohm’s quantum potential as an information
channel determined by the functions Wk given by equations (5): these func-
tions Wk, and therefore the quantum entropy determine the action of the
quantum potential (in the extreme condition of the Fisher information) on
the basis of equation1

Q =
1

2mW 2

∂W

∂xi

∂W

∂xj
− 1

mW

∂2W

∂xi∂xj
. (11)

In this way, under the constraint of the extremal condition of Fisher in-
formation, the functions W are “informational lines” of Bohm’s quantum
potential in the non-Euclidean space of the entropies. In other words, each
of the Boltzmann entropies appearing in the superposition vector (5) can be
considered as a specific information channel of a quantum potential which
describes the deformation of the geometry in the presence of quantum effects.

In the recent article, Sbitnev [18] showed that the quantum potential can
be interpreted as an information channel into the movement of the parti-
cles as a consequence of the fact that it determines two quantum correctors
into the energy of the particle depending on the density of the ensemble of
particles associated with the wave function under consideration. Here, in
analogy with Sbitnev’s treatment, if we substitute equation (11) into equa-
tion (1) the quantum Hamilton–Jacobi equation of motion for the corpuscle
associated with the wave function ψ(~x, t) becomes

|∇S|2

2m
+

1

2mW 2

∂W

∂xi

∂W

∂xj
+ V − 1

mW

∂2W

∂xi∂xj
= −∂S

∂t
(12)

1 In the next equations, for simplicity, we are going to denote the generic function
(defined by equations (5)) with W .
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which provides a new way to read the energy conservation law in quantum
mechanics. In equation (12) two quantum corrector terms appear in the
energy of the system, which are owed to the functions W linked with the
quantum entropy. On the basis of equation (12), we can say that, in the
approach here suggested, the deformation of the geometry determined by
the functions W (and thus by the quantum entropy) produces two quantum
corrector terms in the energy of the system. More precisely, the energy con-
servation law (12) suggests that the term 1

2mW 2
∂W
∂xi

∂W
∂xj

can be interpreted as

the quantum corrector of the kinetic energy |∇S|
2

2m of the particle, while the
term − 1

mW
∂2W
∂xi∂xj

can be interpreted as the quantum corrector of the poten-

tial energy V . These two quantum correctors − 1
mW

∂2W
∂xi∂xj

and 1
2mW 2

∂W
∂xi

∂W
∂xj

are determined just by the functions W which are linked with the quantum
entropy and describe the deformation of the geometry in the presence of
quantum effects.

In Sbitnev’s approach, by starting from the quantum entropy

SQ = −1
2 ln ρ (13)

introduced as the degree of order and chaos of the vacuum supporting the
density of the ensemble of particles associated with the wave function, the
quantum potential is an information channel into the behaviour of the par-
ticles given by relation

Q = − ~2

2m
(∇SQ)2 +

~2

2m

(
∇2SQ

)
. (14)

As a consequence, by equating equations (14) and (11), one obtains

1

2m

(
1

W 2

∂W

∂xi

∂W

∂xj
− 2

W

∂2W

∂xi∂xj

)
= − ~2

2m
(∇SQ)2 +

~2

2m

(
∇2SQ

)
. (15)

Equation (15) allows us to show that the two quantum corrector terms
of the energy of the particle − ~2

2m(∇SQ)2 and ~2
2m(∇2SQ) of Sbitnev’s ap-

proach to quantum entropy correspond to two terms depending on the func-
tions W defining the number of the microstates of the physical system,
namely 1

2m

(
1
W 2

∂W
∂xi

∂W
∂xj

)
and

(
− 1
mW

∂2W
∂xi∂xj

)
respectively

1

2m

(
1

W 2

∂W

∂xi

∂W

∂xj

)
= − ~2

2m
(∇SQ)2 , (16)(

− 1

mW

∂2W

∂xi∂xj

)
=

~2

2m

(
∇2SQ

)
. (17)
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Equations (16) and (17) state that Sbitnev’s entropy expresses the degree
of order and chaos of the vacuum supporting the density of the ensemble
of particles associated with the wave function, in the sense that it emerges
from the functions W defining the number of microstates of the physical
system under consideration.

