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A new prescription, in the framework of condensate models for space-
times, for physical stationary gravitational fields is presented. We show that
the spinning cosmic string metric describes the gravitational field associ-
ated with the single vortex in a superfluid condensate model for space-time
outside the vortex core. This metric differs significantly from the usual
acoustic metric for the Onsager–Feynman vortex. We also consider the
question of what happens when many vortices are present, and show that
on large scales a Gödel-like metric emerges. In both the single and multiple
vortex cases, the failure of general relativity exemplified by the presence of
closed time-like curves is attributed to the breakdown of superfluid rigidity.
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1. Introduction

The various developments of quantum field theory in curved space-time
have left the false impression that general relativity and quantum mechan-
ics are compatible. Actually though certain predictions of classical general
relativity such as closed time-like curves and event horizons are in conflict
with a quantum mechanical description of space-time itself. In particular,
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a quantum mechanical description of any system requires a universal time.
In practice, universal time is defined by means of synchronization of atomic
clocks, but such synchronization is not possible in space-times with event
horizons or closed time-like curves. It has been suggested [1] that the way
a global time is established in Nature is via the occurrence of off-diagonal
long-range quantum coherence in the vacuum state. This leads to a very
different picture of compact astrophysical objects from that predicted by
general relativity [2–7].

Certainly, it was historically an unfortunate development, that an unnec-
essary emphasis was placed on the high energy-momentum (UV) behavior
of scattering amplitudes in ‘quantum Einstein gravity’, which has blinded
many researchers to the subtleties of the global properties of the gravita-
tional vacuum medium. We have in mind the infrared (IR) behavior of
the gravitational and the Standard Model interactions of massless elemen-
tary excitations in the physically relevant case of the finite positive vacuum
energy density εvac = µ4(~c)−3. The physical gravitational vacuum state
in this case is described by the de Sitter universe. It was recognized long
time ago that the physical gravitational vacuum state is a highly correlated
quantum state of a new kind of matter constituents of which were called
gravitational atoms [4–6, 8]. The fundamental role played by quantum en-
tanglement in the quantum state of a huge number of strongly interacting
bosonic constituents of the gravitational vacuum medium in the explana-
tion of the underlying microscopic mechanism responsible for the selection
of very small values of the cosmological constant, and the emergence of grav-
itational fields described by metric fields gµν on space-times, was strongly
emphasized by one of the authors [4–6, 8, 9]. In this letter, we wish to
point out the salient differences between the general relativistic description
of rotating space-times and the picture offered by the assumption that the
vacuum state is a quantum condensate.

It has been recognized for a long time that general relativity fails to de-
scribe accurately the physical situation in the regions of extremely high tidal
forces (curvature singularities) of the type of a Big Bang or the interior of
a black hole. Generally, this failure of general relativity was considered in-
consequential because it was supposed to occur on Planckian length scales.
In this case, a rather soothing philosophy was adopted to the effect that
some mysterious and still unknown quantum theory of gravitation will take
care of the difficulty by ‘smoothing out’ the curvature singularities. It was
recognized only recently that the physics of event horizons is a second ex-
ample of the failure of general relativity but this time on the macroscopic
length scales [2–6]. In the following, we consider a third kind of the fail-
ure of general relativity on the macroscopic length scales, associated with
the occurrence of closed time-like curves (CTC). CTCs occur frequently in
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analytically extended space-times described by general relativity once there
is rotation present in a physical system under consideration, which is quite
common in Nature.

2. Quantized vortices in a superfluid and rotating space-times

The most famous example of a solution to the Einstein equations, where
CTCs occur, is the Gödel rotating Universe [10] though the first example
of a rotating space-time with CTCs was found by Lanczos [11]. In these
cases, there is no universal time because the classical space-time manifold
contains closed time-like curves. Gödel thought that this indicated that there
was something wrong with the intuitive notion of time itself. However, in
the following, we will show that this strange behavior can also be viewed
as an example of the failure of classical general relativity on macroscopic
length scales.

As shown in [2], the hydrodynamic equations for a superfluid that one
derives directly from the nonlinear Schrödinger equation are not exactly
the classical Euler equations, but there are quantum corrections to these
equations which become important when a certain quantum coherence length
becomes comparable to length scale over which the superfluid density varies.
One circumstance where this happens is near the core of a quantized vortex
in a rotating superfluid. Although the physical size of the vortex core in
a superfluid is usually small it can also happen, for example near to the
isotropic Heisenberg point in an XY quantum magnet, that the vortex core
has macroscopic dimensions.