On the other hand, in analogy with Sbitnev’s model, the continuity equa-
tion of Bohmian mechanics may be written as

∂SQ
∂t

= −(~v · ∇SQ) +
1

2
∇ · ~v , (18)

where ~v = ∇S
m is the particle’s speed and Sbitnev’s entropy SQ is determined

by the functionsW on the basis of equations (16) and (17). In equation (18),
the second term at the right-hand side describes the rate of the entropy flow
due to spatial divergence of the speed. Equation (18) can be interpreted
as a law which describes balance of the information flows associated with
Sbitnev’s entropy and thus with the functions W .

According to the approach here suggested, in non-relativistic Bohmian
mechanics the geometrodynamic nature of the quantum potential (namely
the fact that it has a geometric nature, contains a global information on the
environment in which the experiment is performed, and at the same time
it is a dynamical entity, namely its information about the process and the
environment is active) is just determined by the deformation of the geometry
determined in turn by the functions W (and thus by the quantum entropy
(5)) on the basis of equations (11) and (12), while equation (18) indicates
the information flows associated with these functions. It is also interesting
to observe that, in this approach, the inverse square root of the quantity

Lquantum =
1√

1
~2

(
2
W

∂2W
∂xi∂xj

− 1
W 2

∂W
∂xi

∂W
∂xj

) (19)

defines a typical quantum-entropic length that can be used to evaluate the
strength of quantum effects and, therefore, the modification of the geometry
with respect to the Euclidean geometry characteristic of classical physics.
Once the quantum-entropic length becomes non-negligible, the system goes
into a quantum regime. In this picture, Heisenberg’s uncertainty principle
derives from the fact that we are unable to perform classical measurements
to distances smaller than the quantum-entropic length. In other words, the
size of a measurement has to be bigger than the quantum-entropic length

∆L ≥ Lquantum =
1√

1
~2

(
2
W

∂2W
∂xi∂xj

− 1
W 2

∂W
∂xi

∂W
∂xj

) . (20)
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The quantum regime is entered when the quantum-entropic length must be
taken under consideration.

In synthesis we can say that by Fisher it is possible to characterize the
deformations of the geometry in the presence of quantum effects in the space
of parameters and to express Bohm’s quantum potential as the information
channel indicating the modification of the geometry of the configuration
space determined by the quantum entropy. Novello, Salim and Falciano [19]
have recently proposed a geometrical approach in which the presence of
quantum effects is linked with the Weyl length LW = 1√

R
, and thus with the

curvature scalar; in analogous way, in the approach proposed by the authors
and illustrated in this section (see also [2]), the quantum effects are owed
to the microstates characterizing the system under consideration and thus
to the quantum entropy (5). Both the Novello, Salim and Falciano’s and
our approach are realistic models that aim to provide a geometrical frame-
work to quantum mechanics in a Bohmian picture, the one in the context of
Weyl integrable space, the other in the context of an entropic background in
the condition of Fisher information. In analogy with Novello’s, Salim’s and
Falciano’s approach that implies that the quantum effects are the manifesta-
tions of the modification of the geometry from Euclidean to a non-Euclidean
Weyl integrable space, inside the entropic approach to Bohm’s quantum me-
chanics in the condition of Fisher information, the presence of the quantum
effects is linked with a change in the geometry which is determined by the
quantum entropy and, therefore, the length that can be used to evaluate the
strength of quantum effects is linked with the quantum entropy.

3. About de Broglie–Bohm path integrals
and Feynman path integrals

In quantum mechanics the fundamental problem regarding the propa-
gation of the wave function can be resolved by constructing the so-called
quantum mechanical path integrals. As is known, Feynman’s approach to
quantum mechanics uses the concept of path as a mathematical tool to cal-
culate a propagator for the wave function

K(x, t, x0, t0) =

∫
D[x]e

i
~S[x] , (21)

where S is the classical action and the integral is taken over all possible
paths between the two points (x; t) and (x0; t0). One can show that equa-
tion (21) satisfies the Schrödinger equation and can be used as a substitute
for it. This means that, if we have an arbitrary initial wave function, we
can obtain it at any other time by (21). The Feynman path integral is con-
ventionally understood as a sum over all (infinite) possible paths connecting
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the points (x; t) and (x0; t0), each of these contributing with an amplitude
found by integrating the classical Lagrangian. However, these paths are
understood not be “trajectories”, in fact, in the standard interpretation of
quantum mechanics such a concept does not even exist. Instead, inside the
interpretative universe of the de Broglie–Bohm Theory there is a spectrum
of more varied positions, from post-deterministic “realism” to “softer” posi-
tions [20–23]. Among the archipelago of “ontologies”, we prefer to follow the
royal road of mathematics.

As regards path integrals and theories of actual particle trajectories there
is, moreover, another important (and completely different) relation: since
one considers a lot of possible paths of the particle, it is perhaps one of
these paths that the particle actually follows? If the Feynman path integral
formalism provided a probability distribution on the space of all paths, one
could assume that nature chooses one of the paths at random according
to this distribution. In this way, Feynman’s path integral approach would
have the same ontology as Bohmian mechanics, but would be based on a
stochastic law of motion. As we said, these old “ontological” issues are
waiting to be reformulated in terms of QFT, and a less naive “realism”. The
essential point is that there are already several formalisms able to establish
a “bridge” between the two theories [10, 23–25]. We will limit ourselves here
to illustrate a couple of examples from Bohm toward Feynman.

In their paper Abolhasani and Golshani [26] showed that the propagation
of the wave function in the context of de Broglie–Bohm theory for the one-
body system can be achieved by means of a Bohmian path integral which,
for two points (x; t) and (x0; t0) with a finite distance on a Bohmian path,
is defined by the relation

ψ(~x, t) = exp

 i

~

x,t∫
x0,t0

[
(∇S)2

2m
− (Q+ V )

]
dt−

x,t∫
x0,t0

(
∇2S

2m

)
dt

ψ(~x0, t0) ,

(22)
where the first exponential can be obtained by integrating the quantum
Hamilton–Jacobi equation (1) on the Bohmian path, while the second ex-
ponential can be obtained by integrating the continuity equation (derived
from the imaginary part of Schrödinger equation) [21]. As one may expect,
here the classical action of the Feynman path integral (21) is replaced by
the quantum action (which is linked with the quantum potential Q given by
equation (2). The Bohmian path integral given by equation (21) can also
be extended to the case of a system of N particles in the following way
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ψ (~x1, . . . ~xN , t) = exp

 i

~

x,t∫
x0,t0

N∑
i=1

[
(∇iS)2

2mi
− (Q+ V )

]
dt

−
x,t∫

x0,t0

N∑
i=1

(
∇2
iS

2mi

)
dt

ψ (~x01, . . . ~x0N , t0) (23)

with the quantum potential Q given by equation (4).
Abolhasani and Golshani have then determined ψ(~x, t) for a free-wave

packet in one dimension in terms of its Fourier components eikx (for which
∇2S = 0 and Q = 0). In this case, the Bohmian path integral (22) becomes

ψ(x, t) =

∫
dke−i

~k2
2m

(t−t0)ϕ(k)eikx (24)

(which can be called Fourier–Bohm path integrals) and the Feynman path
integral becomes

K(x, t, x0, t0) =

√
m

2πi~(t− t0)
exp

{
im(x− x0)2

2~(t− t0)

}
. (25)