In order to generalize the condensate models of Refs. [2–6, 12] to the case
of rotating space-times, we consider the nonlinear Schrödinger equation in
a general stationary space-time background described by the line element

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj , (2.1)

where gµν is time independent. The Lagrangian describing the condensate
of nonrelativistic particles with mass M has the form

L =
i~c2s
2
g00
[
ψ∗
(
∂t − gijgoj∂i

)
ψ − ψ

(
∂t − gijgoj∂i

)
ψ∗
]

+
~2

2M
gij∂iψ

∗∂jψ +
~

2M
g0i(∂tψ

∗∂iψ + ∂tψ∂iψ
∗)

+

(
1

2
Mc4sg

00 − 1

2
Mc2s + µ

)
ψ∗ψ − U

(
|ψ|2

)
, (2.2)

where gµν is the contravariant tensor inverse to the metric gµν for the back-
ground space-time, µ is the chemical potential, U(|ψ|2) is the interaction
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potential energy, and cs is the velocity of sound in the condensate at the
equilibrium state. The velocity of sound cs is related to the interaction po-
tential U by the relation Mc2s = |ψ|2U

′′
(|ψ|2) (and U ′(|ψ|2) = µ, of course).

The equation of motion for the condensate order parameter ψ is

i~c2sg00
(
∂t +

g0i

g00
∂i

)
ψ =

~2

2M

1√
−g

∂i
(√
−ggij∂jψ

)
+
(
U

′ − µ
)
ψ − ~

M
g0i∂i∂tψ , (2.3)

where g is the determinant of the spatial metric gij .
It will be useful to write the metric in the form gµν = ηµν + hµν ,

where ηµν = diag(c2s ,−1,−1,−1). To first order in hµν the effect of the
background space-time is to introduce a perturbation −1

2h
µνTµν in the La-

grangian, where Tµν is the symmetrized stress-energy-momentum tensor for
the condensate [12]. Writing ψ =

√
neiS , where n = |ψ|2 is the number den-

sity of particles in the condensate, we obtain the velocity field vi = ~
M ∂iS

for the condensate flow. This representation of ψ leads to the steady state
quantum hydrodynamic equations for n and vi

∂i

[
n

(
vi

(
1− h00

2c2s

)
− hijvj − h0i

)]
= 0 , (2.4)

~2

M
√
n
∇2√n− ~2

M
√
n
∂i
(
hij∂j

√
n
)
+ 2

(
1− h00

2c2s

)(
µ− U ′

)
−M

(
1− h00

2c2s

)
~v 2 + 2Mh0ivi − hiinU

′′

+Mhijvivj −
~2

4M
∇2hii −

~2

2Mc2s
√
n
~∇ ·
(
h00~∇

√
n
)
= 0 . (2.5)

Our philosophy in the following will be to find the classical metrics which
produce superfluid flows with vortices when h00 = 0 and ∂3gµν = 0. The
metric in our action is not a dynamical field. Instead, the metric components
only act as Lagrange multipliers. The role of these Lagrange multipliers is to
enforce the local equilibrium in the condensate. The homogeneous vacuum
state of the condensate is characterized by |ψ| = const., gµν = ηµν and
U

′
= µ.
We first seek a solution of Eqs. (2.4) and (2.5) corresponding to a single

vortex in the condensate. The phase S of the condensate corresponding to
a single vortex has a simple form: S = Nϕ, where ϕ is the azimuthal angle
defined by the formula ϕ = Arctan(x

2

x1
) and N is the vortex number which

is an integer. The velocity field corresponding to the vortex configuration is
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vi = N
~
M
∂iϕ . (2.6)

It is convenient to use the following well known relation (here, the indices
i, j take values 1 and 2)

∂iϕ = −εij∂j ln r , (2.7)

which yields

vi = −
Nκ

2πr2
εijxj , (2.8)

where κ = h
M is the fundamental unit of quantized circulation

∮
~v · d~l or the

flux of the vorticity field ωij = ∂ivj − ∂jvi. The velocity field of a vortex vi
has the form of the Aharonov–Bohm electromagnetic potential [13], while
the vorticity ω = 1

2εijωij = εij∂ivj is an analog of the Aharonov–Bohm
magnetic field produced by an infinitely thin solenoid, ω = κδ(x1)δ(x2).