In both, Feynman and Fourier–Bohm path integrals, infinite paths have
origin from each point of space at time t0 and these paths have all possible
gradients. It is important to underline that in Abolhasani’s and Golshani’s
treatment, the infinity of Fourier–Bohm paths is of the same order of the
infinity of Feynman paths. The infinite Bohmian paths which appear in the
Fourier–Bohm path integral are equivalent with the infinite Feynman paths
which appear in the Feynman path integral. The only difference is that, in
the Bohmian path integrals each path which initiates at x0, with the gradient
vi = ki~

m , is multiplied by one component of ψ0(x0), i.e. ϕ(ki)e
ikix. Instead,

in Feynman path integral the same path is multiplied by all components of
ψ0(x0), i.e.

∑
i ϕ(ki)e

ikix.
In Abolhasani and Golshani’s treatment, both the Bohmian path integral

(22) and the Feynman path integral (21) lead to the same result as regards
the evolution of the wave function for a free wave packet. In particular,
in this model, Feynman path integral (21) can be obtained directly from
the Bohmian path integral (22) on the basis of an “heuristic argument”.
The equivalence of the Bohmian path integral (22) and the Feynman path
integral (21) for the free wave packet can also be seen as a consequence of
the fact that in this simple case the quantum potential vanish.
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Recently, Oltean showed that the Feynman path integral (21) can be
obtained from the Bohmian path integral inside a bit more general, careful
and rigorous context [27]. Oltean demonstrated that the Bohmian path inte-
gral (22) derives from a combination of two opportune lemmas regarding the
propagation of the wave function modulus and the propagation of the phase
of the wave function respectively, and thus by integrating the quantum La-

grangian LQ =
N∑
i=1

[
(∇iS)

2

2mi
−Q− V

]
along one single path i.e. the particle’s

Bohmian trajectory. More precisely, the two lemmas are the following:

— The wave function modulus is propagated according to

ψ(x, t) =

exp

−1

2

N∑
j=1

t∫
t0

∇ · ~v ψj dt

ψ(x0, t0) ,

where ~v ψj =
∇jS
mj

is the velocity of the generic particle of the system.

— The phase function is propagated according to S(x, t) = S(x0, t0) +∫ t
t0
LQdt where LQ =

N∑
i=1

[
(∇iS)

2

2mi
−Q− V

]
is the quantum Lagrangian.

Then, on the basis of Oltean’s results, the Feynman method of summing
over all paths can be constructed by starting from the de Broglie–Bohm the-
ory. By utilizing the propagator K(x, t, x0, t0) of the wave function (which is
defined such that ψ(~x, t) =

∫
R3 K(~x, t, ~x0, t0)ψ(~x, t)d3~x) and the free parti-

cle wave function ψ(~x, t) = 1
(2π~)3/2

∫
R3 exp

(
i
~~p · ~x

)
ψ̂(~p, t)d3~p (where ψ̂(~p, t)

is the Fourier transform of the wave function), the Feynman path integral
can be obtained which, for the one-body system, is given by relation

K(~x, t, ~x0, t0) = lim
n→∞

∫
. . .

∫
R3(n−1)

( m

2πi~∆t

) 3
2
n

exp

 i

~

t∫
t0

LCdt

 n−1∏
k=1

d3~rk ,

(26)

where the classical Lagrangian is given by LC =
N∑
i=1

[
(∇iS)

2

2mi
− V

]
.

According to the research of Abolhasani and Golshani and of Oltean, we
can conclude that, despite their different conceptual starting-points, there
is a significant relation between Bohmian path integral and Feynman path
integral approach (in particular, in the special case of the free particle wave
function, for which the quantum potential is null). In the next section, we
will demonstrate the link between the concept of quantum information by
Fisher entropy developed in Section 2 and Feynman’s path integral approach.
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4. The link between quantum entropy
and Bohm–Feynman path integrals

Starting from the expression (11) of the quantum potential in terms of
the functions W , it is possible to introduce interesting perspectives about
the relation between the quantum information associated with the quantum
entropy space (5) and Feynman’s path integrals. The introduction of the
quantum entropy given by equations (5) that determines the behaviour of
quantum particles lead to two equations of motion, the energy conservation
law (12) and the entropy balance equation (13), which introduce a new
suggestive way to read the Bohmian mechanics and suggest a link with
Feynman’s path integrals.

By taking into account the entropic definition (11) of the quantum poten-
tial, Abolhasani and Golshani’s Bohmian path integral (22) can be rewritten
in the following form

ψ(~x, t) = exp

 i

~

x,t∫
x0,t0

[
(∇S)2

2m
− 1

2mW 2

∂W

∂xi

∂W

∂xj

]
dt

−
x,t∫

x0,t0

(
∇2S

2m
− 1

mW

∂2W

∂xi∂xj
+ V

)
dt

ψ(~x0, t0) . (27)

Equation (27) indicates clearly that functions W (and therefore the quan-
tum entropy given by equation (5)) are associated with a Bohmian path
by determining appropriate corrective terms into the kinetic energy and
the potential energy (and thus into the Lagrangian) of the particle under
consideration. Moreover, in the picture provided by Oltean, the following
re-reading of the Bohmian path integral formalism becomes permissible: the
Bohmian path integral (27) derives from the integration of a quantum La-
grangian determined by the kinetic energy, the potential energy and the
quantum entropy of the particle, namely the quantum entropy producing a
change of the geometry expressed by a Weyl-like gauge potential introduces
a modification of the Lagrangian and thus determines a particular Bohmian
trajectory associated with the Bohmian path integral (27). In other words,
on the basis of equation (22), one can say that Bohmian trajectories asso-
ciated with Bohmian path integrals are indeed determined by the fact that
the functions W (and thus the quantum entropy) produce a modification
in the energy of the system under consideration. The functions W indicat-
ing the microstates of the system under consideration change whether the
energetic-informational picture and hence Feynman’s integrals emerge.
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As regards the entropic definition (11) of the quantum potential, one can
show that by means of an opportune unification of the quantum Hamilton–
Jacobi equation (12) and the entropy balance equation (18), a complexified
Hamilton–Jacobi equation containing complex kinetic and potential terms
can be obtained. Moreover, it can show that the two quantum correction
terms of kinetic energy and potential energy both depending on the func-
tions W and thus on the quantum entropy are the fundamental terms that
modify the Feynman’s path integral by expanding coordinates and momenta
to an imaginary sector.

In this regard, by multiplying equation (18) for −i~ and introducing this
result into equation (12), this latest equation becomes

|∇S|2

2m
+ i~

1

m
[∇S · ∇SQ] +

1

2mW 2

∂W

∂xi

∂W

∂xj

+V − i~1

2
∇~v − 1

mW

∂2W

∂xi∂xj
= −∂S

∂t
. (28)

Here, in analogy with Sbitnev’s treatment in paper [18], we write the first
three terms in (28) as gradient of a complexified action squared

|∇S|2

2m
+ i~

1

m
[∇S · ∇SQ] +

1

2mW 2

∂W

∂xi

∂W

∂xj
=

1

2m
(∇J)2 (29)

while as regards the other three terms of (28), we use an expansion into
the Taylor’s series of the potential energy extended in the complex space
which is to say a small broadening into the imaginary sector (as regards the
complex extension, see, for example, the reference [28])

V (~x+ i~ε ) ≈ V (~x ) + i~
(
~n ·
( s

2m
∇V (~x )

))
− ~2

2m

(
s2

2m
∇2V (~x )

)
+ . . . ,

(30)
where ~ε = ~

2ms~n is a small vector having the dimension of length and s is
the universal constant, the reverse velocity s = 4πε0