It turns out that because of the presence of the potentials h0i and hij
in the hydrodynamic equations, the superfluid density n will be nearly con-
stant when r is greater than the coherence length ξ = ~

Mcs
. Indeed, it is

straightforward to show that if n is constant and the velocity has the form
given in Eq. (2.8), then Eqs. (2.4) and (2.5) have a solution

N = 1 , (2.9)
h00 = 0 , h0i = vi , (2.10)

hij = −vivj
c2s

. (2.11)

These values for the potentials hµν are equivalent to the metric for the
background space-time of the local ‘spinning cosmic string’ solution of the
Einstein field equations [14–16] (see also [17–19]) in the region where n is
constant; i.e. for r & ξ. The line element for this solution (for r > 0) has
the form [14–16]

ds2 = (csdt+Adϕ)2 − dr2 − r2dϕ2 − dz2 , (2.12)

where A = κ
2πcs

= ξ. The string-like singularity at r = 0 has neither mass
density nor pressure, so space-time is flat for r > 0. However, the string
rotates resulting in frame dragging. This frame dragging is represented by
the appearance of a vector potential Ai [14–16] with azimuthal component
Aϕ = A = κ

2πcs
. The frame dragging implied by the metric (2.12) is evidently

closely related to the velocity field surrounding a single vortex filament in a
superfluid. Indeed, De Witt pointed out some time ago [20] that the vector
potential Ai associated with frame dragging can be formally identified as the
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vector potential for a superconductor. Kirzhnits and Yudin [21] have also
studied stationary superfluid flows in the presence of gravitational fields g0i
produced by rotating compact, massive objects (superfluid cores of neutron
stars). Balasin and Israel [22] have concluded that vortex filaments in a
superfluid neutron star do produce gravimagnetic forces, contrary to the
statements in the literature.

It should be noted that excitations other than collective bosonic exci-
tations in the condensate, for example massless (massive) fermionic and
bosonic excitations or impurities, will feel the gravitational field, Eq. (2.12),
associated with the vortex. However, this field is not the same as the acous-
tic metric seen by the condensate excitations. The scattering cross-section
for fermionic (bosonic) particles will be given by the Aharonov–Bohm cross-
section [15, 16] as is the scattering of quasiparticle excitations of unit electric
charge on Abrikosov vortices [23] in type II superconductors. In this sense,
the ‘spinning cosmic string’ is a gravitational analog of the Abrikosov vor-
tex [15, 16]. This is also the reason why one of the authors has called
the scattering of relativistic particles by gravitational vortices the gravi-
tational Aharonov–Bohm effect [15, 16]. The scattering cross-section for
condensate excitations has been given in Ref. [24] and for the reasons just
mentioned is not the same as the gravitational Aharonov–Bohm scattering
cross-section [15, 16].

The space-time corresponding to the metric (2.12) does not have a uni-
versal time because closed time-like curves appear close to the axis of the
gravitational vortex. What does not seem to have been noted before, though,
is the fact that closed time-like curves appear in the gravitational vortex
background (2.12) at exactly the radius, where a classical hydrodynamic
description of the superfluid begins to fail. Indeed, the superfluid velocity
(2.8) will become comparable to the velocity of sound cs when the radius r
is close to the quantum coherence length ξ. Therefore, superfluid rigidity
and classical hydrodynamics break down as one enters the core of the vortex.
Remarkably, this breakdown of a classical description of the superfluid seems
to be closely related to the breakdown of causality in classical GR associated
with the formation of closed time-like geodesics. The condition for the ap-
pearance of closed time-like curves in a rotating space-time is that gϕϕ > 0,
which for the gravitational vortex metric (2.12) becomes the condition

r < rc =
κ

2πcs
= ξ . (2.13)

That is, closed time-like curves appear in the gravitational vortex solution
of the Einstein equations near to the axis of the string where the velocity of
frame dragging exceeds the speed of light. In the superfluid picture, this cor-
responds to the core of the vortex where the superfluid flow velocity exceeds
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the speed of sound cs. As previously discussed, this is just where a classical
hydrodynamic description of the fluid flow in a quantized superfluid vortex
breaks down. Indeed, the solution to the equations of quantum hydrody-
namics in the presence of the potentials hµν given by Eqs. (2.10), (2.11) is
valid only in the region where the condensate particle density n is constant.
The corresponding space-time metric (2.12) is perfectly well behaved in this
region (r > ξ). It is only after the naïve analytic continuation of the metric
(2.12) to the region r < ξ is attempted that the causality violating regions
appear in the space-time.

This observation provokes one to ask if the appearance of closed time-like
curves in solutions of the classical Einstein field equations might always be
associated with a breakdown of superfluid rigidity. In particular, one might
wonder if the appearance of closed time-like curves in Gödel-like universes
is related to the behavior of rotating superfluids. The Gödel metric for a
rotating universe can be written in the form [25]

ds2 = (cdt+Ω(r)dϕ)2 − dr2 − f2dϕ2 − dz2 , (2.14)

where Ω(r) = 4Ω
m2 sinh

2(mr2 ) and f(r) = 1
msinh(mr). In the limit of small r,

Ω(r) approaches Ωr2. The off-diagonal metric component g0ϕ equals the
velocity potential inside a body rigidly rotating with angular velocity Ω. It
can be seen that the metric component g0ϕ for the Gödel universe has a
very different dependence on radius from that of the gravitational vortex.
However, as we shall now see this very different behavior is characteristic of
what happens in a rapidly rotating superfluid.