~
e2

= 4, 57× 10−7 [s/m],
e is the elementary charge carried by a single electron, ε0 is the vacuum
permittivity. As regards the second term of equation (30), we have a force
−∇V (~x ) multiplied by a vector l~n providing thus an elementary work per-
formed by this force at shifting on a length l along ~n. The force multiplied
by the factor l~n and divided into mass m is a rate of velocity’s variation
per unit length, i.e., it represents divergence of the velocity. So, the second
term of equation (30) can be rewritten in the following form

s

2m
(~n · ∇V (~x )) =

1

2
(∇ · ~v ) . (31)
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As regards the third term s2

2m∇
2V (~x ), it can be made the position

− s2

2m
∇2V (~x ) = − 1

~2W
∂2W

∂xi∂xj
. (32)

Now, by defining the complexified momentum ~p ′ = ∇J = ∇S+ i~∇SQ and
the complexified coordinates ~x ′ = ~x+ i~ε, equation (28) can be rewritten as
a complexified Hamilton–Jacobi equation

−∂J
∂t

=
1

2m
(∇J)2 + V

(
~x ′
)

= H(~x ′, ~p ′, t) , (33)

where H(~x ′, ~p ′, t) on the right-hand side is the complexified Hamiltonian.
The total derivative of the complex action gives the following equation

dJ

dt
= −H(~x ′, ~p ′, t) +

n∑
i=1

p′i
.
x
′
i = L

(
~x ′,

.

~x
′
, t
)
. (34)

By integrating equations (27) and (28) we obtain the solutions

J = −
t∫

t0

H(~x ′, ~p ′, τ)dτ + C1 , (35)

J = −
t∫

t0

L
(
~x ′,

.

~x
′
, τ
)
dτ + C2 , (36)

where C1 and C2 are two integration constants that satisfy the following
condition

C1 − C2 =

t∫
t0

n∑
i=1

p ′i
.
x
′
idt =

∫
L

n∑
i=1

p ′idx
′
i . (37)

In equation (37), L is a curve beginning at t0 and terminating at t.
In analogy with the Sbitnev paper, the complexified state space (as-

sociated with the complexified momenta ~p ′ = ∇J = ∇S + i~∇SQ and
described by equations (33), (34), (35), (36) and (37)) can be considered
as the fundamental stage which determines the features of Bohmian tra-
jectories: Bohmian trajectories are submitted to the principle of least ac-
tion that expands on the action integral (36) containing the complexified
Lagrangian function. Bohmian trajectories turn out to be geodesic trajec-
tories of an incompressible fluid loaded by the complexified Lagrangian that,
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in turn, is determined by the quantum potential expressed by equation (11),
in other words by the two quantum correctors linked with the functions W
and thus with the quantum entropy.

In the complexified state space defined by equations (33)–(37), a solution
of the Schrödinger equation can be written as

ψ
(
~x ′, ~p ′, t

)
= exp

(
i

~
J

)
. (38)

By substituting the action integral (35) into equation (38), we obtain

ψ
(
~x ′, ~p ′, t

)
=

1

Z1
exp

− i~
t∫

t0

H
(
~x ′, ~p ′, τ

)
dτ

 , (39)

where Z1 = exp(− i
~C1).

In this complexified state space, the Hamilton’s principle δJ = 0 states
that the motion of an arbitrary mechanical system occurs in such a way that
the definite integral (36) becomes stationary for arbitrary possible variations
of the configuration of the system, provided the initial and final configura-
tions of the system are prescribed. This principle can also be reformulated
with respect to the wave function expressed in terms of the complexified
action

ψ
(
~x ′, ~p ′, t

)
=

1

Z2
exp

− i~
t∫

t0

L
(
~x ′,

.

~x
′
, τ
)
dτ

 , (40)

where Z2 = exp(− i
~C2). In this case, the principle states: this exponent

becomes stationary for arbitrary possible variations of the configuration of
the system, provided the initial and final configurations of the system are
prescribed. Obviously, it results from stationarity of the integral (36) stated
above.

Feynman’s path integral approach based on the superposition principle
is that all arbitrary trajectories are accepted as possible histories of the
evolving quantum system. Contributions of most paths to the integral (36)
will cancel each other, unless these paths are somehow “close” to the solution
of δJ = 0, which is the “real” path of the system. In the semiclassical region
the propagator will, therefore, be dominated by those paths which are in
the immediate vicinity of the classical path; the size of this vicinity follows
from the estimate δJ ≈ ~. As shown in Grosche and Steiner [29], Feynman’s
path integral can be written mathematically in the following way inside the
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complexified state space

K
(
~x ′, t; ~x ′0, t0

)
=

∫ ∫
. . .

∫
D
[
~x ′(τ)

]
exp

 i

~

t∫
t0

L
(
~x ′,

.

~x
′
, τ
)
dτ

 , (41)

where the path-integral symbol indicates the multiple integral

∫ ∫
. . .

∫
D
[
~x ′(τ)

]
⇔
(

2πi~δt
m

)−M/2
x′∫

x′0

d~x ′1

x′∫
x′0

d~x ′2 . . .

x′∫
x′0

d~x ′M . (42)

The fundamental principle of quantum mechanics, principle of super-
position, underlies the path integral (41). Whereas evolution of a classical
object is described by a unique trajectory satisfying the principle of least ac-
tion, the path integral tests all possible virtual classical trajectories, among
which there is a unique trajectory satisfying the least action principle. Other
trajectories cancel each other by their interference.

Feynman’s path integral represented in the product form, like in equa-
tion (21) or in equation (41), is a collection of the integrals of Fresnel type
which are generally oscillatory [30, 31]. A trick suggested by Feynman was
to add a negative imaginary part to Planck constant. This converts the
oscillatory integrals into the Gaussian integrals and makes the path integral
convergent. Another, more generally applicable trick is to assume that each
element of the diagonal mass matrix has a positive imaginary part. Under
this assumption, the path integral can be convergent independently of the
metric of space.

On the basis of this treatment, the relation between the geometric quan-
tum information (whose starting-point is the quantum entropy (11)) illus-
trated in Section 3 and Feynman’s path integral approach based on equations
(41) and (42) seems simple and natural inside the complexified state space
characterized by the complexified momenta ~p ′ = ∇J = ∇S + i~∇SQ and
by the complexified coordinates ~x ′ = ~x+ i~ε: the key of reading is provided
by the two Bohmian quantum correctors linked with the functions W and
thus with the quantum entropy. The path integral computation stems di-
rectly from decomposition of the Schrödinger equation to the modified quan-
tum Hamilton–Jacobi equation (12) plus the entropy balance equation (18).
The two Bohmian quantum correctors linked with the quantum entropy
resulted from this decomposition expand the state space to the imaginary
sector. In turn, imaginary terms emergent in this computations suppress the
wilder contributions to the path integral. Thus, one obtains a non-trivial
N -dimensional manifold embedded in the 2N -dimensional complex state
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space where its real part is the conventional coordinate state space. The
two Bohmian quantum correctors in the energy of the system determined by
the functions W and thus by the quantum entropy emerge as indispensable
terms that modify the Feynman’s path integral by expanding coordinates
and momenta to the imaginary sector.

5. The principle of least action in the complexified space

On the basis of the mathematical formalism of the complexified space,
a minimum principle for the complexified action may be introduced which
allows us to derive non-relativistic quantum mechanics. This minimum prin-
ciple is the Hamilton’s principle for the complexified action δJ = 0 which
states that the motion of an arbitrary mechanical system occurs in such a
way that the integral (36) becomes stationary for arbitrary possible varia-
tions of the configuration of the system, provided the initial and final config-
urations of the system are prescribed. In this section, we want to show that
this minimum principle can reproduce and derive non-relativistic quantum
mechanics in the sense that it is equivalent to the Schrödinger equation (and
this would open the perspective to interpret the complexified space described
by this principle of least action for the complexified action and associated
with the quantum entropy as the fundamental key for non-relativistic quan-
tum mechanics).