Feynman pointed out [26] that when many vortices are present, the veloc-
ity of rotation in the superfluid will approach that of a rigidly rotating body;
i.e. ~v = ~Ω×~r. When the area density σ of vortices is not too high, it is rea-
sonable to approximate the phase in Eq. (2.6) as a sum S =

∑
aArg(w−wa),

w = x1+ix2 of phases of individual vortices each with vortex number N = 1.
Using Eq. (2.7), the velocity field in this approximation can be written in
the form

vi =
κ

2π
∂iS = − κ

2π
εij∂j

∑
a

ln |~x− ~xa| . (2.15)

Evaluating the vorticity ω = εij∂ivj and replacing the sum in Eq. (2.15) by
an integral, we obtain

ω =
κσ

2π
∇2
x

∫
d2y ln |~x− ~y | . (2.16)

Using the relation ∇2
x ln |~x − ~y | = 2πδ(2)(~x − ~y ), we obtain ω = κσ. It

follows from Eqs. (2.15) and (2.16) that vi = −κσ
2 εijxj which means that

this velocity field is indeed that of a rigid body rotating with the angular
velocity Ω = κσ

2 .
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Since the gravitational vortex solution (2.12) is spatially flat, it makes
sense to construct a new solution to the Einstein equations by simply super-
posing the velocity fields, Eq. (2.15), corresponding to a collection of parallel
gravitational vortices. Following the same line of reasoning that leads one
to rigid body rotation in the case of many superfluid vortices, one would
surmise, based on the identification h0i = vi, that in the presence of many
gravitational vortices the metric of space-time would assume the form

ds2 =

(
csdt+

1

cs
Ωr2dϕ

)2

− dr2 − r2dϕ2 − dz2 . (2.17)

This metric is, in fact, just the Som–Raychaudhuri solution of the Einstein
field equations [25, 27]. This metric can be obtained from the Gödel metric
Eq. (2.14) by letting m→ 0. It can be seen that the velocity of frame drag-
ging for the metric (2.17) is just the velocity inside a rigidly rotating body.
The condition for the appearance of closed time-like curves, i.e. gϕϕ > 0, in
the Som–Raychaudhuri space-time is

Ωrc > cs . (2.18)

That is, closed time-like curves appear when the velocity of frame dragging
exceeds the speed of light. In contrast with the gravitational vortex, closed
time-like curves appear in the Som–Raychaudhuri space-time at large radii.
The appearance of closed time-like curves in Gödel space-times mimics the
behavior of Som–Raychaudhuri space-time in that the closed time-like curves
appear at large radii. In particular, for the Gödel metric (2.14) the condition
for the appearance of closed time-like curves is

2Ω

m
tanh

mrc
2

> cs . (2.19)

When m → 0, this condition reduces to Eq. (2.18). When m = 2Ωc , the
radius where the velocity of frame dragging approaches the speed of light
recedes to infinity, and the space-time will be free of closed time-like curves
everywhere. We now wish to inquire as to the significance of the conditions
(2.18) and (2.19) from the point of view of a rotating superfluid. Evidently
then, a superfluid description for the metrics (2.14) and (2.17) will require
an external rotating container of normal matter to create a frame dragging
potential. The elementary fact that this container cannot rotate faster than
the speed of light leads to the conditions (2.18) and (2.19). The occurrence of
solid body-like frame dragging in the Gödel and Som–Raychaudhuri metrics
may seem to be incompatible with a superfluid interpretation for space-time
because ~∇ × ~v = 2 ~Ω for a solid body rotating with angular velocity ~Ω,
whereas the flow velocity of a superfluid must have zero curl since it is the



Superfluid Picture for Rotating Space-Times 913

gradient of a phase. The resolution of this paradox is that the solid body
rotation curve corresponds to a coarse-grained average of the velocities from
an array of individual vortices. The superfluid as a whole will respond to
the frame dragging created by the array of vortices leading to the Gödel-like
metrics. In between the vortices, the flow is irrotational so ~∇×~v = 0 in the
superfluid condensate.

In contrast with the case of a single vortex, the coarse-grained potentials
associated with the array of vortices do not satisfy the time independent
hydrodynamic Eqs. (2.4) and (2.5). Indeed, in contrast with the case of the
single vortex, the term ∇2hii in Eq. (2.5) which comes from the quantum
pressure no longer cancels the term hijvivj which arises as a relativistic
correction to the kinetic energy density of the condensate. Although a simple
superposition, Eq. (2.15), of the single vortex solution, Eqs. (2.9)–(2.11),
does not satisfy the superfluid Eqs. (2.4)–(2.5), there do exist multi-vortex
solutions. In particular, there exist time independent solutions representing
a regular lattice of vortices, the Tkachenko lattice [28].

When an impulse of energy is applied to a very low temperature rotating
superfluid condensate, then a turbulent state containing a time dependent
tangle of quantum vortices can develop [29]. Such a regime is known as quan-
tum turbulence. If space-time is indeed a condensate and the conditions for
the development of quantum turbulence, i.e. rotation and an impulse of en-
ergy are met, then there should be characteristic observational signatures.
For example, the onset of quantum turbulence in cosmological space-times
would lead to a characteristic scale-free spectrum of energy density fluctua-
tions.
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Bjorken, Robert Laughlin, Emil Mottola, David Santiago and Andrzej
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where this paper has been completed in March 2004. This material is based
upon work (partially) supported by the National Science Foundation under
Grant No. 0140377 (P.O.M.). This work was also performed (in part) under
the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-
48 (G.C.).
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Note added in proof:

The last paragraph of this paper was made very short for brevity reasons
because the paper was initially formatted as a letter and thus no formulae
were given to support the claim that quantum turbulence in the context
of the superfluid model of gravitational fields/space-times leads ‘... to a
characteristic scale-free spectrum of energy density fluctuations’.

In an earlier unpublished work of one of the authors [30], the correla-
tion functions of the statistical random velocity field vi(x) in the three-
dimensional conformal field theory (3D CFT) describing quantum turbu-
lence on large scales (and the ‘normal’ fluid K41 turbulence; the celebrated
Kolmogorov–Obukhov 5

3 law) were computed

〈vi(x)vj(y)〉 = Pij(x,y;∆v) |x− y|−2∆v , (2.20)

where ∆v is the scaling dimension of the statistical (random) velocity field
vi(x), and from the condition of the vanishing divergence of the velocity
field (outside the vortex cores of quantized vortices) ∂ivi = 0, we compute
the 3D symmetric tensor Pij(x,y;∆v)

Pij(x,y;∆v) = C[(1−∆v)δij +∆vninj ] , (2.21)

where C is a constant and

ni = ni(x,y) =
(x− y)i
|x− y|

. (2.22)

At large distances, the line integral of the statistical velocity field
∮
Γ (R)

vidxi

along the closed contour Γ (R), which is a circle of radius R, scales like R0

because of the Onsager–Feynman quantization condition [26]. This means
that on the very large distance scale when the contour encircles the tangle of
quantized vortices the scaling dimension ∆v of the statistical velocity field
vi(x) is equal to one: ∆v = 1.

The naïve scaling dimension of the kinetic energy ε is ∆ε = 2. The
composite statistical operator ε(x) = 1

2ρvi(x)vi(x), with ρ = const., scales
with the lowest scaling dimension ∆ε = 2∆v. This translates to the correla-
tions of the composite energy density operator ε(x) that is equivalent to the
Zel’dovich–Harrison scaling spectrum of the energy density fluctuations.

In fact, the experiments on quantum turbulence in superfluid 4He re-
ported during the COSLAB Workshop in Bilbao in July 2003 showed that
at a large distance scales velocity correlations display the scaling dimension
∆v = 1. This behavior translates to the Zel’dovich–Harrison power spec-
trum for energy density Pε(k) ∼ kn, where k = |k| and n = 1. Recall
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that the power spectrum Pε(k) is defined by the Fourier transform of the
two-point correlation function 〈ε(x)ε(y)〉 by the formula

〈ε(k)ε(k′
)〉 = δ(3)(k + k

′
)Pε(|k|) . (2.23)

In the case of the two-point correlation function with scaling

〈ε(x)ε(y)〉 ∼ |x− y|−2∆ε , (2.24)

the power spectrum Pε(k)∼ kn, where the exponent n = 2∆ε − 3 is entirely
given in terms of the scaling dimension ∆ε. Indeed, it was shown [31] that
the naïve scaling of the energy density fluctuations in the ‘early universe’
(∆ε = 2) corresponds to the celebrated Zel’dovich–Harrison power spectrum
with the exponent nZH = 1. There is room for ‘anomalous dimensions’
though [30, 31].
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