Hamilton’s principle of least action is a fundamental principle of physics
that is used to obtain dynamical equations for both non-relativistic and
relativistic particles and fields (two classics are [32, 33]). As regards the
derivation of Schrödinger equation from Hamilton’s principle of least action,
recently Kobe proposed an approach based on a Lagrangian density involv-
ing second-order derivatives of the wave function [34]. Kobe’s approach is
different from the Feynman’s path integral approach that uses a classical
particle Lagrangian in the path formulation to obtain the propagator. This
approach gives a unified treatment for both non-relativistic quantum the-
ory and relativistic quantum field theory, as well as showing their unity
with other branches of physics. Moreover, Kobe has shown that for time-
independent quantum systems, the principle of least action reduces to the
energy variational principle of non-relativistic quantum mechanics.

Here, we apply Hamilton’s principle of least action to non-relativistic
quantum mechanics by considering the wave function in the complexified
space as a generalized coordinate and constructing a Lagrangian density
such that Hamilton’s principle gives the Schrödinger equation. Differently
from Kobe’s picture, the approach of the complexified space developed in
Section 4 allows us, to be coherent and compatible with Feynman’s path
integral approach. In this treatment, in order to use Hamilton’s principle
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of least action to obtain the Schrödinger equation, we need a general La-
grangian density characterizing the complexified space. Such a Lagrangian
density can be constructed from the wave function (40) of the complexified
space, its complex conjugate, and their partial derivatives to any order [34].
Because it involves the wave function, the Lagrangian density emphasizes
the wave aspect of quantum theory.

We postulate a simple Lagrangian density L for this system in terms of
the non-relativistic wave function as

L = ψ∗
(
i~
∂

∂t
−H

)
ψ (43)

which depends only on ψ∗, ψ and its partial derivatives. Any Lagrangian
density that gives the correct equation of motion is a valid one, so a La-
grangian density that is complex can still be useful [35]. To obtain the
dynamical equations from a Lagrangian density, we use Hamilton’s princi-
ple of least action. Hamilton’s principle states the action functional J [ψ∗, ψ]
for any Lagrangian density (43) is stationary

J [ψ∗, ψ] =

∫
dt

∫
d3rL(ψ,ψ∗, . . . ) = stationary , (44)

where integration is over all time and all complexified space. The action (44)
is stationary when its variation with respect to ψ∗ or ψ (or both) is zero.
When the specific Lagrangian density (38) is substituted into equation (44)
and variation is made with respect to ψ∗ we obtain

δJ [ψ∗, ψ] =

∫
dt

∫
d3rδψ∗

(
i~
∂

∂t
−H

)
ψ = 0 . (45)

Since the variation δψ∗ is arbitrary except for vanishing at the boundaries,
equation (45) leads immediately to the Schrödinger equation

Hψ = i~
∂ψ

∂t
, (46)

where the wave function ψ(0) must be specified. If the variation of the
action is made with respect to ψ, then integration by parts is needed and
the complex conjugate of the Schrödinger equation is obtained.
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6. Conclusions

In this article, a geometric approach to quantum information based on
a new vision of quantum entropy has been explored and it has been anal-
ysed connection between the Bohm potential and Feynman integrals. The
Quantum Information carried by Bohm–Feynman paths can be interpreted
as a measure of the deformation of the geometry associated with the quan-
tum entropy space. In this way, the idea that Born rule indicates a sort
of Quantum Equilibrium [36, 37] is supported. The emergent geometries
of Bohm–Feynman paths are determined by two quantum corrector terms
in the energy of the system. Finally, all that confirms the contextuality of
QM, its “open” nature on QFT and reproposes the possibility to put the
question of the formal analogies between Bohm trajectories and Feynman
integrals in terms of energetic relations of “doubling” [5, 6] between system
and environment in quantum vacuum.
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